1 //===-- ABISysV_ppc.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ABISysV_ppc.h" 10 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Triple.h" 13 14 #include "lldb/Core/Module.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/Value.h" 17 #include "lldb/Core/ValueObjectConstResult.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectRegister.h" 20 #include "lldb/Symbol/UnwindPlan.h" 21 #include "lldb/Target/Process.h" 22 #include "lldb/Target/RegisterContext.h" 23 #include "lldb/Target/StackFrame.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Target/Thread.h" 26 #include "lldb/Utility/ConstString.h" 27 #include "lldb/Utility/DataExtractor.h" 28 #include "lldb/Utility/LLDBLog.h" 29 #include "lldb/Utility/Log.h" 30 #include "lldb/Utility/RegisterValue.h" 31 #include "lldb/Utility/Status.h" 32 #include <optional> 33 34 using namespace lldb; 35 using namespace lldb_private; 36 37 LLDB_PLUGIN_DEFINE(ABISysV_ppc) 38 39 enum dwarf_regnums { 40 dwarf_r0 = 0, 41 dwarf_r1, 42 dwarf_r2, 43 dwarf_r3, 44 dwarf_r4, 45 dwarf_r5, 46 dwarf_r6, 47 dwarf_r7, 48 dwarf_r8, 49 dwarf_r9, 50 dwarf_r10, 51 dwarf_r11, 52 dwarf_r12, 53 dwarf_r13, 54 dwarf_r14, 55 dwarf_r15, 56 dwarf_r16, 57 dwarf_r17, 58 dwarf_r18, 59 dwarf_r19, 60 dwarf_r20, 61 dwarf_r21, 62 dwarf_r22, 63 dwarf_r23, 64 dwarf_r24, 65 dwarf_r25, 66 dwarf_r26, 67 dwarf_r27, 68 dwarf_r28, 69 dwarf_r29, 70 dwarf_r30, 71 dwarf_r31, 72 dwarf_f0, 73 dwarf_f1, 74 dwarf_f2, 75 dwarf_f3, 76 dwarf_f4, 77 dwarf_f5, 78 dwarf_f6, 79 dwarf_f7, 80 dwarf_f8, 81 dwarf_f9, 82 dwarf_f10, 83 dwarf_f11, 84 dwarf_f12, 85 dwarf_f13, 86 dwarf_f14, 87 dwarf_f15, 88 dwarf_f16, 89 dwarf_f17, 90 dwarf_f18, 91 dwarf_f19, 92 dwarf_f20, 93 dwarf_f21, 94 dwarf_f22, 95 dwarf_f23, 96 dwarf_f24, 97 dwarf_f25, 98 dwarf_f26, 99 dwarf_f27, 100 dwarf_f28, 101 dwarf_f29, 102 dwarf_f30, 103 dwarf_f31, 104 dwarf_cr, 105 dwarf_fpscr, 106 dwarf_xer = 101, 107 dwarf_lr = 108, 108 dwarf_ctr, 109 dwarf_pc, 110 dwarf_cfa, 111 }; 112 113 // Note that the size and offset will be updated by platform-specific classes. 114 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \ 115 { \ 116 #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \ 117 nullptr, nullptr, \ 118 } 119 120 static const RegisterInfo g_register_infos[] = { 121 // General purpose registers. eh_frame, DWARF, 122 // Generic, Process Plugin 123 DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, 124 LLDB_INVALID_REGNUM), 125 DEFINE_GPR(r1, nullptr, dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP, 126 LLDB_INVALID_REGNUM), 127 DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, 128 LLDB_INVALID_REGNUM), 129 DEFINE_GPR(r3, nullptr, dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1, 130 LLDB_INVALID_REGNUM), 131 DEFINE_GPR(r4, nullptr, dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2, 132 LLDB_INVALID_REGNUM), 133 DEFINE_GPR(r5, nullptr, dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3, 134 LLDB_INVALID_REGNUM), 135 DEFINE_GPR(r6, nullptr, dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4, 136 LLDB_INVALID_REGNUM), 137 DEFINE_GPR(r7, nullptr, dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5, 138 LLDB_INVALID_REGNUM), 139 DEFINE_GPR(r8, nullptr, dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6, 140 LLDB_INVALID_REGNUM), 141 DEFINE_GPR(r9, nullptr, dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7, 142 LLDB_INVALID_REGNUM), 143 DEFINE_GPR(r10, nullptr, dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8, 144 LLDB_INVALID_REGNUM), 145 DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM, 146 LLDB_INVALID_REGNUM), 147 DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, 148 LLDB_INVALID_REGNUM), 149 DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, 150 LLDB_INVALID_REGNUM), 151 DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, 152 LLDB_INVALID_REGNUM), 153 DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, 154 LLDB_INVALID_REGNUM), 155 DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, 156 LLDB_INVALID_REGNUM), 157 DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, 158 LLDB_INVALID_REGNUM), 159 DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, 160 LLDB_INVALID_REGNUM), 161 DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, 162 LLDB_INVALID_REGNUM), 163 DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, 