1 //===-- IRMemoryMap.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Expression/IRMemoryMap.h" 10 #include "lldb/Target/MemoryRegionInfo.h" 11 #include "lldb/Target/Process.h" 12 #include "lldb/Target/Target.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/DataExtractor.h" 15 #include "lldb/Utility/LLDBAssert.h" 16 #include "lldb/Utility/LLDBLog.h" 17 #include "lldb/Utility/Log.h" 18 #include "lldb/Utility/Scalar.h" 19 #include "lldb/Utility/Status.h" 20 21 using namespace lldb_private; 22 23 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { 24 if (target_sp) 25 m_process_wp = target_sp->GetProcessSP(); 26 } 27 28 IRMemoryMap::~IRMemoryMap() { 29 lldb::ProcessSP process_sp = m_process_wp.lock(); 30 31 if (process_sp) { 32 AllocationMap::iterator iter; 33 34 Status err; 35 36 while ((iter = m_allocations.begin()) != m_allocations.end()) { 37 err.Clear(); 38 if (iter->second.m_leak) 39 m_allocations.erase(iter); 40 else 41 Free(iter->first, err); 42 } 43 } 44 } 45 46 lldb::addr_t IRMemoryMap::FindSpace(size_t size) { 47 // The FindSpace algorithm's job is to find a region of memory that the 48 // underlying process is unlikely to be using. 49 // 50 // The memory returned by this function will never be written to. The only 51 // point is that it should not shadow process memory if possible, so that 52 // expressions processing real values from the process do not use the wrong 53 // data. 54 // 55 // If the process can in fact allocate memory (CanJIT() lets us know this) 56 // then this can be accomplished just be allocating memory in the inferior. 57 // Then no guessing is required. 58 59 lldb::TargetSP target_sp = m_target_wp.lock(); 60 lldb::ProcessSP process_sp = m_process_wp.lock(); 61 62 const bool process_is_alive = process_sp && process_sp->IsAlive(); 63 64 lldb::addr_t ret = LLDB_INVALID_ADDRESS; 65 if (size == 0) 66 return ret; 67 68 if (process_is_alive && process_sp->CanJIT()) { 69 Status alloc_error; 70 71 ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | 72 lldb::ePermissionsWritable, 73 alloc_error); 74 75 if (!alloc_error.Success()) 76 return LLDB_INVALID_ADDRESS; 77 else 78 return ret; 79 } 80 81 // At this point we know that we need to hunt. 82 // 83 // First, go to the end of the existing allocations we've made if there are 84 // any allocations. Otherwise start at the beginning of memory. 85 86 if (m_allocations.empty()) { 87 ret = 0x0; 88 } else { 89 auto back = m_allocations.rbegin(); 90 lldb::addr_t addr = back->first; 91 size_t alloc_size = back->second.m_size; 92 ret = llvm::alignTo(addr + alloc_size, 4096); 93 } 94 95 // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped 96 // regions, walk forward through memory until a region is found that has 97 // adequate space for our allocation. 98 if (process_is_alive) { 99 const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8 100 ? 0xffffffffffffffffull 101 : 0xffffffffull; 102 103 lldbassert(process_sp->GetAddressByteSize() == 4 || 104 end_of_memory != 0xffffffffull); 105 106 MemoryRegionInfo region_info; 107 Status err = process_sp->GetMemoryRegionInfo(ret, region_info); 108 if (err.Success()) { 109 while (true) { 110 if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo || 111 region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo || 112 region_info.GetExecutable() != 113 MemoryRegionInfo::OptionalBool::eNo) { 114 if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { 115 ret = LLDB_INVALID_ADDRESS; 116 break; 117 } else { 118 ret = region_info.GetRange().GetRangeEnd(); 119 } 120 } else if (ret + size < region_info.GetRange().GetRangeEnd()) { 121 return ret; 122 } else { 123 // ret stays the same. We just need to walk a bit further. 124 } 125 126 err = process_sp->GetMemoryRegionInfo( 127 region_info.GetRange().GetRangeEnd(), region_info); 128 if (err.Fail()) { 129 lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed"); 130 ret = LLDB_INVALID_ADDRESS; 131 break; 132 } 133 } 134 } 135 } 136 137 // We've tried our algorithm, and it didn't work. Now we have to reset back 138 // to the end of the allocations we've already reported, or use a 'sensible' 139 // default if this is our first allocation. 