1 //===-- RenderScriptRuntime.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 LLDB_PLUGIN_DEFINE(RenderScriptRuntime) 50 51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 52 53 char RenderScriptRuntime::ID = 0; 54 55 namespace { 56 57 // The empirical_type adds a basic level of validation to arbitrary data 58 // allowing us to track if data has been discovered and stored or not. An 59 // empirical_type will be marked as valid only if it has been explicitly 60 // assigned to. 61 template <typename type_t> class empirical_type { 62 public: 63 // Ctor. Contents is invalid when constructed. 64 empirical_type() = default; 65 66 // Return true and copy contents to out if valid, else return false. 67 bool get(type_t &out) const { 68 if (valid) 69 out = data; 70 return valid; 71 } 72 73 // Return a pointer to the contents or nullptr if it was not valid. 74 const type_t *get() const { return valid ? &data : nullptr; } 75 76 // Assign data explicitly. 77 void set(const type_t in) { 78 data = in; 79 valid = true; 80 } 81 82 // Mark contents as invalid. 83 void invalidate() { valid = false; } 84 85 // Returns true if this type contains valid data. 86 bool isValid() const { return valid; } 87 88 // Assignment operator. 89 empirical_type<type_t> &operator=(const type_t in) { 90 set(in); 91 return *this; 92 } 93 94 // Dereference operator returns contents. 95 // Warning: Will assert if not valid so use only when you know data is valid. 96 const type_t &operator*() const { 97 assert(valid); 98 return data; 99 } 100 101 protected: 102 bool valid = false; 103 type_t data; 104 }; 105 106 // ArgItem is used by the GetArgs() function when reading function arguments 107 // from the target. 108 struct ArgItem { 109 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 110 111 uint64_t value; 112 113 explicit operator uint64_t() const { return value; } 114 }; 115 116 // Context structure to be passed into GetArgsXXX(), argument reading functions 117 // below. 118 struct GetArgsCtx { 119 RegisterContext *reg_ctx; 120 Process *process; 121 }; 122 123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 124 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 125 126 Status err; 127 128 // get the current stack pointer 129 uint64_t sp = ctx.reg_ctx->GetSP(); 130 131 for (size_t i = 0; i < num_args; ++i) { 132 ArgItem &arg = arg_list[i]; 133 // advance up the stack by one argument 134 sp += sizeof(uint32_t); 135 // get the argument type size 136 size_t arg_size = sizeof(uint32_t); 137 // read the argument from memory 138 arg.value = 0; 139 Status err; 140 size_t read = 141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 142 if (read != arg_size || !err.Success()) { 143 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'", 144 __FUNCTION__, uint64_t(i), err.AsCString()); 145 return false; 146 } 147 } 148 return true; 149 } 150 151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 152 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 153 154 // number of arguments passed in registers 155 static const uint32_t args_in_reg = 6; 156 // register passing order 157 static const std::array<const char *, args_in_reg> reg_names{ 158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 159 // argument type to size mapping 160 static const std::array<size_t, 5> arg_size{{ 161 8, // ePointer, 162 4, // eInt32, 163 8, // eInt64, 164 8, // eLong, 165 4, // eBool, 166 }}; 167 168 Status err; 169 170 // get the current stack pointer 171 uint64_t sp = ctx.reg_ctx->GetSP(); 172 // step over the return address 173 sp += sizeof(uint64_t); 174 175 // check the stack alignment was correct (16 byte aligned) 176 if ((sp & 0xf) != 0x0) { 177 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__); 178 return false; 179 } 180 181 // find the start of arguments on the stack 182 uint64_t sp_offset = 0; 183 for (uint32_t i = args_in_reg; i < num_args; ++i) { 184 sp_offset += arg_size[arg_list[i].type]; 185 } 186 // round up to multiple of 16 187 sp_offset = (sp_offset + 0xf) & 0xf; 188 sp += sp_offset; 189 190 for (size_t i = 0; i < num_args; ++i) { 191 bool success = false; 192 ArgItem &arg = arg_list[i]; 193 // arguments passed in registers 194 if (i < args_in_reg) { 195 const RegisterInfo *reg = 196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 197 RegisterValue reg_val; 198 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 199 arg.value = reg_val.GetAsUInt64(0, &success); 200 } 201 // arguments passed on the stack 202 else { 203 // get the argument type size 204 const size_t size = arg_size[arg_list[i].type]; 205 // read the argument from memory 206 arg.value = 0; 207 // note: due to little endian layout reading 4 or 8 bytes will give the 208 // correct value. 209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 210 success = (err.Success() && read == size); 211 // advance past this argument 212 sp -= size; 213 } 214 // fail if we couldn't read this argument 215 if (!success) { 216 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 217 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 218 return false; 219 } 220 } 221 return true; 222 } 223 224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 225 // number of arguments passed in registers 226 static const uint32_t args_in_reg = 4; 227 228 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 229 230 Status err; 231 232 // get the current stack pointer 233 uint64_t sp = ctx.reg_ctx->GetSP(); 234 235 for (size_t i = 0; i < num_args; ++i) { 236 bool success = false; 237 ArgItem &arg = arg_list[i]; 238 // arguments passed in registers 239 if (i < args_in_reg) { 240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 241 RegisterValue reg_val; 242 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 243 arg.value = reg_val.GetAsUInt32(0, &success); 244 } 245 // arguments passed on the stack 246 else { 247 // get the argument type size 248 const size_t arg_size = sizeof(uint32_t); 249 // clear all 64bits 250 arg.value = 0; 251 // read this argument from memory 252 size_t bytes_read = 253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 254 success = (err.Success() && bytes_read == arg_size); 255 // advance the stack pointer 256 sp += sizeof(uint32_t); 257 } 258 // fail if we couldn't read this argument 259 if (!success) { 260 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 261 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 262 return false; 263 } 264 } 265 return true; 266 } 267 268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 269 // number of arguments passed in registers 270 static const uint32_t args_in_reg = 8; 271 272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 273 274 for (size_t i = 0; i < num_args; ++i) { 275 bool success = false; 276 ArgItem &arg = arg_list[i]; 277 // arguments passed in registers 278 if (i < args_in_reg) { 279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 280 RegisterValue reg_val; 281 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 282 arg.value = reg_val.GetAsUInt64(0, &success); 283 } 284 // arguments passed on the stack 285 else { 286 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented", 287 __FUNCTION__); 288 } 289 // fail if we couldn't read this argument 290 if (!success) { 291 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__, 292 uint64_t(i)); 293 return false; 294 } 295 } 296 return true; 297 } 298 299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 300 // number of arguments passed in registers 301 static const uint32_t args_in_reg = 4; 302 // register file offset to first argument 303 static const uint32_t reg_offset = 4; 304 305 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 306 307 Status err; 308 309 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 310 // space) 311 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 312 313 for (size_t i = 0; i < num_args; ++i) { 314 bool success = false; 315 ArgItem &arg = arg_list[i]; 316 // arguments passed in registers 317 if (i < args_in_reg) { 318 const RegisterInfo *reg = 319 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 320 RegisterValue reg_val; 321 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 322 arg.value = reg_val.GetAsUInt64(0, &success); 323 } 324 // arguments passed on the stack 325 else { 326 const size_t arg_size = sizeof(uint32_t); 327 arg.value = 0; 328 size_t bytes_read = 329 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 330 success = (err.Success() && bytes_read == arg_size); 331 // advance the stack pointer 332 sp += arg_size; 333 } 334 // fail if we couldn't read this argument 335 if (!success) { 336 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 337 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 338 return false; 339 } 340 } 341 return true; 342 } 343 344 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 345 // number of arguments passed in registers 346 static const uint32_t args_in_reg = 8; 347 // register file offset to first argument 348 static const uint32_t reg_offset = 4; 349 350 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 351 352 Status err; 353 354 // get the current stack pointer 355 uint64_t sp = ctx.reg_ctx->GetSP(); 356 357 for (size_t i = 0; i < num_args; ++i) { 358 bool success = false; 359 ArgItem &arg = arg_list[i]; 360 // arguments passed in registers 361 if (i < args_in_reg) { 362 const RegisterInfo *reg = 363 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 364 RegisterValue reg_val; 365 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 366 arg.value = reg_val.GetAsUInt64(0, &success); 367 } 368 // arguments passed on the stack 369 else { 370 // get the argument type size 371 const size_t arg_size = sizeof(uint64_t); 372 // clear all 64bits 373 arg.value = 0; 374 // read this argument from memory 375 size_t bytes_read = 376 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 377 success = (err.Success() && bytes_read == arg_size); 378 // advance the stack pointer 379 sp += arg_size; 380 } 381 // fail if we couldn't read this argument 382 if (!success) { 383 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s", 384 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 385 return false; 386 } 387 } 388 return true; 389 } 390 391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 392 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 393 394 // verify that we have a target 395 if (!exe_ctx.GetTargetPtr()) { 396 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__); 397 return false; 398 } 399 400 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 401 assert(ctx.reg_ctx && ctx.process); 402 403 // dispatch based on architecture 404 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 405 case llvm::Triple::ArchType::x86: 406 return GetArgsX86(ctx, arg_list, num_args); 407 408 case llvm::Triple::ArchType::x86_64: 409 return GetArgsX86_64(ctx, arg_list, num_args); 410 411 case llvm::Triple::ArchType::arm: 412 return GetArgsArm(ctx, arg_list, num_args); 413 414 case llvm::Triple::ArchType::aarch64: 415 return GetArgsAarch64(ctx, arg_list, num_args); 416 417 case llvm::Triple::ArchType::mipsel: 418 return GetArgsMipsel(ctx, arg_list, num_args); 419 420 case llvm::Triple::ArchType::mips64el: 421 return GetArgsMips64el(ctx, arg_list, num_args); 422 423 default: 424 // unsupported architecture 425 if (log) { 426 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__, 427 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 428 } 429 return false; 430 } 431 } 432 433 bool IsRenderScriptScriptModule(ModuleSP module) { 434 if (!module) 435 return false; 436 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 437 eSymbolTypeData) != nullptr; 438 } 439 440 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 441 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 442 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 443 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 444 // elements fails the contents of &coord are undefined and `false` is 445 // returned, `true` otherwise 446 447 llvm::SmallVector<llvm::StringRef, 4> matches; 448 449 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$") 450 .Execute(coord_s, &matches) && 451 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) && 452 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches)) 453 return false; 454 455 auto get_index = [&](size_t idx, uint32_t &i) -> bool { 456 std::string group; 457 errno = 0; 458 if (idx + 1 < matches.size()) { 459 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i); 460 } 461 return true; 462 }; 463 464 return get_index(0, coord.x) && get_index(1, coord.y) && 465 get_index(2, coord.z); 466 } 467 468 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 469 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 470 SymbolContext sc; 471 uint32_t resolved_flags = 472 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 473 if (resolved_flags & eSymbolContextFunction) { 474 if (sc.function) { 475 const uint32_t offset = sc.function->GetPrologueByteSize(); 476 ConstString name = sc.GetFunctionName(); 477 if (offset) 478 addr.Slide(offset); 479 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 480 name.AsCString(), offset); 481 } 482 return true; 483 } else 484 return false; 485 } 486 } // anonymous namespace 487 488 // The ScriptDetails class collects data associated with a single script 489 // instance. 490 struct RenderScriptRuntime::ScriptDetails { 491 ~ScriptDetails() = default; 492 493 enum ScriptType { eScript, eScriptC }; 494 495 // The derived type of the script. 496 empirical_type<ScriptType> type; 497 // The name of the original source file. 498 empirical_type<std::string> res_name; 499 // Path to script .so file on the device. 500 empirical_type<std::string> shared_lib; 501 // Directory where kernel objects are cached on device. 502 empirical_type<std::string> cache_dir; 503 // Pointer to the context which owns this script. 504 empirical_type<lldb::addr_t> context; 505 // Pointer to the script object itself. 506 empirical_type<lldb::addr_t> script; 507 }; 508 509 // This Element class represents the Element object in RS, defining the type 510 // associated with an Allocation. 511 struct RenderScriptRuntime::Element { 512 // Taken from rsDefines.h 513 enum DataKind { 514 RS_KIND_USER, 515 RS_KIND_PIXEL_L = 7, 516 RS_KIND_PIXEL_A, 517 RS_KIND_PIXEL_LA, 518 RS_KIND_PIXEL_RGB, 519 RS_KIND_PIXEL_RGBA, 520 RS_KIND_PIXEL_DEPTH, 521 RS_KIND_PIXEL_YUV, 522 RS_KIND_INVALID = 100 523 }; 524 525 // Taken from rsDefines.h 526 enum DataType { 527 RS_TYPE_NONE = 0, 528 RS_TYPE_FLOAT_16, 529 RS_TYPE_FLOAT_32, 530 RS_TYPE_FLOAT_64, 531 RS_TYPE_SIGNED_8, 532 RS_TYPE_SIGNED_16, 533 RS_TYPE_SIGNED_32, 534 RS_TYPE_SIGNED_64, 535 RS_TYPE_UNSIGNED_8, 536 RS_TYPE_UNSIGNED_16, 537 RS_TYPE_UNSIGNED_32, 538 RS_TYPE_UNSIGNED_64, 539 RS_TYPE_BOOLEAN, 540 541 RS_TYPE_UNSIGNED_5_6_5, 542 RS_TYPE_UNSIGNED_5_5_5_1, 543 RS_TYPE_UNSIGNED_4_4_4_4, 544 545 RS_TYPE_MATRIX_4X4, 546 RS_TYPE_MATRIX_3X3, 547 RS_TYPE_MATRIX_2X2, 548 549 RS_TYPE_ELEMENT = 1000, 550 RS_TYPE_TYPE, 551 RS_TYPE_ALLOCATION, 552 RS_TYPE_SAMPLER, 553 RS_TYPE_SCRIPT, 554 RS_TYPE_MESH, 555 RS_TYPE_PROGRAM_FRAGMENT, 556 RS_TYPE_PROGRAM_VERTEX, 557 RS_TYPE_PROGRAM_RASTER, 558 RS_TYPE_PROGRAM_STORE, 559 RS_TYPE_FONT, 560 561 RS_TYPE_INVALID = 10000 562 }; 563 564 std::vector<Element> children; // Child Element fields for structs 565 empirical_type<lldb::addr_t> 566 element_ptr; // Pointer to the RS Element of the Type 567 empirical_type<DataType> 568 type; // Type of each data pointer stored by the allocation 569 empirical_type<DataKind> 570 type_kind; // Defines pixel type if Allocation is created from an image 571 empirical_type<uint32_t> 572 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 573 empirical_type<uint32_t> field_count; // Number of Subelements 574 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 575 empirical_type<uint32_t> padding; // Number of padding bytes 576 empirical_type<uint32_t> 577 array_size; // Number of items in array, only needed for structs 578 ConstString type_name; // Name of type, only needed for structs 579 580 static ConstString 581 GetFallbackStructName(); // Print this as the type name of a struct Element 582 // If we can't resolve the actual struct name 583 584 bool ShouldRefresh() const { 585 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 586 const bool valid_type = 587 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 588 return !valid_ptr || !valid_type || !datum_size.isValid(); 589 } 590 }; 591 592 // This AllocationDetails class collects data associated with a single 593 // allocation instance. 