164 LLDB_INVALID_REGNUM), 165 DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, 166 LLDB_INVALID_REGNUM), 167 DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, 168 LLDB_INVALID_REGNUM), 169 DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, 170 LLDB_INVALID_REGNUM), 171 DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, 172 LLDB_INVALID_REGNUM), 173 DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, 174 LLDB_INVALID_REGNUM), 175 DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, 176 LLDB_INVALID_REGNUM), 177 DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, 178 LLDB_INVALID_REGNUM), 179 DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, 180 LLDB_INVALID_REGNUM), 181 DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM, 182 LLDB_INVALID_REGNUM), 183 DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM, 184 LLDB_INVALID_REGNUM), 185 DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM, 186 LLDB_INVALID_REGNUM), 187 DEFINE_GPR(lr, nullptr, dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 188 LLDB_INVALID_REGNUM), 189 DEFINE_GPR(cr, nullptr, dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS, 190 LLDB_INVALID_REGNUM), 191 DEFINE_GPR(xer, nullptr, dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM, 192 LLDB_INVALID_REGNUM), 193 DEFINE_GPR(ctr, nullptr, dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM, 194 LLDB_INVALID_REGNUM), 195 DEFINE_GPR(pc, nullptr, dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 196 LLDB_INVALID_REGNUM), 197 {nullptr, 198 nullptr, 199 8, 200 0, 201 eEncodingUint, 202 eFormatHex, 203 {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM}, 204 nullptr, 205 nullptr, 206 }}; 207 208 static const uint32_t k_num_register_infos = std::size(g_register_infos); 209 210 const lldb_private::RegisterInfo * 211 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) { 212 count = k_num_register_infos; 213 return g_register_infos; 214 } 215 216 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; } 217 218 // Static Functions 219 220 ABISP 221 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) { 222 if (arch.GetTriple().getArch() == llvm::Triple::ppc) { 223 return ABISP( 224 new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch))); 225 } 226 return ABISP(); 227 } 228 229 bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp, 230 addr_t func_addr, addr_t return_addr, 231 llvm::ArrayRef<addr_t> args) const { 232 Log *log = GetLog(LLDBLog::Expressions); 233 234 if (log) { 235 StreamString s; 236 s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64 237 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 238 ", return_addr = 0x%" PRIx64, 239 thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, 240 (uint64_t)return_addr); 241 242 for (size_t i = 0; i < args.size(); ++i) 243 s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1), 244 args[i]); 245 s.PutCString(")"); 246 log->PutString(s.GetString()); 247 } 248 249 RegisterContext *reg_ctx = thread.GetRegisterContext().get(); 250 if (!reg_ctx) 251 return false; 252 253 const RegisterInfo *reg_info = nullptr; 254 255 if (args.size() > 8) // TODO handle more than 8 arguments 256 return false; 257 258 for (size_t i = 0; i < args.size(); ++i) { 259 reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, 260 LLDB_REGNUM_GENERIC_ARG1 + i); 261 LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", 262 static_cast<uint64_t>(i + 1), args[i], reg_info->name); 263 if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) 264 return false; 265 } 266 267 // First, align the SP 268 269 LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, 270 (uint64_t)sp, (uint64_t)(sp & ~0xfull)); 271 272 sp &= ~(0xfull); // 16-byte alignment 273 274 sp -= 8; 275 276 Status error; 277 const RegisterInfo *pc_reg_info = 278 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 279 const RegisterInfo *sp_reg_info = 280 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); 281 ProcessSP process_sp(thread.GetProcess()); 282 283 RegisterValue reg_value; 284 285 LLDB_LOGF(log, 286 "Pushing the return address onto the stack: 0x%" PRIx64 287 ": 0x%" PRIx64, 288 (uint64_t)sp, (uint64_t)return_addr); 289 290 // Save return address onto the stack 291 if (!process_sp->WritePointerToMemory(sp, return_addr, error)) 292 return false; 293 294 // %r1 is set to the actual stack value. 