140 141 if (m_allocations.empty()) { 142 uint32_t address_byte_size = GetAddressByteSize(); 143 if (address_byte_size != UINT32_MAX) { 144 switch (address_byte_size) { 145 case 8: 146 ret = 0xdead0fff00000000ull; 147 break; 148 case 4: 149 ret = 0xee000000ull; 150 break; 151 default: 152 break; 153 } 154 } 155 } else { 156 auto back = m_allocations.rbegin(); 157 lldb::addr_t addr = back->first; 158 size_t alloc_size = back->second.m_size; 159 ret = llvm::alignTo(addr + alloc_size, 4096); 160 } 161 162 return ret; 163 } 164 165 IRMemoryMap::AllocationMap::iterator 166 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { 167 if (addr == LLDB_INVALID_ADDRESS) 168 return m_allocations.end(); 169 170 AllocationMap::iterator iter = m_allocations.lower_bound(addr); 171 172 if (iter == m_allocations.end() || iter->first > addr) { 173 if (iter == m_allocations.begin()) 174 return m_allocations.end(); 175 iter--; 176 } 177 178 if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) 179 return iter; 180 181 return m_allocations.end(); 182 } 183 184 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { 185 if (addr == LLDB_INVALID_ADDRESS) 186 return false; 187 188 AllocationMap::const_iterator iter = m_allocations.lower_bound(addr); 189 190 // Since we only know that the returned interval begins at a location greater 191 // than or equal to where the given interval begins, it's possible that the 192 // given interval intersects either the returned interval or the previous 193 // interval. Thus, we need to check both. Note that we only need to check 194 // these two intervals. Since all intervals are disjoint it is not possible 195 // that an adjacent interval does not intersect, but a non-adjacent interval 196 // does intersect. 197 if (iter != m_allocations.end()) { 198 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 199 iter->second.m_size)) 200 return true; 201 } 202 203 if (iter != m_allocations.begin()) { 204 --iter; 205 if (AllocationsIntersect(addr, size, iter->second.m_process_start, 206 iter->second.m_size)) 207 return true; 208 } 209 210 return false; 211 } 212 213 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, 214 lldb::addr_t addr2, size_t size2) { 215 // Given two half open intervals [A, B) and [X, Y), the only 6 permutations 216 // that satisfy A<B and X<Y are the following: 217 // A B X Y 218 // A X B Y (intersects) 219 // A X Y B (intersects) 220 // X A B Y (intersects) 221 // X A Y B (intersects) 222 // X Y A B 223 // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X 224 // || Y <= A)), or (X < B && A < Y) 225 return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2)); 226 } 227 228 lldb::ByteOrder IRMemoryMap::GetByteOrder() { 229 lldb::ProcessSP process_sp = m_process_wp.lock(); 230 231 if (process_sp) 232 return process_sp->GetByteOrder(); 233 234 lldb::TargetSP target_sp = m_target_wp.lock(); 235 236 if (target_sp) 237 return target_sp->GetArchitecture().GetByteOrder(); 238 239 return lldb::eByteOrderInvalid; 240 } 241 242 uint32_t IRMemoryMap::GetAddressByteSize() { 243 lldb::ProcessSP process_sp = m_process_wp.lock(); 244 245 if (process_sp) 246 return process_sp->GetAddressByteSize(); 247 248 lldb::TargetSP target_sp = m_target_wp.lock(); 249 250 if (target_sp) 251 return target_sp->GetArchitecture().GetAddressByteSize(); 252 253 return UINT32_MAX; 254 } 255 256 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { 257 lldb::ProcessSP process_sp = m_process_wp.lock(); 258 259 if (process_sp) 260 return process_sp.get(); 261 262 lldb::TargetSP target_sp = m_target_wp.lock(); 263 264 if (target_sp) 265 return target_sp.get(); 266 267 return nullptr; 268 } 269 270 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, 271 lldb::addr_t process_start, size_t size, 272 uint32_t permissions, uint8_t alignment, 273 AllocationPolicy policy) 274 : m_process_alloc(process_alloc), m_process_start(process_start), 275 m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions), 276 m_alignment(alignment) { 277 switch (policy) { 278 default: 279 llvm_unreachable("Invalid AllocationPolicy"); 