594 struct RenderScriptRuntime::AllocationDetails { 595 struct Dimension { 596 uint32_t dim_1; 597 uint32_t dim_2; 598 uint32_t dim_3; 599 uint32_t cube_map; 600 601 Dimension() { 602 dim_1 = 0; 603 dim_2 = 0; 604 dim_3 = 0; 605 cube_map = 0; 606 } 607 }; 608 609 // The FileHeader struct specifies the header we use for writing allocations 610 // to a binary file. Our format begins with the ASCII characters "RSAD", 611 // identifying the file as an allocation dump. Member variables dims and 612 // hdr_size are then written consecutively, immediately followed by an 613 // instance of the ElementHeader struct. Because Elements can contain 614 // subelements, there may be more than one instance of the ElementHeader 615 // struct. With this first instance being the root element, and the other 616 // instances being the root's descendants. To identify which instances are an 617 // ElementHeader's children, each struct is immediately followed by a 618 // sequence of consecutive offsets to the start of its child structs. These 619 // offsets are 620 // 4 bytes in size, and the 0 offset signifies no more children. 621 struct FileHeader { 622 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 623 uint32_t dims[3]; // Dimensions 624 uint16_t hdr_size; // Header size in bytes, including all element headers 625 }; 626 627 struct ElementHeader { 628 uint16_t type; // DataType enum 629 uint32_t kind; // DataKind enum 630 uint32_t element_size; // Size of a single element, including padding 631 uint16_t vector_size; // Vector width 632 uint32_t array_size; // Number of elements in array 633 }; 634 635 // Monotonically increasing from 1 636 static uint32_t ID; 637 638 // Maps Allocation DataType enum and vector size to printable strings using 639 // mapping from RenderScript numerical types summary documentation 640 static const char *RsDataTypeToString[][4]; 641 642 // Maps Allocation DataKind enum to printable strings 643 static const char *RsDataKindToString[]; 644 645 // Maps allocation types to format sizes for printing. 646 static const uint32_t RSTypeToFormat[][3]; 647 648 // Give each allocation an ID as a way 649 // for commands to reference it. 650 const uint32_t id; 651 652 // Allocation Element type 653 RenderScriptRuntime::Element element; 654 // Dimensions of the Allocation 655 empirical_type<Dimension> dimension; 656 // Pointer to address of the RS Allocation 657 empirical_type<lldb::addr_t> address; 658 // Pointer to the data held by the Allocation 659 empirical_type<lldb::addr_t> data_ptr; 660 // Pointer to the RS Type of the Allocation 661 empirical_type<lldb::addr_t> type_ptr; 662 // Pointer to the RS Context of the Allocation 663 empirical_type<lldb::addr_t> context; 664 // Size of the allocation 665 empirical_type<uint32_t> size; 666 // Stride between rows of the allocation 667 empirical_type<uint32_t> stride; 668 669 // Give each allocation an id, so we can reference it in user commands. 670 AllocationDetails() : id(ID++) {} 671 672 bool ShouldRefresh() const { 673 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 674 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 675 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 676 element.ShouldRefresh(); 677 } 678 }; 679 680 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 681 static const ConstString FallbackStructName("struct"); 682 return FallbackStructName; 683 } 684 685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 686 687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 688 "User", "Undefined", "Undefined", "Undefined", 689 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 692 693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 694 {"None", "None", "None", "None"}, 695 {"half", "half2", "half3", "half4"}, 696 {"float", "float2", "float3", "float4"}, 697 {"double", "double2", "double3", "double4"}, 698 {"char", "char2", "char3", "char4"}, 699 {"short", "short2", "short3", "short4"}, 700 {"int", "int2", "int3", "int4"}, 701 {"long", "long2", "long3", "long4"}, 702 {"uchar", "uchar2", "uchar3", "uchar4"}, 703 {"ushort", "ushort2", "ushort3", "ushort4"}, 704 {"uint", "uint2", "uint3", "uint4"}, 705 {"ulong", "ulong2", "ulong3", "ulong4"}, 706 {"bool", "bool2", "bool3", "bool4"}, 707 {"packed_565", "packed_565", "packed_565", "packed_565"}, 708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 713 714 // Handlers 715 {"RS Element", "RS Element", "RS Element", "RS Element"}, 716 {"RS Type", "RS Type", "RS Type", "RS Type"}, 717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 719 {"RS Script", "RS Script", "RS Script", "RS Script"}, 720 721 // Deprecated 722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 724 "RS Program Fragment"}, 725 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 726 "RS Program Vertex"}, 727 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 728 "RS Program Raster"}, 729 {"RS Program Store", "RS Program Store", "RS Program Store", 730 "RS Program Store"}, 731 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 732 733 // Used as an index into the RSTypeToFormat array elements 734 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 735 736 // { format enum of single element, format enum of element vector, size of 737 // element} 738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 739 // RS_TYPE_NONE 740 {eFormatHex, eFormatHex, 1}, 741 // RS_TYPE_FLOAT_16 742 {eFormatFloat, eFormatVectorOfFloat16, 2}, 743 // RS_TYPE_FLOAT_32 744 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 745 // RS_TYPE_FLOAT_64 746 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 747 // RS_TYPE_SIGNED_8 748 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 749 // RS_TYPE_SIGNED_16 750 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 751 // RS_TYPE_SIGNED_32 752 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 753 // RS_TYPE_SIGNED_64 754 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 755 // RS_TYPE_UNSIGNED_8 756 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 757 // RS_TYPE_UNSIGNED_16 758 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 759 // RS_TYPE_UNSIGNED_32 760 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 761 // RS_TYPE_UNSIGNED_64 762 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 763 // RS_TYPE_BOOL 764 {eFormatBoolean, eFormatBoolean, 1}, 765 // RS_TYPE_UNSIGNED_5_6_5 766 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 767 // RS_TYPE_UNSIGNED_5_5_5_1 768 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 769 // RS_TYPE_UNSIGNED_4_4_4_4 770 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 771 // RS_TYPE_MATRIX_4X4 772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 773 // RS_TYPE_MATRIX_3X3 774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 775 // RS_TYPE_MATRIX_2X2 776 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 777 778 // Static Functions 779 LanguageRuntime * 780 RenderScriptRuntime::CreateInstance(Process *process, 781 lldb::LanguageType language) { 782 783 if (language == eLanguageTypeExtRenderScript) 784 return new RenderScriptRuntime(process); 785 else 786 return nullptr; 787 } 788 789 // Callback with a module to search for matching symbols. We first check that 790 // the module contains RS kernels. Then look for a symbol which matches our 791 // kernel name. The breakpoint address is finally set using the address of this 792 // symbol. 793 Searcher::CallbackReturn 794 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 795 SymbolContext &context, Address *) { 796 BreakpointSP breakpoint_sp = GetBreakpoint(); 797 assert(breakpoint_sp); 798 799 ModuleSP module = context.module_sp; 800 801 if (!module || !IsRenderScriptScriptModule(module)) 802 return Searcher::eCallbackReturnContinue; 803 804 // Attempt to set a breakpoint on the kernel name symbol within the module 805 // library. If it's not found, it's likely debug info is unavailable - try to 806 // set a breakpoint on <name>.expand. 807 const Symbol *kernel_sym = 808 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 809 if (!kernel_sym) { 810 std::string kernel_name_expanded(m_kernel_name.AsCString()); 811 kernel_name_expanded.append(".expand"); 812 kernel_sym = module->FindFirstSymbolWithNameAndType( 813 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 814 } 815 816 if (kernel_sym) { 817 Address bp_addr = kernel_sym->GetAddress(); 818 if (filter.AddressPasses(bp_addr)) 819 breakpoint_sp->AddLocation(bp_addr); 820 } 821 822 return Searcher::eCallbackReturnContinue; 823 } 824 825 Searcher::CallbackReturn 826 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 827 lldb_private::SymbolContext &context, 828 Address *) { 829 BreakpointSP breakpoint_sp = GetBreakpoint(); 830 assert(breakpoint_sp); 831 832 // We need to have access to the list of reductions currently parsed, as 833 // reduce names don't actually exist as symbols in a module. They are only 834 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 835 // We therefore need access to the list of parsed rs modules to properly 836 // resolve reduction names. 837 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 838 ModuleSP module = context.module_sp; 839 840 if (!module || !IsRenderScriptScriptModule(module)) 841 return Searcher::eCallbackReturnContinue; 842 843 if (!m_rsmodules) 844 return Searcher::eCallbackReturnContinue; 845 846 for (const auto &module_desc : *m_rsmodules) { 847 if (module_desc->m_module != module) 848 continue; 849 850 for (const auto &reduction : module_desc->m_reductions) { 851 if (reduction.m_reduce_name != m_reduce_name) 852 continue; 853 854 std::array<std::pair<ConstString, int>, 5> funcs{ 855 {{reduction.m_init_name, eKernelTypeInit}, 856 {reduction.m_accum_name, eKernelTypeAccum}, 857 {reduction.m_comb_name, eKernelTypeComb}, 858 {reduction.m_outc_name, eKernelTypeOutC}, 859 {reduction.m_halter_name, eKernelTypeHalter}}}; 860 861 for (const auto &kernel : funcs) { 862 // Skip constituent functions that don't match our spec 863 if (!(m_kernel_types & kernel.second)) 864 continue; 865 866 const auto kernel_name = kernel.first; 867 const auto symbol = module->FindFirstSymbolWithNameAndType( 868 kernel_name, eSymbolTypeCode); 869 if (!symbol) 870 continue; 871 872 auto address = symbol->GetAddress(); 873 if (filter.AddressPasses(address)) { 874 bool new_bp; 875 if (!SkipPrologue(module, address)) { 876 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 877 } 878 breakpoint_sp->AddLocation(address, &new_bp); 879 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s", 880 __FUNCTION__, new_bp ? "new" : "existing", 881 kernel_name.GetCString(), 882 address.GetModule()->GetFileSpec().GetCString()); 883 } 884 } 885 } 886 } 887 return eCallbackReturnContinue; 888 } 889 890 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 891 SearchFilter &filter, SymbolContext &context, Address *addr) { 892 893 BreakpointSP breakpoint_sp = GetBreakpoint(); 894 if (!breakpoint_sp) 895 return eCallbackReturnContinue; 896 897 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 898 ModuleSP &module = context.module_sp; 899 900 if (!module || !IsRenderScriptScriptModule(module)) 901 return Searcher::eCallbackReturnContinue; 902 903 std::vector<std::string> names; 904 Breakpoint& breakpoint = *breakpoint_sp; 905 breakpoint.GetNames(names); 906 if (names.empty()) 907 return eCallbackReturnContinue; 908 909 for (auto &name : names) { 910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 911 if (!sg) { 912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__, 913 name.c_str()); 914 continue; 915 } 916 917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 918 919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 920 if (log) { 921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__, 922 k.m_name.AsCString()); 923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 924 } 925 926 const lldb_private::Symbol *sym = 927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 928 if (!sym) { 929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__, 930 k.m_name.AsCString()); 931 continue; 932 } 933 934 if (log) { 935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__, 936 sym->GetName().AsCString()); 937 } 938 939 auto address = sym->GetAddress(); 940 if (!SkipPrologue(module, address)) { 941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__); 942 } 943 944 bool new_bp; 945 breakpoint.AddLocation(address, &new_bp); 946 947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__, 948 new_bp ? "new " : "", k.m_name.AsCString()); 949 950 // exit after placing the first breakpoint if we do not intend to stop on 951 // all kernels making up this script group 952 if (!m_stop_on_all) 953 break; 954 } 955 } 956 957 return eCallbackReturnContinue; 958 } 959 960 void RenderScriptRuntime::Initialize() { 961 PluginManager::RegisterPlugin(GetPluginNameStatic(), 962 "RenderScript language support", CreateInstance, 963 GetCommandObject); 964 } 965 966 void RenderScriptRuntime::Terminate() { 967 PluginManager::UnregisterPlugin(CreateInstance); 968 } 969 970 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 971 static ConstString plugin_name("renderscript"); 972 return plugin_name; 973 } 974 975 RenderScriptRuntime::ModuleKind 976 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 977 if (module_sp) { 978 if (IsRenderScriptScriptModule(module_sp)) 979 return eModuleKindKernelObj; 980 981 // Is this the main RS runtime library 982 const ConstString rs_lib("libRS.so"); 983 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 984 return eModuleKindLibRS; 985 } 986 987 const ConstString rs_driverlib("libRSDriver.so"); 988 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 989 return eModuleKindDriver; 990 } 991 992 const ConstString rs_cpureflib("libRSCpuRef.so"); 993 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 994 return eModuleKindImpl; 995 } 996 } 997 return eModuleKindIgnored; 998 } 999 1000 bool RenderScriptRuntime::IsRenderScriptModule( 1001 const lldb::ModuleSP &module_sp) { 1002 return GetModuleKind(module_sp) != eModuleKindIgnored; 1003 } 1004 1005 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1006 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1007 