295 296 LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp); 297 298 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp)) 299 return false; 300 301 // %pc is set to the address of the called function. 302 303 LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr); 304 305 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr)) 306 return false; 307 308 return true; 309 } 310 311 static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, 312 bool is_signed, Thread &thread, 313 uint32_t *argument_register_ids, 314 unsigned int ¤t_argument_register, 315 addr_t ¤t_stack_argument) { 316 if (bit_width > 64) 317 return false; // Scalar can't hold large integer arguments 318 319 if (current_argument_register < 6) { 320 scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned( 321 argument_register_ids[current_argument_register], 0); 322 current_argument_register++; 323 if (is_signed) 324 scalar.SignExtend(bit_width); 325 } else { 326 uint32_t byte_size = (bit_width + (8 - 1)) / 8; 327 Status error; 328 if (thread.GetProcess()->ReadScalarIntegerFromMemory( 329 current_stack_argument, byte_size, is_signed, scalar, error)) { 330 current_stack_argument += byte_size; 331 return true; 332 } 333 return false; 334 } 335 return true; 336 } 337 338 bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const { 339 unsigned int num_values = values.GetSize(); 340 unsigned int value_index; 341 342 // Extract the register context so we can read arguments from registers 343 344 RegisterContext *reg_ctx = thread.GetRegisterContext().get(); 345 346 if (!reg_ctx) 347 return false; 348 349 // Get the pointer to the first stack argument so we have a place to start 350 // when reading data 351 352 addr_t sp = reg_ctx->GetSP(0); 353 354 if (!sp) 355 return false; 356 357 addr_t current_stack_argument = sp + 48; // jump over return address 358 359 uint32_t argument_register_ids[8]; 360 361 argument_register_ids[0] = 362 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1) 363 ->kinds[eRegisterKindLLDB]; 364 argument_register_ids[1] = 365 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2) 366 ->kinds[eRegisterKindLLDB]; 367 argument_register_ids[2] = 368 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3) 369 ->kinds[eRegisterKindLLDB]; 370 argument_register_ids[3] = 371 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4) 372 ->kinds[eRegisterKindLLDB]; 373 argument_register_ids[4] = 374 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5) 375 ->kinds[eRegisterKindLLDB]; 376 argument_register_ids[5] = 377 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6) 378 ->kinds[eRegisterKindLLDB]; 379 argument_register_ids[6] = 380 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7) 381 ->kinds[eRegisterKindLLDB]; 382 argument_register_ids[7] = 383 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8) 384 ->kinds[eRegisterKindLLDB]; 385 386 unsigned int current_argument_register = 0; 387 388 for (value_index = 0; value_index < num_values; ++value_index) { 389 Value *value = values.GetValueAtIndex(value_index); 390 391 if (!value) 392 return false; 393 394 // We currently only support extracting values with Clang QualTypes. Do we 395 // care about others? 396 CompilerType compiler_type = value->GetCompilerType(); 397 std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread); 398 if (!bit_size) 399 return false; 400 bool is_signed; 401 if (compiler_type.IsIntegerOrEnumerationType(is_signed)) 402 ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread, 403 argument_register_ids, current_argument_register, 404 current_stack_argument); 405 else if (compiler_type.IsPointerType()) 406 ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread, 407 argument_register_ids, current_argument_register, 408 current_stack_argument); 409 } 410 411 return true; 412 } 413 414 Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp, 415 lldb::ValueObjectSP &new_value_sp) { 416 Status error; 417 if (!new_value_sp) { 418 error.SetErrorString("Empty value object for return value."); 419 return error; 420 } 421 422 CompilerType compiler_type = new_value_sp->GetCompilerType(); 423 if (!compiler_type) { 424 error.SetErrorString("Null clang type for return value."); 425 return error; 426 } 427 428 Thread *thread = frame_sp->GetThread().get(); 