280 case eAllocationPolicyHostOnly: 281 case eAllocationPolicyMirror: 282 m_data.SetByteSize(size); 283 break; 284 case eAllocationPolicyProcessOnly: 285 break; 286 } 287 } 288 289 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, 290 uint32_t permissions, AllocationPolicy policy, 291 bool zero_memory, Status &error) { 292 lldb_private::Log *log(GetLog(LLDBLog::Expressions)); 293 error.Clear(); 294 295 lldb::ProcessSP process_sp; 296 lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; 297 lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; 298 299 size_t allocation_size; 300 301 if (size == 0) { 302 // FIXME: Malloc(0) should either return an invalid address or assert, in 303 // order to cut down on unnecessary allocations. 304 allocation_size = alignment; 305 } else { 306 // Round up the requested size to an aligned value. 307 allocation_size = llvm::alignTo(size, alignment); 308 309 // The process page cache does not see the requested alignment. We can't 310 // assume its result will be any more than 1-byte aligned. To work around 311 // this, request `alignment - 1` additional bytes. 312 allocation_size += alignment - 1; 313 } 314 315 switch (policy) { 316 default: 317 error.SetErrorToGenericError(); 318 error.SetErrorString("Couldn't malloc: invalid allocation policy"); 319 return LLDB_INVALID_ADDRESS; 320 case eAllocationPolicyHostOnly: 321 allocation_address = FindSpace(allocation_size); 322 if (allocation_address == LLDB_INVALID_ADDRESS) { 323 error.SetErrorToGenericError(); 324 error.SetErrorString("Couldn't malloc: address space is full"); 325 return LLDB_INVALID_ADDRESS; 326 } 327 break; 328 case eAllocationPolicyMirror: 329 process_sp = m_process_wp.lock(); 330 LLDB_LOGF(log, 331 "IRMemoryMap::%s process_sp=0x%" PRIxPTR 332 ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s", 333 __FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()), 334 process_sp && process_sp->CanJIT() ? "true" : "false", 335 process_sp && process_sp->IsAlive() ? "true" : "false"); 336 if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { 337 if (!zero_memory) 338 allocation_address = 339 process_sp->AllocateMemory(allocation_size, permissions, error); 340 else 341 allocation_address = 342 process_sp->CallocateMemory(allocation_size, permissions, error); 343 344 if (!error.Success()) 345 return LLDB_INVALID_ADDRESS; 346 } else { 347 LLDB_LOGF(log, 348 "IRMemoryMap::%s switching to eAllocationPolicyHostOnly " 349 "due to failed condition (see previous expr log message)", 350 __FUNCTION__); 351 policy = eAllocationPolicyHostOnly; 352 allocation_address = FindSpace(allocation_size); 353 if (allocation_address == LLDB_INVALID_ADDRESS) { 354 error.SetErrorToGenericError(); 355 error.SetErrorString("Couldn't malloc: address space is full"); 356 return LLDB_INVALID_ADDRESS; 357 } 358 } 359 break; 360 case eAllocationPolicyProcessOnly: 361 process_sp = m_process_wp.lock(); 362 if (process_sp) { 363 if (process_sp->CanJIT() && process_sp->IsAlive()) { 364 if (!zero_memory) 365 allocation_address = 366 process_sp->AllocateMemory(allocation_size, permissions, error); 367 else 368 allocation_address = 369 process_sp->CallocateMemory(allocation_size, permissions, error); 370 371 if (!error.Success()) 372 return LLDB_INVALID_ADDRESS; 373 } else { 374 error.SetErrorToGenericError(); 375 error.SetErrorString( 376 "Couldn't malloc: process doesn't support allocating memory"); 377 return LLDB_INVALID_ADDRESS; 378 } 379 } else { 380 error.SetErrorToGenericError(); 381 error.SetErrorString("Couldn't malloc: process doesn't exist, and this " 382 "memory must be in the process"); 383 return LLDB_INVALID_ADDRESS; 384 } 385 break; 386 } 387 388 lldb::addr_t mask = alignment - 1; 389 aligned_address = (allocation_address + mask) & (~mask); 390 391 m_allocations.emplace( 392 std::piecewise_construct, std::forward_as_tuple(aligned_address), 393 std::forward_as_tuple(allocation_address, aligned_address, 394 allocation_size, permissions, alignment, policy)); 395 396 if (zero_memory) { 397 Status write_error; 398 std::vector<uint8_t> zero_buf(size, 0); 399 