1008 size_t num_modules = module_list.GetSize(); 1009 for (size_t i = 0; i < num_modules; i++) { 1010 auto mod = module_list.GetModuleAtIndex(i); 1011 if (IsRenderScriptModule(mod)) { 1012 LoadModule(mod); 1013 } 1014 } 1015 } 1016 1017 // PluginInterface protocol 1018 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1019 return GetPluginNameStatic(); 1020 } 1021 1022 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1023 1024 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1025 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1026 TypeAndOrName &class_type_or_name, Address &address, 1027 Value::ValueType &value_type) { 1028 return false; 1029 } 1030 1031 TypeAndOrName 1032 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1033 ValueObject &static_value) { 1034 return type_and_or_name; 1035 } 1036 1037 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1038 return false; 1039 } 1040 1041 lldb::BreakpointResolverSP 1042 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp, 1043 bool catch_bp, bool throw_bp) { 1044 BreakpointResolverSP resolver_sp; 1045 return resolver_sp; 1046 } 1047 1048 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1049 { 1050 // rsdScript 1051 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1052 "NS0_7ScriptCEPKcS7_PKhjj", 1053 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1054 "7ScriptCEPKcS7_PKhmj", 1055 0, RenderScriptRuntime::eModuleKindDriver, 1056 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1057 {"rsdScriptInvokeForEachMulti", 1058 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1059 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1060 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1061 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1062 0, RenderScriptRuntime::eModuleKindDriver, 1063 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1064 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1065 "script7ContextEPKNS0_6ScriptEjPvj", 1066 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1067 "6ScriptEjPvm", 1068 0, RenderScriptRuntime::eModuleKindDriver, 1069 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1070 1071 // rsdAllocation 1072 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1073 "ontextEPNS0_10AllocationEb", 1074 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1075 "10AllocationEb", 1076 0, RenderScriptRuntime::eModuleKindDriver, 1077 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1078 {"rsdAllocationRead2D", 1079 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1080 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1081 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1082 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1083 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1084 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1085 "ript7ContextEPNS0_10AllocationE", 1086 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1087 "10AllocationE", 1088 0, RenderScriptRuntime::eModuleKindDriver, 1089 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1090 1091 // renderscript script groups 1092 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1093 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1094 "InfojjjEj", 1095 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1096 "dKernelDriverInfojjjEj", 1097 0, RenderScriptRuntime::eModuleKindImpl, 1098 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1099 1100 const size_t RenderScriptRuntime::s_runtimeHookCount = 1101 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1102 1103 bool RenderScriptRuntime::HookCallback(void *baton, 1104 StoppointCallbackContext *ctx, 1105 lldb::user_id_t break_id, 1106 lldb::user_id_t break_loc_id) { 1107 RuntimeHook *hook = (RuntimeHook *)baton; 1108 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1109 1110 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1111 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1112 eLanguageTypeExtRenderScript)); 1113 1114 lang_rt->HookCallback(hook, exe_ctx); 1115 1116 return false; 1117 } 1118 1119 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1120 ExecutionContext &exe_ctx) { 1121 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1122 1123 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name); 1124 1125 if (hook->defn->grabber) { 1126 (this->*(hook->defn->grabber))(hook, exe_ctx); 1127 } 1128 } 1129 1130 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1131 RuntimeHook *hook_info, ExecutionContext &context) { 1132 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1133 1134 enum { 1135 eGroupName = 0, 1136 eGroupNameSize, 1137 eKernel, 1138 eKernelCount, 1139 }; 1140 1141 std::array<ArgItem, 4> args{{ 1142 {ArgItem::ePointer, 0}, // const char *groupName 1143 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1144 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1145 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1146 }}; 1147 1148 if (!GetArgs(context, args.data(), args.size())) { 1149 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1150 __FUNCTION__); 1151 return; 1152 } else if (log) { 1153 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__, 1154 addr_t(args[eGroupName])); 1155 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__, 1156 uint64_t(args[eGroupNameSize])); 1157 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__, 1158 addr_t(args[eKernel])); 1159 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__, 1160 uint64_t(args[eKernelCount])); 1161 } 1162 1163 // parse script group name 1164 ConstString group_name; 1165 { 1166 Status err; 1167 const uint64_t len = uint64_t(args[eGroupNameSize]); 1168 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1169 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1170 buffer.get()[len] = '\0'; 1171 if (!err.Success()) { 1172 LLDB_LOGF(log, "Error reading scriptgroup name from target"); 1173 return; 1174 } else { 1175 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get()); 1176 } 1177 // write back the script group name 1178 group_name.SetCString(buffer.get()); 1179 } 1180 1181 // create or access existing script group 1182 RSScriptGroupDescriptorSP group; 1183 { 1184 // search for existing script group 1185 for (auto sg : m_scriptGroups) { 1186 if (sg->m_name == group_name) { 1187 group = sg; 1188 break; 1189 } 1190 } 1191 if (!group) { 1192 group = std::make_shared<RSScriptGroupDescriptor>(); 1193 group->m_name = group_name; 1194 m_scriptGroups.push_back(group); 1195 } else { 1196 // already have this script group 1197 LLDB_LOGF(log, "Attempt to add duplicate script group %s", 1198 group_name.AsCString()); 1199 return; 1200 } 1201 } 1202 assert(group); 1203 1204 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1205 std::vector<addr_t> kernels; 1206 // parse kernel addresses in script group 1207 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1208 RSScriptGroupDescriptor::Kernel kernel; 1209 // extract script group kernel addresses from the target 1210 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1211 uint64_t kernel_addr = 0; 1212 Status err; 1213 size_t read = 1214 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1215 if (!err.Success() || read != target_ptr_size) { 1216 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group", 1217 i); 1218 return; 1219 } 1220 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64, 1221 kernel_addr); 1222 kernel.m_addr = kernel_addr; 1223 1224 // try to resolve the associated kernel name 1225 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1226 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1227 kernel_addr); 1228 return; 1229 } 1230 1231 // try to find the non '.expand' function 1232 { 1233 const llvm::StringRef expand(".expand"); 1234 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1235 if (name_ref.endswith(expand)) { 1236 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1237 // verify this function is a valid kernel 1238 if (IsKnownKernel(base_kernel)) { 1239 kernel.m_name = base_kernel; 1240 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__, 1241 base_kernel.GetCString()); 1242 } 1243 } 1244 } 1245 // add to a list of script group kernels we know about 1246 group->m_kernels.push_back(kernel); 1247 } 1248 1249 // Resolve any pending scriptgroup breakpoints 1250 { 1251 Target &target = m_process->GetTarget(); 1252 const BreakpointList &list = target.GetBreakpointList(); 1253 const size_t num_breakpoints = list.GetSize(); 1254 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints); 1255 for (size_t i = 0; i < num_breakpoints; ++i) { 1256 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1257 if (bp) { 1258 if (bp->MatchesName(group_name.AsCString())) { 1259 LLDB_LOGF(log, "Found breakpoint with name %s", 1260 group_name.AsCString()); 1261 bp->ResolveBreakpoint(); 1262 } 1263 } 1264 } 1265 } 1266 } 1267 1268 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1269 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1270 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1271 1272 enum { 1273 eRsContext = 0, 1274 eRsScript, 1275 eRsSlot, 1276 eRsAIns, 1277 eRsInLen, 1278 eRsAOut, 1279 eRsUsr, 1280 eRsUsrLen, 1281 eRsSc, 1282 }; 1283 1284 std::array<ArgItem, 9> args{{ 1285 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1286 ArgItem{ArgItem::ePointer, 0}, // Script *s 1287 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1288 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1289 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1290 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1291 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1292 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1293 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1294 }}; 1295 1296 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1297 if (!success) { 1298 LLDB_LOGF(log, "%s - Error while reading the function parameters", 1299 __FUNCTION__); 1300 return; 1301 } 1302 1303 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1304 Status err; 1305 std::vector<uint64_t> allocs; 1306 1307 // traverse allocation list 1308 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1309 // calculate offest to allocation pointer 1310 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1311 1312 // Note: due to little endian layout, reading 32bits or 64bits into res 1313 // will give the correct results. 1314 uint64_t result = 0; 1315 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1316 if (read != target_ptr_size || !err.Success()) { 1317 LLDB_LOGF(log, 1318 "%s - Error while reading allocation list argument %" PRIu64, 1319 __FUNCTION__, i); 1320 } else { 1321 allocs.push_back(result); 1322 } 1323 } 1324 1325 // if there is an output allocation track it 1326 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1327 allocs.push_back(alloc_out); 1328 } 1329 1330 // for all allocations we have found 1331 for (const uint64_t alloc_addr : allocs) { 1332 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1333 if (!alloc) 1334 alloc = CreateAllocation(alloc_addr); 1335 1336 if (alloc) { 1337 // save the allocation address 1338 if (alloc->address.isValid()) { 1339 // check the allocation address we already have matches 1340 assert(*alloc->address.get() == alloc_addr); 1341 } else { 1342 alloc->address = alloc_addr; 1343 } 1344 1345 // save the context 1346 if (log) { 1347 if (alloc->context.isValid() && 1348 *alloc->context.get() != addr_t(args[eRsContext])) 1349 LLDB_LOGF(log, "%s - Allocation used by multiple contexts", 1350 __FUNCTION__); 1351 } 1352 alloc->context = addr_t(args[eRsContext]); 1353 } 1354 } 1355 1356 // make sure we track this script object 1357 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1358 LookUpScript(addr_t(args[eRsScript]), true)) { 1359 if (log) { 1360 if (script->context.isValid() && 1361 *script->context.get() != addr_t(args[eRsContext])) 1362 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__); 1363 } 1364 script->context = addr_t(args[eRsContext]); 1365 } 1366 } 1367 1368 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1369 ExecutionContext &context) { 1370 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1371 1372 enum { 1373 eRsContext, 1374 eRsScript, 1375 eRsId, 1376 eRsData, 1377 eRsLength, 1378 }; 1379 1380 std::array<ArgItem, 5> args{{ 1381 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1382 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1383 ArgItem{ArgItem::eInt32, 0}, // eRsId 1384 ArgItem{ArgItem::ePointer, 0}, // eRsData 1385 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1386 }}; 1387 1388 bool success = GetArgs(context, &args[0], args.size()); 1389 if (!success) { 1390 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__); 1391 return; 1392 } 1393 1394 if (log) { 1395 LLDB_LOGF(log, 1396 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1397 ":%" PRIu64 "bytes.", 1398 __FUNCTION__, uint64_t(args[eRsContext]), 1399 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1400 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1401 1402 addr_t script_addr = addr_t(args[eRsScript]); 1403 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1404 auto rsm = m_scriptMappings[script_addr]; 1405 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1406 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1407 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred", 1408 __FUNCTION__, rsg.m_name.AsCString(), 1409 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1410 } 1411 } 1412 } 1413 } 1414 1415 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1416 ExecutionContext &exe_ctx) { 1417 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1418 1419 enum { eRsContext, eRsAlloc, eRsForceZero }; 1420 1421 std::array<ArgItem, 3> args{{ 1422 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1423 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1424 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1425 }}; 1426 1427 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1428 if (!success) { 1429 LLDB_LOGF(log, "%s - error while reading the function parameters", 1430 __FUNCTION__); 1431 return; 1432 } 1433 1434 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1435 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]), 1436 uint64_t(args[eRsForceZero])); 1437 1438 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1439 if (alloc) 1440 alloc->context = uint64_t(args[eRsContext]); 1441 } 1442 1443 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1444 ExecutionContext &exe_ctx) { 1445 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1446 1447 enum { 1448 eRsContext, 1449 eRsAlloc, 1450 }; 1451 1452 std::array<ArgItem, 2> args{{ 1453 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1454 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1455 }}; 1456 1457 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1458 if (!success) { 1459 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1460 __FUNCTION__); 1461 return; 1462 } 1463 1464 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1465 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1466 1467 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1468 auto &allocation_up = *iter; // get the unique pointer 1469 if (allocation_up->address.isValid() && 1470 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1471 m_allocations.erase(iter); 1472 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__); 1473 return; 1474 } 1475 } 1476 1477 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__); 1478 } 1479 1480 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1481 ExecutionContext &exe_ctx) { 1482 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1483 1484 Status err; 1485 Process *process = exe_ctx.GetProcessPtr(); 1486 1487 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1488 1489 std::array<ArgItem, 4> args{ 1490 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1491 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1492 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1493 if (!success) { 1494 LLDB_LOGF(log, "%s - error while reading the function parameters.", 1495 __FUNCTION__); 1496 return; 1497 } 1498 1499 std::string res_name; 1500 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1501 if (err.Fail()) { 1502 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__, 1503 err.AsCString()); 1504 } 1505 1506 std::string cache_dir; 1507 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1508 if (err.Fail()) { 1509 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__, 1510 err.AsCString()); 1511 } 1512 1513 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1514 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]), 1515 res_name.c_str(), cache_dir.c_str()); 1516 1517 if (res_name.size() > 0) { 1518 StreamString strm; 1519 strm.Printf("librs.