429 430 bool is_signed; 431 uint32_t count; 432 bool is_complex; 433 434 RegisterContext *reg_ctx = thread->GetRegisterContext().get(); 435 436 bool set_it_simple = false; 437 if (compiler_type.IsIntegerOrEnumerationType(is_signed) || 438 compiler_type.IsPointerType()) { 439 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0); 440 441 DataExtractor data; 442 Status data_error; 443 size_t num_bytes = new_value_sp->GetData(data, data_error); 444 if (data_error.Fail()) { 445 error.SetErrorStringWithFormat( 446 "Couldn't convert return value to raw data: %s", 447 data_error.AsCString()); 448 return error; 449 } 450 lldb::offset_t offset = 0; 451 if (num_bytes <= 8) { 452 uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); 453 454 if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value)) 455 set_it_simple = true; 456 } else { 457 error.SetErrorString("We don't support returning longer than 64 bit " 458 "integer values at present."); 459 } 460 } else if (compiler_type.IsFloatingPointType(count, is_complex)) { 461 if (is_complex) 462 error.SetErrorString( 463 "We don't support returning complex values at present"); 464 else { 465 std::optional<uint64_t> bit_width = 466 compiler_type.GetBitSize(frame_sp.get()); 467 if (!bit_width) { 468 error.SetErrorString("can't get type size"); 469 return error; 470 } 471 if (*bit_width <= 64) { 472 DataExtractor data; 473 Status data_error; 474 size_t num_bytes = new_value_sp->GetData(data, data_error); 475 if (data_error.Fail()) { 476 error.SetErrorStringWithFormat( 477 "Couldn't convert return value to raw data: %s", 478 data_error.AsCString()); 479 return error; 480 } 481 482 unsigned char buffer[16]; 483 ByteOrder byte_order = data.GetByteOrder(); 484 485 data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order); 486 set_it_simple = true; 487 } else { 488 // FIXME - don't know how to do 80 bit long doubles yet. 489 error.SetErrorString( 490 "We don't support returning float values > 64 bits at present"); 491 } 492 } 493 } 494 495 if (!set_it_simple) { 496 // Okay we've got a structure or something that doesn't fit in a simple 497 // register. We should figure out where it really goes, but we don't 498 // support this yet. 499 error.SetErrorString("We only support setting simple integer and float " 500 "return types at present."); 501 } 502 503 return error; 504 } 505 506 ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple( 507 Thread &thread, CompilerType &return_compiler_type) const { 508 ValueObjectSP return_valobj_sp; 509 Value value; 510 511 if (!return_compiler_type) 512 return return_valobj_sp; 513 514 // value.SetContext (Value::eContextTypeClangType, return_value_type); 515 value.SetCompilerType(return_compiler_type); 516 517 RegisterContext *reg_ctx = thread.GetRegisterContext().get(); 518 if (!reg_ctx) 519 return return_valobj_sp; 520 521 const uint32_t type_flags = return_compiler_type.GetTypeInfo(); 522 if (type_flags & eTypeIsScalar) { 523 value.SetValueType(Value::ValueType::Scalar); 524 525 bool success = false; 526 if (type_flags & eTypeIsInteger) { 527 // Extract the register context so we can read arguments from registers 528 529 std::optional<uint64_t> byte_size = 530 return_compiler_type.GetByteSize(&thread); 531 if (!byte_size) 532 return return_valobj_sp; 533 uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned( 534 reg_ctx->GetRegisterInfoByName("r3", 0), 0); 535 const bool is_signed = (type_flags & eTypeIsSigned) != 0; 536 switch (*byte_size) { 537 default: 538 break; 539 540 case sizeof(uint64_t): 541 if (is_signed) 542 value.GetScalar() = (int64_t)(raw_value); 543 else 544 value.GetScalar() = (uint64_t)(raw_value); 545 success = true; 546 break; 547 548 case sizeof(uint32_t): 549 if (is_signed) 550 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); 551 else 552 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); 553 success = true; 554 break; 555 556 case sizeof(uint16_t): 557 if (is_signed) 558 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); 559 else 560 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); 561 success = true; 562 break; 563 564 case sizeof(uint8_t): 565 if (is_signed) 566 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); 567 else 568 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); 569 success = true; 570 break; 571 } 572 } else if (type_flags & eTypeIsFloat) { 573 if (type_flags & eTypeIsComplex) { 574 // Don't handle complex yet. 575 } else { 576 std::optional<uint64_t> byte_size = 577 return_compiler_type.GetByteSize(&thread); 578 if (byte_size && *byte_size <= sizeof(long double)) { 579 const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0); 580 RegisterValue f1_value; 581 if (reg_ctx->ReadRegister(f1_info, f1_value)) { 582 DataExtractor data; 583 if (f1_value.GetData(data)) { 584 lldb::offset_t offset = 0; 585 if (*byte_size == sizeof(float)) { 586 value.GetScalar() = (float)data.GetFloat(&offset); 587 success = true; 588 } else if (*byte_size == sizeof(double)) { 589 value.GetScalar() = (double)data.GetDouble(&offset); 590 success = true; 591 } 592 } 593 } 594 } 595 } 596 } 597 598 if (success) 599 return_valobj_sp = ValueObjectConstResult::Create( 600 thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); 601 } else if (type_flags & eTypeIsPointer) { 602 unsigned r3_id = 603 reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB]; 604 value.GetScalar() = 605 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0); 606 value.SetValueType(Value::ValueType::Scalar); 607 return_valobj_sp = ValueObjectConstResult::Create( 608 thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); 609 } else if (type_flags & eTypeIsVector) { 610 std::optional<uint64_t> byte_size = 611 return_compiler_type.GetByteSize(&thread); 612 if (byte_size && *byte_size > 0) { 613 const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0); 614 if (altivec_reg) { 615 if (*byte_size <= altivec_reg->byte_size) { 616 ProcessSP process_sp(thread.GetProcess()); 617 if (process_sp) { 618 std::unique_ptr<DataBufferHeap> heap_data_up( 619 new DataBufferHeap(*byte_size, 0)); 620 const ByteOrder byte_order = process_sp->GetByteOrder(); 621 RegisterValue reg_value; 622 if (reg_ctx->ReadRegister(altivec_reg, reg_value)) { 623 Status error; 624 if (reg_value.GetAsMemoryData( 625 *altivec_reg, heap_data_up->GetBytes(), 626 heap_data_up->GetByteSize(), byte_order, error)) { 627 DataExtractor data(DataBufferSP(heap_data_up.release()), 628 byte_order, 629 process_sp->GetTarget() 630 .GetArchitecture() 631 .GetAddressByteSize()); 632 return_valobj_sp = ValueObjectConstResult::Create( 633 &thread, return_compiler_type, ConstString(""), data); 634 } 635 } 636 } 637 } 638 } 639 } 640 } 641 642 return return_valobj_sp; 643 } 644 645 ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl( 646 Thread &thread, CompilerType &return_compiler_type) const { 647 ValueObjectSP return_valobj_sp; 648 649 if (!return_compiler_type) 650 return return_valobj_sp; 651 652 ExecutionContext exe_ctx(thread.shared_from_this()); 653 return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); 654 if (return_valobj_sp) 655 return return_valobj_sp; 656 657 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); 658 if (!reg_ctx_sp) 659 return return_valobj_sp; 660 661 std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread); 662 if (!bit_width) 663 return return_valobj_sp; 664 if (return_compiler_type.IsAggregateType()) { 665 Target *target = exe_ctx.GetTargetPtr(); 666 bool is_memory = true; 667 if (*bit_width <= 128) { 668 ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder(); 669 WritableDataBufferSP data_sp(new DataBufferHeap(16, 0)); 670 DataExtractor return_ext(data_sp, target_byte_order, 671 target->GetArchitecture().GetAddressByteSize()); 672 673 const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0); 674 const RegisterInfo *rdx_info = 675 reg_ctx_sp->GetRegisterInfoByName("rdx", 0); 676 677 RegisterValue r3_value, rdx_value; 678 reg_ctx_sp->ReadRegister(r3_info, r3_value); 679 reg_ctx_sp->ReadRegister(rdx_info, rdx_value); 680 681 DataExtractor r3_data, rdx_data; 682 683 r3_value.GetData(r3_data); 684 rdx_value.GetData(rdx_data); 685 686 uint32_t integer_bytes = 687 0; // Tracks how much of the r3/rds registers we've consumed so far 688 689 const uint32_t num_children = return_compiler_type.GetNumFields(); 690 691 // Since we are in the small struct regime, assume we are not in memory. 