WriteMemory(aligned_address, zero_buf.data(), size, write_error); 400 } 401 402 if (log) { 403 const char *policy_string; 404 405 switch (policy) { 406 default: 407 policy_string = "<invalid policy>"; 408 break; 409 case eAllocationPolicyHostOnly: 410 policy_string = "eAllocationPolicyHostOnly"; 411 break; 412 case eAllocationPolicyProcessOnly: 413 policy_string = "eAllocationPolicyProcessOnly"; 414 break; 415 case eAllocationPolicyMirror: 416 policy_string = "eAllocationPolicyMirror"; 417 break; 418 } 419 420 LLDB_LOGF(log, 421 "IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 422 ", %s) -> 0x%" PRIx64, 423 (uint64_t)allocation_size, (uint64_t)alignment, 424 (uint64_t)permissions, policy_string, aligned_address); 425 } 426 427 return aligned_address; 428 } 429 430 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { 431 error.Clear(); 432 433 AllocationMap::iterator iter = m_allocations.find(process_address); 434 435 if (iter == m_allocations.end()) { 436 error.SetErrorToGenericError(); 437 error.SetErrorString("Couldn't leak: allocation doesn't exist"); 438 return; 439 } 440 441 Allocation &allocation = iter->second; 442 443 allocation.m_leak = true; 444 } 445 446 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { 447 error.Clear(); 448 449 AllocationMap::iterator iter = m_allocations.find(process_address); 450 451 if (iter == m_allocations.end()) { 452 error.SetErrorToGenericError(); 453 error.SetErrorString("Couldn't free: allocation doesn't exist"); 454 return; 455 } 456 457 Allocation &allocation = iter->second; 458 459 switch (allocation.m_policy) { 460 default: 461 case eAllocationPolicyHostOnly: { 462 lldb::ProcessSP process_sp = m_process_wp.lock(); 463 if (process_sp) { 464 if (process_sp->CanJIT() && process_sp->IsAlive()) 465 process_sp->DeallocateMemory( 466 allocation.m_process_alloc); // FindSpace allocated this for real 467 } 468 469 break; 470 } 471 case eAllocationPolicyMirror: 472 case eAllocationPolicyProcessOnly: { 473 lldb::ProcessSP process_sp = m_process_wp.lock(); 474 if (process_sp) 475 process_sp->DeallocateMemory(allocation.m_process_alloc); 476 } 477 } 478 479 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 480 LLDB_LOGF(log, 481 "IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 482 "..0x%" PRIx64 ")", 483 (uint64_t)process_address, iter->second.m_process_start, 484 iter->second.m_process_start + iter->second.m_size); 485 } 486 487 m_allocations.erase(iter); 488 } 489 490 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { 491 AllocationMap::iterator iter = FindAllocation(address, size); 492 if (iter == m_allocations.end()) 493 return false; 494 495 Allocation &al = iter->second; 496 497 if (address > (al.m_process_start + al.m_size)) { 498 size = 0; 499 return false; 500 } 501 502 if (address > al.m_process_start) { 503 int dif = address - al.m_process_start; 504 size = al.m_size - dif; 505 return true; 506 } 507 508 size = al.m_size; 509 return true; 510 } 511 512 void IRMemoryMap::WriteMemory(lldb::addr_t process_address, 513 const uint8_t *bytes, size_t size, 514 Status &error) { 515 error.Clear(); 516 517 AllocationMap::iterator iter = FindAllocation(process_address, size); 518 519 if (iter == m_allocations.end()) { 520 lldb::ProcessSP process_sp = m_process_wp.lock(); 521 522 if (process_sp) { 523 process_sp->WriteMemory(process_address, bytes, size, error); 524 return; 525 } 526 527 error.SetErrorToGenericError(); 528 error.SetErrorString("Couldn't write: no allocation contains the target " 529 "range and the process doesn't exist"); 530 return; 531 } 532 533 Allocation &allocation = iter->second; 534 535 uint64_t offset = process_address - allocation.m_process_start; 536 537 lldb::ProcessSP process_sp; 538 539 switch (allocation.m_policy) { 540 default: 541 error.SetErrorToGenericError(); 542 error.SetErrorString("Couldn't write: invalid allocation policy"); 543 return; 544 case eAllocationPolicyHostOnly: 545 if (!allocation.m_data.GetByteSize()) { 546 error.SetErrorToGenericError(); 547 error.SetErrorString("Couldn't write: data buffer is empty"); 548 return; 549 } 550 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 