%s.so", res_name.c_str()); 1520 1521 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1522 if (script) { 1523 script->type = ScriptDetails::eScriptC; 1524 script->cache_dir = cache_dir; 1525 script->res_name = res_name; 1526 script->shared_lib = std::string(strm.GetString()); 1527 script->context = addr_t(args[eRsContext]); 1528 } 1529 1530 LLDB_LOGF(log, 1531 "%s - '%s' tagged with context 0x%" PRIx64 1532 " and script 0x%" PRIx64 ".", 1533 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1534 uint64_t(args[eRsScript])); 1535 } else if (log) { 1536 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.", 1537 __FUNCTION__); 1538 } 1539 } 1540 1541 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1542 ModuleKind kind) { 1543 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1544 1545 if (!module) { 1546 return; 1547 } 1548 1549 Target &target = GetProcess()->GetTarget(); 1550 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1551 1552 if (machine != llvm::Triple::ArchType::x86 && 1553 machine != llvm::Triple::ArchType::arm && 1554 machine != llvm::Triple::ArchType::aarch64 && 1555 machine != llvm::Triple::ArchType::mipsel && 1556 machine != llvm::Triple::ArchType::mips64el && 1557 machine != llvm::Triple::ArchType::x86_64) { 1558 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__); 1559 return; 1560 } 1561 1562 const uint32_t target_ptr_size = 1563 target.GetArchitecture().GetAddressByteSize(); 1564 1565 std::array<bool, s_runtimeHookCount> hook_placed; 1566 hook_placed.fill(false); 1567 1568 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1569 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1570 if (hook_defn->kind != kind) { 1571 continue; 1572 } 1573 1574 const char *symbol_name = (target_ptr_size == 4) 1575 ? hook_defn->symbol_name_m32 1576 : hook_defn->symbol_name_m64; 1577 1578 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1579 ConstString(symbol_name), eSymbolTypeCode); 1580 if (!sym) { 1581 if (log) { 1582 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found", 1583 __FUNCTION__, symbol_name, hook_defn->name); 1584 } 1585 continue; 1586 } 1587 1588 addr_t addr = sym->GetLoadAddress(&target); 1589 if (addr == LLDB_INVALID_ADDRESS) { 1590 LLDB_LOGF(log, 1591 "%s - unable to resolve the address of hook function '%s' " 1592 "with symbol '%s'.", 1593 __FUNCTION__, hook_defn->name, symbol_name); 1594 continue; 1595 } else { 1596 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64, 1597 __FUNCTION__, hook_defn->name, addr); 1598 } 1599 1600 RuntimeHookSP hook(new RuntimeHook()); 1601 hook->address = addr; 1602 hook->defn = hook_defn; 1603 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1604 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1605 m_runtimeHooks[addr] = hook; 1606 if (log) { 1607 LLDB_LOGF(log, 1608 "%s - successfully hooked '%s' in '%s' version %" PRIu64 1609 " at 0x%" PRIx64 ".", 1610 __FUNCTION__, hook_defn->name, 1611 module->GetFileSpec().GetFilename().AsCString(), 1612 (uint64_t)hook_defn->version, (uint64_t)addr); 1613 } 1614 hook_placed[idx] = true; 1615 } 1616 1617 // log any unhooked function 1618 if (log) { 1619 for (size_t i = 0; i < hook_placed.size(); ++i) { 1620 if (hook_placed[i]) 1621 continue; 1622 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1623 if (hook_defn.kind != kind) 1624 continue; 1625 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__, 1626 hook_defn.name); 1627 } 1628 } 1629 } 1630 1631 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1632 if (!rsmodule_sp) 1633 return; 1634 1635 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1636 1637 const ModuleSP module = rsmodule_sp->m_module; 1638 const FileSpec &file = module->GetPlatformFileSpec(); 1639 1640 // Iterate over all of the scripts that we currently know of. Note: We cant 1641 // push or pop to m_scripts here or it may invalidate rs_script. 1642 for (const auto &rs_script : m_scripts) { 1643 // Extract the expected .so file path for this script. 1644 std::string shared_lib; 1645 if (!rs_script->shared_lib.get(shared_lib)) 1646 continue; 1647 1648 // Only proceed if the module that has loaded corresponds to this script. 1649 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1650 continue; 1651 1652 // Obtain the script address which we use as a key. 1653 lldb::addr_t script; 1654 if (!rs_script->script.get(script)) 1655 continue; 1656 1657 // If we have a script mapping for the current script. 1658 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1659 // if the module we have stored is different to the one we just received. 1660 if (m_scriptMappings[script] != rsmodule_sp) { 1661 LLDB_LOGF( 1662 log, 1663 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1664 __FUNCTION__, (uint64_t)script, 1665 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1666 } 1667 } 1668 // We don't have a script mapping for the current script. 1669 else { 1670 // Obtain the script resource name. 1671 std::string res_name; 1672 if (rs_script->res_name.get(res_name)) 1673 // Set the modules resource name. 1674 rsmodule_sp->m_resname = res_name; 1675 // Add Script/Module pair to map. 1676 m_scriptMappings[script] = rsmodule_sp; 1677 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1678 __FUNCTION__, (uint64_t)script, 1679 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1680 } 1681 } 1682 } 1683 1684 // Uses the Target API to evaluate the expression passed as a parameter to the 1685 // function The result of that expression is returned an unsigned 64 bit int, 1686 // via the result* parameter. Function returns true on success, and false on 1687 // failure 1688 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1689 StackFrame *frame_ptr, 1690 uint64_t *result) { 1691 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1692 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr); 1693 1694 ValueObjectSP expr_result; 1695 EvaluateExpressionOptions options; 1696 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1697 // Perform the actual expression evaluation 1698 auto &target = GetProcess()->GetTarget(); 1699 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1700 1701 if (!expr_result) { 1702 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__); 1703 return false; 1704 } 1705 1706 // The result of the expression is invalid 1707 if (!expr_result->GetError().Success()) { 1708 Status err = expr_result->GetError(); 1709 // Expression returned is void, so this is actually a success 1710 if (err.GetError() == UserExpression::kNoResult) { 1711 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__); 1712 1713 result = nullptr; 1714 return true; 1715 } 1716 1717 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__, 1718 err.AsCString()); 1719 return false; 1720 } 1721 1722 bool success = false; 1723 // We only read the result as an uint32_t. 1724 *result = expr_result->GetValueAsUnsigned(0, &success); 1725 1726 if (!success) { 1727 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t", 1728 __FUNCTION__); 1729 return false; 1730 } 1731 1732 return true; 1733 } 1734 1735 namespace { 1736 // Used to index expression format strings 1737 enum ExpressionStrings { 1738 eExprGetOffsetPtr = 0, 1739 eExprAllocGetType, 1740 eExprTypeDimX, 1741 eExprTypeDimY, 1742 eExprTypeDimZ, 1743 eExprTypeElemPtr, 1744 eExprElementType, 1745 eExprElementKind, 1746 eExprElementVec, 1747 eExprElementFieldCount, 1748 eExprSubelementsId, 1749 eExprSubelementsName, 1750 eExprSubelementsArrSize, 1751 1752 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1753 }; 1754 1755 // max length of an expanded expression 1756 const int jit_max_expr_size = 512; 1757 1758 // Retrieve the string to JIT for the given expression 1759 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1760 const char *JITTemplate(ExpressionStrings e) { 1761 // Format strings containing the expressions we may need to evaluate. 1762 static std::array<const char *, _eExprLast> runtime_expressions = { 1763 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1764 "(int*)_" 1765 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1766 "CubemapFace" 1767 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1768 1769 // Type* rsaAllocationGetType(Context*, Allocation*) 1770 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1771 1772 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1773 // data in the following way mHal.state.dimX; mHal.state.dimY; 1774 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1775 // into typeData Need to specify 32 or 64 bit for uint_t since this 1776 // differs between devices 1777 JIT_TEMPLATE_CONTEXT 1778 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1779 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1780 JIT_TEMPLATE_CONTEXT 1781 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1782 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1783 JIT_TEMPLATE_CONTEXT 1784 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1785 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1786 JIT_TEMPLATE_CONTEXT 1787 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1788 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1789 1790 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1791 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1792 // elemData 1793 JIT_TEMPLATE_CONTEXT 1794 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1795 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1796 JIT_TEMPLATE_CONTEXT 1797 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1798 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1799 JIT_TEMPLATE_CONTEXT 1800 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1801 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1802 JIT_TEMPLATE_CONTEXT 1803 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1804 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1805 1806 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1807 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1808 // Needed for Allocations of structs to gather details about 1809 // fields/Subelements Element* of field 1810 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1811 "]; size_t arr_size[%" PRIu32 "];" 1812 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1813 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1814 1815 // Name of field 1816 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1817 "]; size_t arr_size[%" PRIu32 "];" 1818 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1819 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1820 1821 // Array size of field 1822 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1823 "]; size_t arr_size[%" PRIu32 "];" 1824 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1825 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1826 1827 return runtime_expressions[e]; 1828 } 1829 } // end of the anonymous namespace 1830 1831 // JITs the RS runtime for the internal data pointer of an allocation. Is 1832 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1833 // the data_ptr member in Allocation with the result. Returns true on success, 1834 // false otherwise 1835 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1836 StackFrame *frame_ptr, uint32_t x, 1837 uint32_t y, uint32_t z) { 1838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1839 1840 if (!alloc->address.isValid()) { 1841 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1842 return false; 1843 } 1844 1845 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1846 char expr_buf[jit_max_expr_size]; 1847 1848 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1849 *alloc->address.get(), x, y, z); 1850 if (written < 0) { 1851 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1852 return false; 1853 } else if (written >= jit_max_expr_size) { 1854 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1855 return false; 1856 } 1857 1858 uint64_t result = 0; 1859 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1860 return false; 1861 1862 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1863 alloc->data_ptr = data_ptr; 1864 1865 return true; 1866 } 1867 1868 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1869 // Then sets the type_ptr member in Allocation with the result. Returns true on 1870 // success, false otherwise 1871 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1872 StackFrame *frame_ptr) { 1873 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1874 1875 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1876 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1877 return false; 1878 } 1879 1880 const char *fmt_str = JITTemplate(eExprAllocGetType); 1881 char expr_buf[jit_max_expr_size]; 1882 1883 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1884 *alloc->context.get(), *alloc->address.get()); 1885 if (written < 0) { 1886 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1887 return false; 1888 } else if (written >= jit_max_expr_size) { 1889 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1890 return false; 1891 } 1892 1893 uint64_t result = 0; 1894 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1895 return false; 1896 1897 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1898 alloc->type_ptr = type_ptr; 1899 1900 return true; 1901 } 1902 1903 // JITs the RS runtime for information about the dimensions and type of an 1904 // allocation Then sets dimension and element_ptr members in Allocation with 1905 // the result. Returns true on success, false otherwise 1906 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1907 StackFrame *frame_ptr) { 1908 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1909 1910 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1911 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__); 1912 return false; 1913 } 1914 1915 // Expression is different depending on if device is 32 or 64 bit 1916 uint32_t target_ptr_size = 1917 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1918 