692 is_memory = false; 693 694 for (uint32_t idx = 0; idx < num_children; idx++) { 695 std::string name; 696 uint64_t field_bit_offset = 0; 697 bool is_signed; 698 bool is_complex; 699 uint32_t count; 700 701 CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex( 702 idx, name, &field_bit_offset, nullptr, nullptr); 703 std::optional<uint64_t> field_bit_width = 704 field_compiler_type.GetBitSize(&thread); 705 if (!field_bit_width) 706 return return_valobj_sp; 707 708 // If there are any unaligned fields, this is stored in memory. 709 if (field_bit_offset % *field_bit_width != 0) { 710 is_memory = true; 711 break; 712 } 713 714 uint32_t field_byte_width = *field_bit_width / 8; 715 uint32_t field_byte_offset = field_bit_offset / 8; 716 717 DataExtractor *copy_from_extractor = nullptr; 718 uint32_t copy_from_offset = 0; 719 720 if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) || 721 field_compiler_type.IsPointerType()) { 722 if (integer_bytes < 8) { 723 if (integer_bytes + field_byte_width <= 8) { 724 // This is in RAX, copy from register to our result structure: 725 copy_from_extractor = &r3_data; 726 copy_from_offset = integer_bytes; 727 integer_bytes += field_byte_width; 728 } else { 729 // The next field wouldn't fit in the remaining space, so we 730 // pushed it to rdx. 731 copy_from_extractor = &rdx_data; 732 copy_from_offset = 0; 733 integer_bytes = 8 + field_byte_width; 734 } 735 } else if (integer_bytes + field_byte_width <= 16) { 736 copy_from_extractor = &rdx_data; 737 copy_from_offset = integer_bytes - 8; 738 integer_bytes += field_byte_width; 739 } else { 740 // The last field didn't fit. I can't see how that would happen 741 // w/o the overall size being greater than 16 bytes. For now, 742 // return a nullptr return value object. 743 return return_valobj_sp; 744 } 745 } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) { 746 // Structs with long doubles are always passed in memory. 747 if (*field_bit_width == 128) { 748 is_memory = true; 749 break; 750 } else if (*field_bit_width == 64) { 751 copy_from_offset = 0; 752 } else if (*field_bit_width == 32) { 753 // This one is kind of complicated. If we are in an "eightbyte" 754 // with another float, we'll be stuffed into an xmm register with 755 // it. If we are in an "eightbyte" with one or more ints, then we 756 // will be stuffed into the appropriate GPR with them. 757 bool in_gpr; 758 if (field_byte_offset % 8 == 0) { 759 // We are at the beginning of one of the eightbytes, so check the 760 // next element (if any) 761 if (idx == num_children - 1) 762 in_gpr = false; 763 else { 764 uint64_t next_field_bit_offset = 0; 765 CompilerType next_field_compiler_type = 766 return_compiler_type.GetFieldAtIndex(idx + 1, name, 767 &next_field_bit_offset, 768 nullptr, nullptr); 769 if (next_field_compiler_type.IsIntegerOrEnumerationType( 770 is_signed)) 771 in_gpr = true; 772 else { 773 copy_from_offset = 0; 774 in_gpr = false; 775 } 776 } 777 } else if (field_byte_offset % 4 == 0) { 778 // We are inside of an eightbyte, so see if the field before us 779 // is floating point: This could happen if somebody put padding 780 // in the structure. 781 if (idx == 0) 782 in_gpr = false; 783 else { 784 uint64_t prev_field_bit_offset = 0; 785 CompilerType prev_field_compiler_type = 786 return_compiler_type.GetFieldAtIndex(idx - 1, name, 787 &prev_field_bit_offset, 788 nullptr, nullptr); 789 if (prev_field_compiler_type.IsIntegerOrEnumerationType( 790 is_signed)) 791 in_gpr = true; 792 else { 793 copy_from_offset = 4; 794 in_gpr = false; 795 } 796 } 797 } else { 798 is_memory = true; 799 continue; 800 } 801 802 // Okay, we've figured out whether we are in GPR or XMM, now figure 803 // out which one. 804 if (in_gpr) { 805 if (integer_bytes < 8) { 806 // This is in RAX, copy from register to our result structure: 807 copy_from_extractor = &r3_data; 808 copy_from_offset = integer_bytes; 809 integer_bytes += field_byte_width; 810 } else { 811 copy_from_extractor = &rdx_data; 812 copy_from_offset = integer_bytes - 8; 813 integer_bytes += field_byte_width; 814 } 815 } 816 } 817 } 818 819 // These two tests are just sanity checks. If I somehow get the type 820 // calculation wrong above it is better to just return nothing than to 821 // assert or crash. 