551 break; 552 case eAllocationPolicyMirror: 553 if (!allocation.m_data.GetByteSize()) { 554 error.SetErrorToGenericError(); 555 error.SetErrorString("Couldn't write: data buffer is empty"); 556 return; 557 } 558 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); 559 process_sp = m_process_wp.lock(); 560 if (process_sp) { 561 process_sp->WriteMemory(process_address, bytes, size, error); 562 if (!error.Success()) 563 return; 564 } 565 break; 566 case eAllocationPolicyProcessOnly: 567 process_sp = m_process_wp.lock(); 568 if (process_sp) { 569 process_sp->WriteMemory(process_address, bytes, size, error); 570 if (!error.Success()) 571 return; 572 } 573 break; 574 } 575 576 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 577 LLDB_LOGF(log, 578 "IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR 579 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", 580 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, 581 (uint64_t)allocation.m_process_start, 582 (uint64_t)allocation.m_process_start + 583 (uint64_t)allocation.m_size); 584 } 585 } 586 587 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, 588 Scalar &scalar, size_t size, 589 Status &error) { 590 error.Clear(); 591 592 if (size == UINT32_MAX) 593 size = scalar.GetByteSize(); 594 595 if (size > 0) { 596 uint8_t buf[32]; 597 const size_t mem_size = 598 scalar.GetAsMemoryData(buf, size, GetByteOrder(), error); 599 if (mem_size > 0) { 600 return WriteMemory(process_address, buf, mem_size, error); 601 } else { 602 error.SetErrorToGenericError(); 603 error.SetErrorString( 604 "Couldn't write scalar: failed to get scalar as memory data"); 605 } 606 } else { 607 error.SetErrorToGenericError(); 608 error.SetErrorString("Couldn't write scalar: its size was zero"); 609 } 610 } 611 612 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, 613 lldb::addr_t address, Status &error) { 614 error.Clear(); 615 616 Scalar scalar(address); 617 618 WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); 619 } 620 621 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, 622 size_t size, Status &error) { 623 error.Clear(); 624 625 AllocationMap::iterator iter = FindAllocation(process_address, size); 626 627 if (iter == m_allocations.end()) { 628 lldb::ProcessSP process_sp = m_process_wp.lock(); 629 630 if (process_sp) { 631 process_sp->ReadMemory(process_address, bytes, size, error); 632 return; 633 } 634 635 lldb::TargetSP target_sp = m_target_wp.lock(); 636 637 if (target_sp) { 638 Address absolute_address(process_address); 639 target_sp->ReadMemory(absolute_address, bytes, size, error, true); 640 return; 641 } 642 643 error.SetErrorToGenericError(); 644 error.SetErrorString("Couldn't read: no allocation contains the target " 645 "range, and neither the process nor the target exist"); 646 return; 647 } 648 649 Allocation &allocation = iter->second; 650 651 uint64_t offset = process_address - allocation.m_process_start; 652 653 if (offset > allocation.m_size) { 654 error.SetErrorToGenericError(); 655 error.SetErrorString("Couldn't read: data is not in the allocation"); 656 return; 657 } 658 659 lldb::ProcessSP process_sp; 660 661 switch (allocation.m_policy) { 662 default: 663 error.SetErrorToGenericError(); 664 error.SetErrorString("Couldn't read: invalid allocation policy"); 665 return; 666 case eAllocationPolicyHostOnly: 667 if (!allocation.m_data.GetByteSize()) { 668 error.SetErrorToGenericError(); 669 error.SetErrorString("Couldn't read: data buffer is empty"); 670 return; 671 } 672 if (allocation.m_data.GetByteSize() < offset + size) { 673 error.SetErrorToGenericError(); 674 error.SetErrorString("Couldn't read: not enough underlying data"); 675 return; 676 } 677 678 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 679 break; 680 case eAllocationPolicyMirror: 681 process_sp = m_process_wp.lock(); 682 if (process_sp) { 683 process_sp->ReadMemory(process_address, bytes, size, error); 684 if (!error.Success()) 685 return; 686 } else { 687 if (!allocation.m_data.GetByteSize()) { 688 error.SetErrorToGenericError(); 689 error.SetErrorString("Couldn't read: data buffer is empty"); 690 return; 691 } 