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1919 1920 // We want 4 elements from packed data 1921 const uint32_t num_exprs = 4; 1922 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1923 "Invalid number of expressions"); 1924 1925 char expr_bufs[num_exprs][jit_max_expr_size]; 1926 uint64_t results[num_exprs]; 1927 1928 for (uint32_t i = 0; i < num_exprs; ++i) { 1929 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1930 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1931 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1932 if (written < 0) { 1933 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1934 return false; 1935 } else if (written >= jit_max_expr_size) { 1936 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1937 return false; 1938 } 1939 1940 // Perform expression evaluation 1941 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1942 return false; 1943 } 1944 1945 // Assign results to allocation members 1946 AllocationDetails::Dimension dims; 1947 dims.dim_1 = static_cast<uint32_t>(results[0]); 1948 dims.dim_2 = static_cast<uint32_t>(results[1]); 1949 dims.dim_3 = static_cast<uint32_t>(results[2]); 1950 alloc->dimension = dims; 1951 1952 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 1953 alloc->element.element_ptr = element_ptr; 1954 1955 LLDB_LOGF(log, 1956 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 1957 ") Element*: 0x%" PRIx64 ".", 1958 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 1959 1960 return true; 1961 } 1962 1963 // JITs the RS runtime for information about the Element of an allocation Then 1964 // sets type, type_vec_size, field_count and type_kind members in Element with 1965 // the result. Returns true on success, false otherwise 1966 bool RenderScriptRuntime::JITElementPacked(Element &elem, 1967 const lldb::addr_t context, 1968 StackFrame *frame_ptr) { 1969 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1970 1971 if (!elem.element_ptr.isValid()) { 1972 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 1973 return false; 1974 } 1975 1976 // We want 4 elements from packed data 1977 const uint32_t num_exprs = 4; 1978 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 1979 "Invalid number of expressions"); 1980 1981 char expr_bufs[num_exprs][jit_max_expr_size]; 1982 uint64_t results[num_exprs]; 1983 1984 for (uint32_t i = 0; i < num_exprs; i++) { 1985 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 1986 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 1987 *elem.element_ptr.get()); 1988 if (written < 0) { 1989 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 1990 return false; 1991 } else if (written >= jit_max_expr_size) { 1992 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 1993 return false; 1994 } 1995 1996 // Perform expression evaluation 1997 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1998 return false; 1999 } 2000 2001 // Assign results to allocation members 2002 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2003 elem.type_kind = 2004 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2005 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2006 elem.field_count = static_cast<uint32_t>(results[3]); 2007 2008 LLDB_LOGF(log, 2009 "%s - data type %" PRIu32 ", pixel type %" PRIu32 2010 ", vector size %" PRIu32 ", field count %" PRIu32, 2011 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2012 *elem.type_vec_size.get(), *elem.field_count.get()); 2013 2014 // If this Element has subelements then JIT rsaElementGetSubElements() for 2015 // details about its fields 2016 return !(*elem.field_count.get() > 0 && 2017 !JITSubelements(elem, context, frame_ptr)); 2018 } 2019 2020 // JITs the RS runtime for information about the subelements/fields of a struct 2021 // allocation This is necessary for infering the struct type so we can pretty 2022 // print the allocation's contents. Returns true on success, false otherwise 2023 bool RenderScriptRuntime::JITSubelements(Element &elem, 2024 const lldb::addr_t context, 2025 StackFrame *frame_ptr) { 2026 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2027 2028 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2029 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2030 return false; 2031 } 2032 2033 const short num_exprs = 3; 2034 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2035 "Invalid number of expressions"); 2036 2037 char expr_buffer[jit_max_expr_size]; 2038 uint64_t results; 2039 2040 // Iterate over struct fields. 2041 const uint32_t field_count = *elem.field_count.get(); 2042 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2043 Element child; 2044 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2045 const char *fmt_str = 2046 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2047 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2048 context, field_count, field_count, field_count, 2049 *elem.element_ptr.get(), field_count, field_index); 2050 if (written < 0) { 2051 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2052 return false; 2053 } else if (written >= jit_max_expr_size) { 2054 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2055 return false; 2056 } 2057 2058 // Perform expression evaluation 2059 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2060 return false; 2061 2062 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2063 2064 switch (expr_index) { 2065 case 0: // Element* of child 2066 child.element_ptr = static_cast<addr_t>(results); 2067 break; 2068 case 1: // Name of child 2069 { 2070 lldb::addr_t address = static_cast<addr_t>(results); 2071 Status err; 2072 std::string name; 2073 GetProcess()->ReadCStringFromMemory(address, name, err); 2074 if (!err.Fail()) 2075 child.type_name = ConstString(name); 2076 else { 2077 LLDB_LOGF(log, "%s - warning: Couldn't read field name.", 2078 __FUNCTION__); 2079 } 2080 break; 2081 } 2082 case 2: // Array size of child 2083 child.array_size = static_cast<uint32_t>(results); 2084 break; 2085 } 2086 } 2087 2088 // We need to recursively JIT each Element field of the struct since 2089 // structs can be nested inside structs. 2090 if (!JITElementPacked(child, context, frame_ptr)) 2091 return false; 2092 elem.children.push_back(child); 2093 } 2094 2095 // Try to infer the name of the struct type so we can pretty print the 2096 // allocation contents. 2097 FindStructTypeName(elem, frame_ptr); 2098 2099 return true; 2100 } 2101 2102 // JITs the RS runtime for the address of the last element in the allocation. 2103 // The `elem_size` parameter represents the size of a single element, including 2104 // padding. Which is needed as an offset from the last element pointer. Using 2105 // this offset minus the starting address we can calculate the size of the 2106 // allocation. Returns true on success, false otherwise 2107 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2108 StackFrame *frame_ptr) { 2109 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2110 2111 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2112 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2113 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2114 return false; 2115 } 2116 2117 // Find dimensions 2118 uint32_t dim_x = alloc->dimension.get()->dim_1; 2119 uint32_t dim_y = alloc->dimension.get()->dim_2; 2120 uint32_t dim_z = alloc->dimension.get()->dim_3; 2121 2122 // Our plan of jitting the last element address doesn't seem to work for 2123 // struct Allocations` Instead try to infer the size ourselves without any 2124 // inter element padding. 2125 if (alloc->element.children.size() > 0) { 2126 if (dim_x == 0) 2127 dim_x = 1; 2128 if (dim_y == 0) 2129 dim_y = 1; 2130 if (dim_z == 0) 2131 dim_z = 1; 2132 2133 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2134 2135 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".", 2136 __FUNCTION__, *alloc->size.get()); 2137 return true; 2138 } 2139 2140 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2141 char expr_buf[jit_max_expr_size]; 2142 2143 // Calculate last element 2144 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2145 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2146 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2147 2148 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2149 *alloc->address.get(), dim_x, dim_y, dim_z); 2150 if (written < 0) { 2151 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2152 return false; 2153 } else if (written >= jit_max_expr_size) { 2154 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2155 return false; 2156 } 2157 2158 uint64_t result = 0; 2159 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2160 return false; 2161 2162 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2163 // Find pointer to last element and add on size of an element 2164 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2165 *alloc->element.datum_size.get(); 2166 2167 return true; 2168 } 2169 2170 // JITs the RS runtime for information about the stride between rows in the 2171 // allocation. This is done to detect padding, since allocated memory is 2172 // 16-byte aligned. Returns true on success, false otherwise 2173 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2174 StackFrame *frame_ptr) { 2175 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2176 2177 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2178 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__); 2179 return false; 2180 } 2181 2182 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2183 char expr_buf[jit_max_expr_size]; 2184 2185 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2186 *alloc->address.get(), 0, 1, 0); 2187 if (written < 0) { 2188 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__); 2189 return false; 2190 } else if (written >= jit_max_expr_size) { 2191 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__); 2192 return false; 2193 } 2194 2195 uint64_t result = 0; 2196 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2197 return false; 2198 2199 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2200 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2201 2202 return true; 2203 } 2204 2205 // JIT all the current runtime info regarding an allocation 2206 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2207 StackFrame *frame_ptr) { 2208 // GetOffsetPointer() 2209 if (!JITDataPointer(alloc, frame_ptr)) 2210 return false; 2211 2212 // rsaAllocationGetType() 2213 if (!JITTypePointer(alloc, frame_ptr)) 2214 return false; 2215 2216 // rsaTypeGetNativeData() 2217 if (!JITTypePacked(alloc, frame_ptr)) 2218 return false; 2219 2220 // rsaElementGetNativeData() 2221 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2222 return false; 2223 2224 // Sets the datum_size member in Element 2225 SetElementSize(alloc->element); 2226 2227 // Use GetOffsetPointer() to infer size of the allocation 2228 return JITAllocationSize(alloc, frame_ptr); 2229 } 2230 2231 // Function attempts to set the type_name member of the parameterised Element 2232 // object. This string should be the name of the struct type the Element 2233 // represents. We need this string for pretty printing the Element to users. 2234 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2235 StackFrame *frame_ptr) { 2236 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2237 2238 if (!elem.type_name.IsEmpty()) // Name already set 2239 return; 2240 else 2241 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2242 // we don't succeed 2243 2244 // Find all the global variables from the script rs modules 2245 VariableList var_list; 2246 for (auto module_sp : m_rsmodules) 2247 module_sp->m_module->FindGlobalVariables( 2248 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2249 2250 // Iterate over all the global variables looking for one with a matching type 2251 // to the Element. We make the assumption a match exists since there needs to 2252 // be a global variable to reflect the struct type back into java host code. 2253 for (const VariableSP &var_sp : var_list) { 2254 if (!var_sp) 2255 continue; 2256 2257 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2258 if (!valobj_sp) 2259 continue; 2260 2261 // Find the number of variable fields. 2262 // If it has no fields, or more fields than our Element, then it can't be 2263 // the struct we're looking for. Don't check for equality since RS can add 2264 // extra struct members for padding. 2265 size_t num_children = valobj_sp->GetNumChildren(); 2266 if (num_children > elem.children.size() || num_children == 0) 2267 continue; 2268 2269 // Iterate over children looking for members with matching field names. If 2270 // all the field names match, this is likely the struct we want. 2271 // TODO: This could be made more robust by also checking children data 2272 // sizes, or array size 2273 bool found = true; 2274 for (size_t i = 0; i < num_children; ++i) { 2275 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2276 if (!child || (child->GetName() != elem.children[i].type_name)) { 2277 found = false; 2278 break; 2279 } 2280 } 2281 2282 // RS can add extra struct members for padding in the format 2283 // '#rs_padding_[0-9]+' 2284 if (found && num_children < elem.children.size()) { 2285 const uint32_t size_diff = elem.children.size() - num_children; 2286 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2287 size_diff); 2288 2289 for (uint32_t i = 0; i < size_diff; ++i) { 2290 ConstString name = elem.children[num_children + i].type_name; 2291 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2292 found = false; 2293 } 2294 } 2295 2296 // We've found a global variable with matching type 2297 if (found) { 2298 // Dereference since our Element type isn't a pointer. 2299 if (valobj_sp->IsPointerType()) { 2300 Status err; 2301 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2302 if (!err.Fail()) 2303 valobj_sp = deref_valobj; 2304 } 2305 2306 // Save name of variable in Element. 2307 elem.type_name = valobj_sp->GetTypeName(); 2308 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__, 2309 elem.type_name.AsCString()); 2310 2311 return; 2312 } 2313 } 2314 } 2315 2316 // Function sets the datum_size member of Element. Representing the size of a 2317 // single instance including padding. Assumes the relevant allocation 2318 // information has already been jitted. 2319 void RenderScriptRuntime::SetElementSize(Element &elem) { 2320 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2321 const Element::DataType type = *elem.type.get(); 2322 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2323 "Invalid allocation type"); 2324 2325 const uint32_t vec_size = *elem.type_vec_size.get(); 2326 uint32_t data_size = 0; 2327 uint32_t padding = 0; 2328 2329 // Element is of a struct type, calculate size recursively. 