822 if (!copy_from_extractor) 823 return return_valobj_sp; 824 if (copy_from_offset + field_byte_width > 825 copy_from_extractor->GetByteSize()) 826 return return_valobj_sp; 827 828 copy_from_extractor->CopyByteOrderedData( 829 copy_from_offset, field_byte_width, 830 data_sp->GetBytes() + field_byte_offset, field_byte_width, 831 target_byte_order); 832 } 833 834 if (!is_memory) { 835 // The result is in our data buffer. Let's make a variable object out 836 // of it: 837 return_valobj_sp = ValueObjectConstResult::Create( 838 &thread, return_compiler_type, ConstString(""), return_ext); 839 } 840 } 841 842 // FIXME: This is just taking a guess, r3 may very well no longer hold the 843 // return storage location. 844 // If we are going to do this right, when we make a new frame we should 845 // check to see if it uses a memory return, and if we are at the first 846 // instruction and if so stash away the return location. Then we would 847 // only return the memory return value if we know it is valid. 848 849 if (is_memory) { 850 unsigned r3_id = 851 reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB]; 852 lldb::addr_t storage_addr = 853 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 854 0); 855 return_valobj_sp = ValueObjectMemory::Create( 856 &thread, "", Address(storage_addr, nullptr), return_compiler_type); 857 } 858 } 859 860 return return_valobj_sp; 861 } 862 863 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) { 864 unwind_plan.Clear(); 865 unwind_plan.SetRegisterKind(eRegisterKindDWARF); 866 867 uint32_t lr_reg_num = dwarf_lr; 868 uint32_t sp_reg_num = dwarf_r1; 869 uint32_t pc_reg_num = dwarf_pc; 870 871 UnwindPlan::RowSP row(new UnwindPlan::Row); 872 873 // Our Call Frame Address is the stack pointer value 874 row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0); 875 876 // The previous PC is in the LR 877 row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true); 878 unwind_plan.AppendRow(row); 879 880 // All other registers are the same. 881 882 unwind_plan.SetSourceName("ppc at-func-entry default"); 883 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); 884 885 return true; 886 } 887 888 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) { 889 unwind_plan.Clear(); 890 unwind_plan.SetRegisterKind(eRegisterKindDWARF); 891 892 uint32_t sp_reg_num = dwarf_r1; 893 uint32_t pc_reg_num = dwarf_lr; 894 895 UnwindPlan::RowSP row(new UnwindPlan::Row); 896 897 const int32_t ptr_size = 4; 898 row->SetUnspecifiedRegistersAreUndefined(true); 899 row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num); 900 901 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true); 902 row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); 903 904 unwind_plan.AppendRow(row); 905 unwind_plan.SetSourceName("ppc default unwind plan"); 906 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo); 907 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); 908 unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo); 909 unwind_plan.SetReturnAddressRegister(dwarf_lr); 910 return true; 911 } 912 913 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) { 914 return !RegisterIsCalleeSaved(reg_info); 915 } 916 917 // See "Register Usage" in the 918 // "System V Application Binary Interface" 919 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version 920 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC- 921 // elf64abi-1.9.pdf 922 923 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) { 924 if (reg_info) { 925 // Preserved registers are : 926 // r1,r2,r13-r31 927 // f14-f31 (not yet) 928 // v20-v31 (not yet) 929 // vrsave (not yet) 930 931 const char *name = reg_info->name; 932 if (name[0] == 'r') { 933 if ((name[1] == '1' || name[1] == '2') && name[2] == '\0') 934 return true; 935 if (name[1] == '1' && name[2] > '2') 936 return true; 937 if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') 938 return true; 939 } 940 941 if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') { 942 if (name[3] == '1' && name[4] >= '4') 943 return true; 944 if ((name[3] == '2' || name[3] == '3') && name[4] != '\0') 945 return true; 946 } 947 948 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp 949 return true; 950 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp 951 return true; 952 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc 953 return true; 954 } 955 return false; 956 } 957 958 void ABISysV_ppc::Initialize() { 959 PluginManager::RegisterPlugin(GetPluginNameStatic(), 960 "System V ABI for ppc targets", CreateInstance); 961 } 962 963 void ABISysV_ppc::Terminate() { 964 PluginManager::UnregisterPlugin(CreateInstance); 965 } 966