692 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); 693 } 694 break; 695 case eAllocationPolicyProcessOnly: 696 process_sp = m_process_wp.lock(); 697 if (process_sp) { 698 process_sp->ReadMemory(process_address, bytes, size, error); 699 if (!error.Success()) 700 return; 701 } 702 break; 703 } 704 705 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) { 706 LLDB_LOGF(log, 707 "IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR 708 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", 709 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, 710 (uint64_t)allocation.m_process_start, 711 (uint64_t)allocation.m_process_start + 712 (uint64_t)allocation.m_size); 713 } 714 } 715 716 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, 717 lldb::addr_t process_address, 718 size_t size, Status &error) { 719 error.Clear(); 720 721 if (size > 0) { 722 DataBufferHeap buf(size, 0); 723 ReadMemory(buf.GetBytes(), process_address, size, error); 724 725 if (!error.Success()) 726 return; 727 728 DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), 729 GetAddressByteSize()); 730 731 lldb::offset_t offset = 0; 732 733 switch (size) { 734 default: 735 error.SetErrorToGenericError(); 736 error.SetErrorStringWithFormat( 737 "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); 738 return; 739 case 1: 740 scalar = extractor.GetU8(&offset); 741 break; 742 case 2: 743 scalar = extractor.GetU16(&offset); 744 break; 745 case 4: 746 scalar = extractor.GetU32(&offset); 747 break; 748 case 8: 749 scalar = extractor.GetU64(&offset); 750 break; 751 } 752 } else { 753 error.SetErrorToGenericError(); 754 error.SetErrorString("Couldn't read scalar: its size was zero"); 755 } 756 } 757 758 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, 759 lldb::addr_t process_address, 760 Status &error) { 761 error.Clear(); 762 763 Scalar pointer_scalar; 764 ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), 765 error); 766 767 if (!error.Success()) 768 return; 769 770 *address = pointer_scalar.ULongLong(); 771 } 772 773 void IRMemoryMap::GetMemoryData(DataExtractor &extractor, 774 lldb::addr_t process_address, size_t size, 775 Status &error) { 776 error.Clear(); 777 778 if (size > 0) { 779 AllocationMap::iterator iter = FindAllocation(process_address, size); 780 781 if (iter == m_allocations.end()) { 782 error.SetErrorToGenericError(); 783 error.SetErrorStringWithFormat( 784 "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 785 ")", 786 process_address, process_address + size); 787 return; 788 } 789 790 Allocation &allocation = iter->second; 791 792 switch (allocation.m_policy) { 793 default: 794 error.SetErrorToGenericError(); 795 error.SetErrorString( 796 "Couldn't get memory data: invalid allocation policy"); 797 return; 798 case eAllocationPolicyProcessOnly: 799 error.SetErrorToGenericError(); 800 error.SetErrorString( 801 "Couldn't get memory data: memory is only in the target"); 802 return; 803 case eAllocationPolicyMirror: { 804 lldb::ProcessSP process_sp = m_process_wp.lock(); 805 806 if (!allocation.m_data.GetByteSize()) { 807 error.SetErrorToGenericError(); 808 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 809 return; 810 } 811 if (process_sp) { 812 process_sp->ReadMemory(allocation.m_process_start, 813 allocation.m_data.GetBytes(), 814 allocation.m_data.GetByteSize(), error); 815 if (!error.Success()) 816 return; 817 uint64_t offset = process_address - allocation.m_process_start; 818 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 819 GetByteOrder(), GetAddressByteSize()); 820 return; 821 } 822 } break; 823 case eAllocationPolicyHostOnly: 824 if (!allocation.m_data.GetByteSize()) { 825 error.SetErrorToGenericError(); 826 error.SetErrorString("Couldn't get memory data: data buffer is empty"); 827 return; 828 } 829 uint64_t offset = process_address - allocation.m_process_start; 830 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, 831 GetByteOrder(), GetAddressByteSize()); 832 return; 833 } 834 } else { 835 error.SetErrorToGenericError(); 836 error.SetErrorString("Couldn't get memory data: its size was zero"); 837 return; 838 } 839 } 840