2330 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2331 for (Element &child : elem.children) { 2332 SetElementSize(child); 2333 const uint32_t array_size = 2334 child.array_size.isValid() ? *child.array_size.get() : 1; 2335 data_size += *child.datum_size.get() * array_size; 2336 } 2337 } 2338 // These have been packed already 2339 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2340 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2341 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2342 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2343 } else if (type < Element::RS_TYPE_ELEMENT) { 2344 data_size = 2345 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2346 if (vec_size == 3) 2347 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2348 } else 2349 data_size = 2350 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2351 2352 elem.padding = padding; 2353 elem.datum_size = data_size + padding; 2354 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__, 2355 data_size + padding); 2356 } 2357 2358 // Given an allocation, this function copies the allocation contents from 2359 // device into a buffer on the heap. Returning a shared pointer to the buffer 2360 // containing the data. 2361 std::shared_ptr<uint8_t> 2362 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2363 StackFrame *frame_ptr) { 2364 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2365 2366 // JIT all the allocation details 2367 if (alloc->ShouldRefresh()) { 2368 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info", 2369 __FUNCTION__); 2370 2371 if (!RefreshAllocation(alloc, frame_ptr)) { 2372 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2373 return nullptr; 2374 } 2375 } 2376 2377 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2378 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2379 "Allocation information not available"); 2380 2381 // Allocate a buffer to copy data into 2382 const uint32_t size = *alloc->size.get(); 2383 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2384 if (!buffer) { 2385 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer", 2386 __FUNCTION__, size); 2387 return nullptr; 2388 } 2389 2390 // Read the inferior memory 2391 Status err; 2392 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2393 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2394 if (err.Fail()) { 2395 LLDB_LOGF(log, 2396 "%s - '%s' Couldn't read %" PRIu32 2397 " bytes of allocation data from 0x%" PRIx64, 2398 __FUNCTION__, err.AsCString(), size, data_ptr); 2399 return nullptr; 2400 } 2401 2402 return buffer; 2403 } 2404 2405 // Function copies data from a binary file into an allocation. There is a 2406 // header at the start of the file, FileHeader, before the data content itself. 2407 // Information from this header is used to display warnings to the user about 2408 // incompatibilities 2409 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2410 const char *path, 2411 StackFrame *frame_ptr) { 2412 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2413 2414 // Find allocation with the given id 2415 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2416 if (!alloc) 2417 return false; 2418 2419 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 2420 *alloc->address.get()); 2421 2422 // JIT all the allocation details 2423 if (alloc->ShouldRefresh()) { 2424 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2425 __FUNCTION__); 2426 2427 if (!RefreshAllocation(alloc, frame_ptr)) { 2428 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__); 2429 return false; 2430 } 2431 } 2432 2433 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2434 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2435 alloc->element.datum_size.isValid() && 2436 "Allocation information not available"); 2437 2438 // Check we can read from file 2439 FileSpec file(path); 2440 FileSystem::Instance().Resolve(file); 2441 if (!FileSystem::Instance().Exists(file)) { 2442 strm.Printf("Error: File %s does not exist", path); 2443 strm.EOL(); 2444 return false; 2445 } 2446 2447 if (!FileSystem::Instance().Readable(file)) { 2448 strm.Printf("Error: File %s does not have readable permissions", path); 2449 strm.EOL(); 2450 return false; 2451 } 2452 2453 // Read file into data buffer 2454 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2455 2456 // Cast start of buffer to FileHeader and use pointer to read metadata 2457 void *file_buf = data_sp->GetBytes(); 2458 if (file_buf == nullptr || 2459 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2460 sizeof(AllocationDetails::ElementHeader))) { 2461 strm.Printf("Error: File %s does not contain enough data for header", path); 2462 strm.EOL(); 2463 return false; 2464 } 2465 const AllocationDetails::FileHeader *file_header = 2466 static_cast<AllocationDetails::FileHeader *>(file_buf); 2467 2468 // Check file starts with ascii characters "RSAD" 2469 if (memcmp(file_header->ident, "RSAD", 4)) { 2470 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2471 "dump. Are you sure this is the correct file?"); 2472 strm.EOL(); 2473 return false; 2474 } 2475 2476 // Look at the type of the root element in the header 2477 AllocationDetails::ElementHeader root_el_hdr; 2478 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2479 sizeof(AllocationDetails::FileHeader), 2480 sizeof(AllocationDetails::ElementHeader)); 2481 2482 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32, 2483 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2484 2485 // Check if the target allocation and file both have the same number of bytes 2486 // for an Element 2487 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2488 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2489 " bytes, allocation %" PRIu32 " bytes", 2490 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2491 strm.EOL(); 2492 } 2493 2494 // Check if the target allocation and file both have the same type 2495 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2496 const uint32_t file_type = root_el_hdr.type; 2497 2498 if (file_type > Element::RS_TYPE_FONT) { 2499 strm.Printf("Warning: File has unknown allocation type"); 2500 strm.EOL(); 2501 } else if (alloc_type != file_type) { 2502 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2503 // array 2504 uint32_t target_type_name_idx = alloc_type; 2505 uint32_t head_type_name_idx = file_type; 2506 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2507 alloc_type <= Element::RS_TYPE_FONT) 2508 target_type_name_idx = static_cast<Element::DataType>( 2509 (alloc_type - Element::RS_TYPE_ELEMENT) + 2510 Element::RS_TYPE_MATRIX_2X2 + 1); 2511 2512 if (file_type >= Element::RS_TYPE_ELEMENT && 2513 file_type <= Element::RS_TYPE_FONT) 2514 head_type_name_idx = static_cast<Element::DataType>( 2515 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2516 1); 2517 2518 const char *head_type_name = 2519 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2520 const char *target_type_name = 2521 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2522 2523 strm.Printf( 2524 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2525 head_type_name, target_type_name); 2526 strm.EOL(); 2527 } 2528 2529 // Advance buffer past header 2530 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2531 2532 // Calculate size of allocation data in file 2533 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2534 2535 // Check if the target allocation and file both have the same total data 2536 // size. 2537 const uint32_t alloc_size = *alloc->size.get(); 2538 if (alloc_size != size) { 2539 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2540 " bytes, allocation 0x%" PRIx32 " bytes", 2541 (uint64_t)size, alloc_size); 2542 strm.EOL(); 2543 // Set length to copy to minimum 2544 size = alloc_size < size ? alloc_size : size; 2545 } 2546 2547 // Copy file data from our buffer into the target allocation. 2548 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2549 Status err; 2550 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2551 if (!err.Success() || written != size) { 2552 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2553 strm.EOL(); 2554 return false; 2555 } 2556 2557 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2558 alloc->id); 2559 strm.EOL(); 2560 2561 return true; 2562 } 2563 2564 // Function takes as parameters a byte buffer, which will eventually be written 2565 // to file as the element header, an offset into that buffer, and an Element 2566 // that will be saved into the buffer at the parametrised offset. Return value 2567 // is the new offset after writing the element into the buffer. Elements are 2568 // saved to the file as the ElementHeader struct followed by offsets to the 2569 // structs of all the element's children. 2570 size_t RenderScriptRuntime::PopulateElementHeaders( 2571 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2572 const Element &elem) { 2573 // File struct for an element header with all the relevant details copied 2574 // from elem. We assume members are valid already. 2575 AllocationDetails::ElementHeader elem_header; 2576 elem_header.type = *elem.type.get(); 2577 elem_header.kind = *elem.type_kind.get(); 2578 elem_header.element_size = *elem.datum_size.get(); 2579 elem_header.vector_size = *elem.type_vec_size.get(); 2580 elem_header.array_size = 2581 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2582 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2583 2584 // Copy struct into buffer and advance offset We assume that header_buffer 2585 // has been checked for nullptr before this method is called 2586 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2587 offset += elem_header_size; 2588 2589 // Starting offset of child ElementHeader struct 2590 size_t child_offset = 2591 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2592 for (const RenderScriptRuntime::Element &child : elem.children) { 2593 // Recursively populate the buffer with the element header structs of 2594 // children. Then save the offsets where they were set after the parent 2595 // element header. 2596 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2597 offset += sizeof(uint32_t); 2598 2599 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2600 } 2601 2602 // Zero indicates no more children 2603 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2604 2605 return child_offset; 2606 } 2607 2608 // Given an Element object this function returns the total size needed in the 2609 // file header to store the element's details. Taking into account the size of 2610 // the element header struct, plus the offsets to all the element's children. 2611 // Function is recursive so that the size of all ancestors is taken into 2612 // account. 2613 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2614 // Offsets to children plus zero terminator 2615 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2616 // Size of header struct with type details 2617 size += sizeof(AllocationDetails::ElementHeader); 2618 2619 // Calculate recursively for all descendants 2620 for (const Element &child : elem.children) 2621 size += CalculateElementHeaderSize(child); 2622 2623 return size; 2624 } 2625 2626 // Function copies allocation contents into a binary file. This file can then 2627 // be loaded later into a different allocation. There is a header, FileHeader, 2628 // before the allocation data containing meta-data. 2629 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2630 const char *path, 2631 StackFrame *frame_ptr) { 2632 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2633 2634 // Find allocation with the given id 2635 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2636 if (!alloc) 2637 return false; 2638 2639 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2640 *alloc->address.get()); 2641 2642 // JIT all the allocation details 2643 if (alloc->ShouldRefresh()) { 2644 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 2645 __FUNCTION__); 2646 2647 if (!RefreshAllocation(alloc, frame_ptr)) { 2648 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__); 2649 return false; 2650 } 2651 } 2652 2653 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2654 alloc->element.type_vec_size.isValid() && 2655 alloc->element.datum_size.get() && 2656 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2657 "Allocation information not available"); 2658 2659 // Check we can create writable file 2660 FileSpec file_spec(path); 2661 FileSystem::Instance().Resolve(file_spec); 2662 auto file = FileSystem::Instance().Open( 2663 file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | 2664 File::eOpenOptionTruncate); 2665 2666 if (!file) { 2667 std::string error = llvm::toString(file.takeError()); 2668 strm.Printf("Error: Failed to open '%s' for writing: %s", path, 2669 error.c_str()); 2670 strm.EOL(); 2671 return false; 2672 } 2673 2674 // Read allocation into buffer of heap memory 2675 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2676 if (!buffer) { 2677 strm.Printf("Error: Couldn't read allocation data into buffer"); 2678 strm.EOL(); 2679 return false; 2680 } 2681 2682 // Create the file header 2683 AllocationDetails::FileHeader head; 2684 memcpy(head.ident, "RSAD", 4); 2685 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2686 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2687 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2688 2689 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2690 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2691 UINT16_MAX && 2692 "Element header too large"); 2693 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2694 element_header_size); 2695 2696 // Write the file header 2697 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2698 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2699 (uint64_t)num_bytes); 2700 2701 Status err = file.get()->Write(&head, num_bytes); 2702 if (!err.Success()) { 2703 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2704 strm.EOL(); 2705 return false; 2706 } 2707 2708 // Create the headers describing the element type of the allocation. 2709 std::shared_ptr<uint8_t> element_header_buffer( 2710 new uint8_t[element_header_size]); 2711 if (element_header_buffer == nullptr) { 2712 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2713 " bytes on the heap", 2714 (uint64_t)element_header_size); 2715 strm.EOL(); 2716 return false; 2717 } 2718 2719 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2720 2721 // Write headers for allocation element type to file 2722 num_bytes = element_header_size; 2723 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.", 2724 __FUNCTION__, (uint64_t)num_bytes); 2725 2726 err = file.get()->Write(element_header_buffer.get(), num_bytes); 2727 if (!err.Success()) { 2728 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2729 strm.EOL(); 2730 return false; 2731 } 2732 2733 // Write allocation data to file 2734 num_bytes = static_cast<size_t>(*alloc->size.get()); 2735 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2736 (uint64_t)num_bytes); 2737 2738 err = file.get()->Write(buffer.get(), num_bytes); 2739 if (!err.Success()) { 2740 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2741 strm.EOL(); 2742 return false; 2743 } 2744 2745 strm.Printf("Allocation written to file '%s'", path); 2746 strm.EOL(); 2747 return true; 2748 } 2749 2750 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2751 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2752 2753 if (module_sp) { 2754 for (const auto &rs_module : m_rsmodules) { 2755 if (rs_module->m_module == module_sp) { 2756 // Check if the user has enabled automatically breaking on all RS 2757 // kernels. 2758 if (m_breakAllKernels) 2759 BreakOnModuleKernels(rs_module); 2760 2761 return false; 2762 } 2763 } 2764 bool module_loaded = false; 2765 switch (GetModuleKind(module_sp)) { 2766 case eModuleKindKernelObj: { 2767 RSModuleDescriptorSP module_desc; 2768 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2769 if (module_desc->ParseRSInfo()) { 2770 m_rsmodules.push_back(module_desc); 2771 module_desc->WarnIfVersionMismatch(GetProcess() 2772 ->GetTarget() 2773 .GetDebugger() 2774 .GetAsyncOutputStream() 2775 .get()); 2776 module_loaded = true; 2777 } 2778 if (module_loaded) { 2779 FixupScriptDetails(module_desc); 2780 } 2781 break; 2782 } 2783 case eModuleKindDriver: { 2784 if (!m_libRSDriver) { 2785 m_libRSDriver = module_sp; 2786 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2787 } 2788 break; 2789 } 2790 case eModuleKindImpl: { 2791 if (!m_libRSCpuRef) { 2792 m_libRSCpuRef = module_sp; 2793 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2794 } 2795 break; 2796 } 2797 case eModuleKindLibRS: { 2798 if (!m_libRS) { 2799 m_libRS = module_sp; 2800 static ConstString gDbgPresentStr("gDebuggerPresent"); 2801 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2802 gDbgPresentStr, eSymbolTypeData); 2803 if (debug_present) { 2804 Status err; 2805 uint32_t flag = 0x00000001U; 2806 Target &target = GetProcess()->GetTarget(); 2807 addr_t addr = debug_present->GetLoadAddress(&target); 2808 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2809 if (err.Success()) { 2810 LLDB_LOGF(log, "%s - debugger present flag set on debugee.", 2811 __FUNCTION__); 2812 2813 m_debuggerPresentFlagged = true; 2814 } else if (log) { 2815 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ", 2816 __FUNCTION__, err.AsCString()); 2817 } 2818 } else if (log) { 2819 LLDB_LOGF( 2820 log, 2821 "%s - error writing debugger present flags - symbol not found", 2822 __FUNCTION__); 2823 } 2824 } 2825 break; 2826 } 2827 default: 2828 break; 2829 } 2830 if (module_loaded) 2831 Update(); 2832 return module_loaded; 2833 } 2834 return false; 2835 } 2836 2837 void RenderScriptRuntime::Update() { 2838 if (m_rsmodules.size() > 0) { 2839 if (!m_initiated) { 2840 Initiate(); 2841 } 2842 } 2843 } 2844 2845 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2846 if (!s) 2847 return; 2848 2849 if (m_slang_version.empty() || m_bcc_version.empty()) { 2850 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2851 "experience may be unreliable"); 2852 s->EOL(); 2853 } else if (m_slang_version != m_bcc_version) { 2854 s->Printf("WARNING: The debug info emitted by the slang frontend " 2855 "(llvm-rs-cc) used to build this module (%s) does not match the " 2856 "version of bcc used to generate the debug information (%s). " 2857 "This is an unsupported configuration and may result in a poor " 2858 "debugging experience; proceed with caution", 2859 m_slang_version.c_str(), m_bcc_version.c_str()); 2860 s->EOL(); 2861 } 2862 } 2863 2864 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2865 size_t n_lines) { 2866 // Skip the pragma prototype line 2867 ++lines; 2868 for (; n_lines--; ++lines) { 2869 const auto kv_pair = lines->split(" - "); 2870 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2871 } 2872 return true; 2873 } 2874 2875 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2876 size_t n_lines) { 2877 // The list of reduction kernels in the `.rs.info` symbol is of the form 2878 // "signature - accumulatordatasize - reduction_name - initializer_name - 2879 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2880 // a function is not explicitly named by the user, or is not generated by the 2881 // compiler, it is named "." so the dash separated list should always be 8 2882 // items long 2883 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2884 // Skip the exportReduceCount line 2885 ++lines; 2886 for (; n_lines--; ++lines) { 2887 llvm::SmallVector<llvm::StringRef, 8> spec; 2888 lines->split(spec, " - "); 2889 if (spec.size() != 8) { 2890 if (spec.size() < 8) { 2891 if (log) 2892 log->Error("Error parsing RenderScript reduction spec. wrong number " 2893 "of fields"); 2894 return false; 2895 } else if (log) 2896 log->Warning("Extraneous members in reduction spec: '%s'", 2897 lines->str().c_str()); 2898 } 2899 2900 const auto sig_s = spec[0]; 2901 uint32_t sig; 2902 if (sig_s.getAsInteger(10, sig)) { 2903 if (log) 2904 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2905 "signature: '%s'", 2906 sig_s.str().c_str()); 2907 return false; 2908 } 2909 2910 const auto accum_data_size_s = spec[1]; 2911 uint32_t accum_data_size; 2912 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 2913 if (log) 2914 log->Error("Error parsing Renderscript reduction spec: invalid " 2915 "accumulator data size %s", 2916 accum_data_size_s.str().c_str()); 2917 return false; 2918 } 2919 2920 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str()); 2921 2922 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 2923 spec[2], spec[3], spec[4], 2924 spec[5], spec[6], spec[7])); 2925 } 2926 return true; 2927 } 2928 2929 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 2930 size_t n_lines) { 2931 // Skip the versionInfo line 2932 ++lines; 2933 for (; n_lines--; ++lines) { 2934 // We're only interested in bcc and slang versions, and ignore all other 2935 // versionInfo lines 2936 const auto kv_pair = lines->split(" - "); 2937 if (kv_pair.first == "slang") 2938 m_slang_version = kv_pair.second.str(); 2939 else if (kv_pair.first == "bcc") 2940 m_bcc_version = kv_pair.second.str(); 2941 } 2942 return true; 2943 } 2944 2945 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 2946 size_t n_lines) { 2947 // Skip the exportForeachCount line 2948 ++lines; 2949 for (; n_lines--; ++lines) { 2950 uint32_t slot; 2951 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 2952 // pair per line 2953 const auto kv_pair = lines->split(" - "); 2954 if (kv_pair.first.getAsInteger(10, slot)) 2955 return false; 2956 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 2957 } 2958 return true; 2959 } 2960 2961 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 2962 size_t n_lines) { 2963 // Skip the ExportVarCount line 2964 ++lines; 2965 for (; n_lines--; ++lines) 2966 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 2967 return true; 2968 } 2969 2970 // The .rs.info symbol in renderscript modules contains a string which needs to 2971 // be parsed. The string is basic and is parsed on a line by line basis. 2972 bool RSModuleDescriptor::ParseRSInfo() { 2973 assert(m_module); 2974 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2975 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 2976 ConstString(".rs.info"), eSymbolTypeData); 2977 if (!info_sym) 2978 return false; 2979 2980 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 2981 if (addr == LLDB_INVALID_ADDRESS) 2982 return false; 2983 2984 const addr_t size = info_sym->GetByteSize(); 2985 const FileSpec fs = m_module->GetFileSpec(); 2986 2987 auto buffer = 2988 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 2989 if (!buffer) 2990 return false; 2991 2992 // split rs.info. contents into lines 2993 llvm::SmallVector<llvm::StringRef, 128> info_lines; 2994 { 2995 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 2996 raw_rs_info.split(info_lines, '\n'); 2997 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s", 2998 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str()); 2999 } 3000 3001 enum { 3002 eExportVar, 3003 eExportForEach, 3004 eExportReduce, 3005 ePragma, 3006 eBuildChecksum, 3007 eObjectSlot, 3008 eVersionInfo, 3009 }; 3010 3011 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3012 return llvm::StringSwitch<int>(name) 3013 // The number of visible global variables in the script 3014 .Case("exportVarCount", eExportVar) 3015 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3016 .Case("exportForEachCount", eExportForEach) 3017 // The number of generalreductions: This marked in the script by 3018 // `#pragma reduce()` 3019 .Case("exportReduceCount", eExportReduce) 3020 // Total count of all RenderScript specific `#pragmas` used in the 3021 // script 3022 .Case("pragmaCount", ePragma) 3023 .Case("objectSlotCount", eObjectSlot) 3024 .Case("versionInfo", eVersionInfo) 3025 .Default(-1); 3026 }; 3027 3028 // parse all text lines of .rs.info 3029 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3030 const auto kv_pair = line->split(": "); 3031 const auto key = kv_pair.first; 3032 const auto val = kv_pair.second.trim(); 3033 3034 const auto handler = rs_info_handler(key); 3035 if (handler == -1) 3036 continue; 3037 // getAsInteger returns `true` on an error condition - we're only 3038 // interested in numeric fields at the moment 3039 uint64_t n_lines; 3040 if (val.getAsInteger(10, n_lines)) { 3041 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3042 line->str()); 3043 continue; 3044 } 3045 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3046 return false; 3047 3048 bool success = false; 3049 switch (handler) { 3050 case eExportVar: 3051 success = ParseExportVarCount(line, n_lines); 3052 break; 3053 case eExportForEach: 3054 success = ParseExportForeachCount(line, n_lines); 3055 break; 3056 case eExportReduce: 3057 success = ParseExportReduceCount(line, n_lines); 3058 break; 3059 case ePragma: 3060 success = ParsePragmaCount(line, n_lines); 3061 break; 3062 case eVersionInfo: 3063 success = ParseVersionInfo(line, n_lines); 3064 break; 3065 default: { 3066 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__, 3067 line->str().c_str()); 3068 continue; 3069 } 3070 } 3071 if (!success) 3072 return false; 3073 line += n_lines; 3074 } 3075 return info_lines.size() > 0; 3076 } 3077 3078 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3079 if (m_libRS) { 3080 strm.Printf("Runtime Library discovered."); 3081 strm.EOL(); 3082 } 3083 if (m_libRSDriver) { 3084 strm.Printf("Runtime Driver discovered."); 3085 strm.EOL(); 3086 } 3087 if (m_libRSCpuRef) { 3088 strm.Printf("CPU Reference Implementation discovered."); 3089 strm.EOL(); 3090 } 3091 3092 if (m_runtimeHooks.size()) { 3093 strm.Printf("Runtime functions hooked:"); 3094 strm.EOL(); 3095 for (auto b : m_runtimeHooks) { 3096 strm.Indent(b.second->defn->name); 3097 strm.EOL(); 3098 } 3099 } else { 3100 strm.Printf("Runtime is not hooked."); 3101 strm.EOL(); 3102 } 3103 } 3104 3105 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3106 strm.Printf("Inferred RenderScript Contexts:"); 3107 strm.EOL(); 3108 strm.IndentMore(); 3109 3110 std::map<addr_t, uint64_t> contextReferences; 3111 3112 // Iterate over all of the currently discovered scripts. Note: We cant push 3113 // or pop from m_scripts inside this loop or it may invalidate script. 3114 for (const auto &script : m_scripts) { 3115 if (!script->context.isValid()) 3116 continue; 3117 lldb::addr_t context = *script->context; 3118 3119 if (contextReferences.find(context) != contextReferences.end()) { 3120 contextReferences[context]++; 3121 } else { 3122 contextReferences[context] = 1; 3123 } 3124 } 3125 3126 for (const auto &cRef : contextReferences) { 3127 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3128 cRef.first, cRef.second); 3129 strm.EOL(); 3130 } 3131 strm.IndentLess(); 3132 } 3133 3134 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3135 strm.Printf("RenderScript Kernels:"); 3136 strm.EOL(); 3137 strm.IndentMore(); 3138 for (const auto &module : m_rsmodules) { 3139 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3140 strm.EOL(); 3141 for (const auto &kernel : module->m_kernels) { 3142 strm.Indent(kernel.m_name.GetStringRef()); 3143 strm.EOL(); 3144 } 3145 } 3146 strm.IndentLess(); 3147 } 3148 3149 RenderScriptRuntime::AllocationDetails * 3150 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3151 AllocationDetails *alloc = nullptr; 3152 3153 // See if we can find allocation using id as an index; 3154 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3155 m_allocations[alloc_id - 1]->id == alloc_id) { 3156 alloc = m_allocations[alloc_id - 1].get(); 3157 return alloc; 3158 } 3159 3160 // Fallback to searching 3161 for (const auto &a : m_allocations) { 3162 if (a->id == alloc_id) { 3163 alloc = a.get(); 3164 break; 3165 } 3166 } 3167 3168 if (alloc == nullptr) { 3169 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3170 alloc_id); 3171 strm.EOL(); 3172 } 3173 3174 return alloc; 3175 } 3176 3177 // Prints the contents of an allocation to the output stream, which may be a 3178 // file 3179 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3180 const uint32_t id) { 3181 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3182 3183 // Check we can find the desired allocation 3184 AllocationDetails *alloc = FindAllocByID(strm, id); 3185 if (!alloc) 3186 return false; // FindAllocByID() will print error message for us here 3187 3188 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__, 3189 *alloc->address.get()); 3190 3191 // Check we have information about the allocation, if not calculate it 3192 if (alloc->ShouldRefresh()) { 3193 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.", 3194 __FUNCTION__); 3195 3196 // JIT all the allocation information 3197 if (!RefreshAllocation(alloc, frame_ptr)) { 3198 strm.Printf("Error: Couldn't JIT allocation details"); 3199 strm.EOL(); 3200 return false; 3201 } 3202 } 3203 3204 // Establish format and size of each data element 3205 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3206 const Element::DataType type = *alloc->element.type.get(); 3207 3208 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3209 "Invalid allocation type"); 3210 3211 lldb::Format format; 3212 if (type >= Element::RS_TYPE_ELEMENT) 3213 format = eFormatHex; 3214 else 3215 format = vec_size == 1 3216 ? static_cast<lldb::Format>( 3217 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3218 : static_cast<lldb::Format>( 3219 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3220 3221 const uint32_t data_size = *alloc->element.datum_size.get(); 3222 3223 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding", 3224 __FUNCTION__, data_size); 3225 3226 // Allocate a buffer to copy data into 3227 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3228 if (!buffer) { 3229 strm.Printf("Error: Couldn't read allocation data"); 3230 strm.EOL(); 3231 return false; 3232 } 3233 3234 // Calculate stride between rows as there may be padding at end of rows since 3235 // allocated memory is 16-byte aligned 3236 if (!alloc->stride.isValid()) { 3237 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3238 alloc->stride = 0; 3239 else if (!JITAllocationStride(alloc, frame_ptr)) { 3240 strm.Printf("Error: Couldn't calculate allocation row stride"); 3241 strm.EOL(); 3242 return false; 3243 } 3244 } 3245 const uint32_t stride = *alloc->stride.get(); 3246 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3247 const uint32_t padding = 3248 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3249 LLDB_LOGF(log, 3250 "%s - stride %" PRIu32 " bytes, size %" PRIu32 3251 " bytes, padding %" PRIu32, 3252 __FUNCTION__, stride, size, padding); 3253 3254 // Find dimensions used to index loops, so need to be non-zero 3255 uint32_t dim_x = alloc->dimension.get()->dim_1; 3256 dim_x = dim_x == 0 ? 1 : dim_x; 3257 3258 uint32_t dim_y = alloc->dimension.get()->dim_2; 3259 dim_y = dim_y == 0 ? 1 : dim_y; 3260 3261 uint32_t dim_z = alloc->dimension.get()->dim_3; 3262 dim_z = dim_z == 0 ? 1 : dim_z; 3263 3264 // Use data extractor to format output 3265 const uint32_t target_ptr_size = 3266 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3267 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3268 target_ptr_size); 3269 3270 uint32_t offset = 0; // Offset in buffer to next element to be printed 3271 uint32_t prev_row = 0; // Offset to the start of the previous row 3272 3273 // Iterate over allocation dimensions, printing results to user 3274 strm.Printf("Data (X, Y, Z):"); 3275 for (uint32_t z = 0; z < dim_z; ++z) { 3276 for (uint32_t y = 0; y < dim_y; ++y) { 3277 // Use stride to index start of next row. 3278 if (!(y == 0 && z == 0)) 3279 offset = prev_row + stride; 3280 prev_row = offset; 3281 3282 // Print each element in the row individually 3283 for (uint32_t x = 0; x < dim_x; ++x) { 3284 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3285 if ((type == Element::RS_TYPE_NONE) && 3286 (alloc->element.children.size() > 0) && 3287 (alloc->element.type_name != Element::GetFallbackStructName())) { 3288 // Here we are dumping an Element of struct type. This is done using 3289 // expression evaluation with the name of the struct type and pointer 3290 // to element. Don't print the name of the resulting expression, 3291 // since this will be '$[0-9]+' 3292 DumpValueObjectOptions expr_options; 3293 expr_options.SetHideName(true); 3294 3295 // Setup expression as dereferencing a pointer cast to element 3296 // address. 3297 char expr_char_buffer[jit_max_expr_size]; 3298 int written = 3299 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3300 alloc->element.type_name.AsCString(), 3301 *alloc->data_ptr.get() + offset); 3302 3303 if (written < 0 || written >= jit_max_expr_size) { 3304 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__); 3305 continue; 3306 } 3307 3308 // Evaluate expression 3309 ValueObjectSP expr_result; 3310 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3311 frame_ptr, expr_result); 3312 3313 // Print the results to our stream. 3314 expr_result->Dump(strm, expr_options); 3315 } else { 3316 DumpDataExtractor(alloc_data, &strm, offset, format, 3317 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3318 0); 3319 } 3320 offset += data_size; 3321 } 3322 } 3323 } 3324 strm.EOL(); 3325 3326 return true; 3327 } 3328 3329 // Function recalculates all our cached information about allocations by 3330 // jitting the RS runtime regarding each allocation we know about. Returns true 3331 // if all allocations could be recomputed, false otherwise. 3332 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3333 StackFrame *frame_ptr) { 3334 bool success = true; 3335 for (auto &alloc : m_allocations) { 3336 // JIT current allocation information 3337 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3338 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3339 "\n", 3340 alloc->id); 3341 success = false; 3342 } 3343 } 3344 3345 if (success) 3346 strm.Printf("All allocations successfully recomputed"); 3347 strm.EOL(); 3348 3349 return success; 3350 } 3351 3352 // Prints information regarding currently loaded allocations. These details are 3353 // gathered by jitting the runtime, which has as latency. Index parameter 3354 // specifies a single allocation ID to print, or a zero value to print them all 3355 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3356 const uint32_t index) { 3357 strm.Printf("RenderScript Allocations:"); 3358 strm.EOL(); 3359 strm.IndentMore(); 3360 3361 for (auto &alloc : m_allocations) { 3362 // index will only be zero if we want to print all allocations 3363 if (index != 0 && index != alloc->id) 3364 continue; 3365 3366 // JIT current allocation information 3367 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3368 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3369 alloc->id); 3370 strm.EOL(); 3371 continue; 3372 } 3373 3374 strm.Printf("%" PRIu32 ":", alloc->id); 3375 strm.EOL(); 3376 strm.IndentMore(); 3377 3378 strm.Indent("Context: "); 3379 if (!alloc->context.isValid()) 3380 strm.Printf("unknown\n"); 3381 else 3382 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3383 3384 strm.Indent("Address: "); 3385 if (!alloc->address.isValid()) 3386 strm.Printf("unknown\n"); 3387 else 3388 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3389 3390 strm.Indent("Data pointer: "); 3391 if (!alloc->data_ptr.isValid()) 3392 strm.Printf("unknown\n"); 3393 else 3394 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3395 3396 strm.Indent("Dimensions: "); 3397 if (!alloc->dimension.isValid()) 3398 strm.Printf("unknown\n"); 3399 else 3400 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3401 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3402 alloc->dimension.get()->dim_3); 3403 3404 strm.Indent("Data Type: "); 3405 if (!alloc->element.type.isValid() || 3406 !alloc->element.type_vec_size.isValid()) 3407 strm.Printf("unknown\n"); 3408 else { 3409 const int vector_size = *alloc->element.type_vec_size.get(); 3410 Element::DataType type = *alloc->element.type.get(); 3411 3412 if (!alloc->element.type_name.IsEmpty()) 3413 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3414 else { 3415 // Enum value isn't monotonous, so doesn't always index 3416 // RsDataTypeToString array 3417 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3418 type = 3419 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3420 Element::RS_TYPE_MATRIX_2X2 + 1); 3421 3422 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3423 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3424 vector_size > 4 || vector_size < 1) 3425 strm.Printf("invalid type\n"); 3426 else 3427 strm.Printf( 3428 "%s\n", 3429 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3430 [vector_size - 1]); 3431 } 3432 } 3433 3434 strm.Indent("Data Kind: "); 3435 if (!alloc->element.type_kind.isValid()) 3436 strm.Printf("unknown\n"); 3437 else { 3438 const Element::DataKind kind = *alloc->element.type_kind.get(); 3439 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3440 strm.Printf("invalid kind\n"); 3441 else 3442 strm.Printf( 3443 "%s\n", 3444 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3445 } 3446 3447 strm.EOL(); 3448 strm.IndentLess(); 3449 } 3450 strm.IndentLess(); 3451 } 3452 3453 // Set breakpoints on every kernel found in RS module 3454 void RenderScriptRuntime::BreakOnModuleKernels( 3455 const RSModuleDescriptorSP rsmodule_sp) { 3456 for (const auto &kernel : rsmodule_sp->m_kernels) { 3457 // Don't set breakpoint on 'root' kernel 3458 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3459 continue; 3460 3461 CreateKernelBreakpoint(kernel.m_name); 3462 } 3463 } 3464 3465 // Method is internally called by the 'kernel breakpoint all' command to enable 3466 // or disable breaking on all kernels. When do_break is true we want to enable 3467 // this functionality. When do_break is false we want to disable it. 3468 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3469 Log *log( 3470 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3471 3472 InitSearchFilter(target); 3473 3474 // Set breakpoints on all the kernels 3475 if (do_break && !m_breakAllKernels) { 3476 m_breakAllKernels = true; 3477 3478 for (const auto &module : m_rsmodules) 3479 BreakOnModuleKernels(module); 3480 3481 LLDB_LOGF(log, 3482 "%s(True) - breakpoints set on all currently loaded kernels.", 3483 __FUNCTION__); 3484 } else if (!do_break && 3485 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3486 { 3487 m_breakAllKernels = false; 3488 3489 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.", 3490 __FUNCTION__); 3491 } 3492 } 3493 3494 // Given the name of a kernel this function creates a breakpoint using our own 3495 // breakpoint resolver, and returns the Breakpoint shared pointer. 3496 BreakpointSP 3497 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3498 Log *log( 3499 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3500 3501 if (!m_filtersp) { 3502 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3503 __FUNCTION__); 3504 return nullptr; 3505 } 3506 3507 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3508 Target &target = GetProcess()->GetTarget(); 3509 BreakpointSP bp = target.CreateBreakpoint( 3510 m_filtersp, resolver_sp, false, false, false); 3511 3512 // Give RS breakpoints a specific name, so the user can manipulate them as a 3513 // group. 3514 Status err; 3515 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3516 if (err.Fail() && log) 3517 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3518 err.AsCString()); 3519 3520 return bp; 3521 } 3522 3523 BreakpointSP 3524 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3525 int kernel_types) { 3526 Log *log( 3527 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3528 3529 if (!m_filtersp) { 3530 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3531 __FUNCTION__); 3532 return nullptr; 3533 } 3534 3535 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3536 nullptr, name, &m_rsmodules, kernel_types)); 3537 Target &target = GetProcess()->GetTarget(); 3538 BreakpointSP bp = target.CreateBreakpoint( 3539 m_filtersp, resolver_sp, false, false, false); 3540 3541 // Give RS breakpoints a specific name, so the user can manipulate them as a 3542 // group. 3543 Status err; 3544 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3545 if (err.Fail() && log) 3546 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3547 err.AsCString()); 3548 3549 return bp; 3550 } 3551 3552 // Given an expression for a variable this function tries to calculate the 3553 // variable's value. If this is possible it returns true and sets the uint64_t 3554 // parameter to the variables unsigned value. Otherwise function returns false. 3555 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3556 const char *var_name, 3557 uint64_t &val) { 3558 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3559 Status err; 3560 VariableSP var_sp; 3561 3562 // Find variable in stack frame 3563 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3564 var_name, eNoDynamicValues, 3565 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3566 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3567 var_sp, err)); 3568 if (!err.Success()) { 3569 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__, 3570 var_name); 3571 return false; 3572 } 3573 3574 // Find the uint32_t value for the variable 3575 bool success = false; 3576 val = value_sp->GetValueAsUnsigned(0, &success); 3577 if (!success) { 3578 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.", 3579 __FUNCTION__, var_name); 3580 return false; 3581 } 3582 3583 return true; 3584 } 3585 3586 // Function attempts to find the current coordinate of a kernel invocation by 3587 // investigating the values of frame variables in the .expand function. These 3588 // coordinates are returned via the coord array reference parameter. Returns 3589 // true if the coordinates could be found, and false otherwise. 3590 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3591 Thread *thread_ptr) { 3592 static const char *const x_expr = "rsIndex"; 3593 static const char *const y_expr = "p->current.y"; 3594 static const char *const z_expr = "p->current.z"; 3595 3596 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3597 3598 if (!thread_ptr) { 3599 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__); 3600 3601 return false; 3602 } 3603 3604 // Walk the call stack looking for a function whose name has the suffix 3605 // '.expand' and contains the variables we're looking for. 3606 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3607 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3608 continue; 3609 3610 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3611 if (!frame_sp) 3612 continue; 3613 3614 // Find the function name 3615 const SymbolContext sym_ctx = 3616 frame_sp->GetSymbolContext(eSymbolContextFunction); 3617 const ConstString func_name = sym_ctx.GetFunctionName(); 3618 if (!func_name) 3619 continue; 3620 3621 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__, 3622 func_name.GetCString()); 3623 3624 // Check if function name has .expand suffix 3625 if (!func_name.GetStringRef().endswith(".expand")) 3626 continue; 3627 3628 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__, 3629 func_name.GetCString()); 3630 3631 // Get values for variables in .expand frame that tell us the current 3632 // kernel invocation 3633 uint64_t x, y, z; 3634 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3635 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3636 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3637 3638 if (found) { 3639 // The RenderScript runtime uses uint32_t for these vars. If they're not 3640 // within bounds, our frame parsing is garbage 3641 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3642 coord.x = (uint32_t)x; 3643 coord.y = (uint32_t)y; 3644 coord.z = (uint32_t)z; 3645 return true; 3646 } 3647 } 3648 return false; 3649 } 3650 3651 // Callback when a kernel breakpoint hits and we're looking for a specific 3652 // coordinate. Baton parameter contains a pointer to the target coordinate we 3653 // want to break on. Function then checks the .expand frame for the current 3654 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3655 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3656 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3657 // have multiple addresses. 3658 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3659 StoppointCallbackContext *ctx, 3660 user_id_t break_id, 3661 user_id_t break_loc_id) { 3662 Log *log( 3663 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3664 3665 assert(baton && 3666 "Error: null baton in conditional kernel breakpoint callback"); 3667 3668 // Coordinate we want to stop on 3669 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3670 3671 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, 3672 break_id, target_coord.x, target_coord.y, target_coord.z); 3673 3674 // Select current thread 3675 ExecutionContext context(ctx->exe_ctx_ref); 3676 Thread *thread_ptr = context.GetThreadPtr(); 3677 assert(thread_ptr && "Null thread pointer"); 3678 3679 // Find current kernel invocation from .expand frame variables 3680 RSCoordinate current_coord{}; 3681 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3682 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame", 3683 __FUNCTION__); 3684 return false; 3685 } 3686 3687 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3688 current_coord.y, current_coord.z); 3689 3690 // Check if the current kernel invocation coordinate matches our target 3691 // coordinate 3692 if (target_coord == current_coord) { 3693 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3694 current_coord.y, current_coord.z); 3695 3696 BreakpointSP breakpoint_sp = 3697 context.GetTargetPtr()->GetBreakpointByID(break_id); 3698 assert(breakpoint_sp != nullptr && 3699 "Error: Couldn't find breakpoint matching break id for callback"); 3700 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3701 // should only be hit once. 3702 return true; 3703 } 3704 3705 // No match on coordinate 3706 return false; 3707 } 3708 3709 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3710 const RSCoordinate &coord) { 3711 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3712 coord.x, coord.y, coord.z); 3713 messages.EOL(); 3714 3715 // Allocate memory for the baton, and copy over coordinate 3716 RSCoordinate *baton = new RSCoordinate(coord); 3717 3718 // Create a callback that will be invoked every time the breakpoint is hit. 3719 // The baton object passed to the handler is the target coordinate we want to 3720 // break on. 3721 bp->SetCallback(KernelBreakpointHit, baton, true); 3722 3723 // Store a shared pointer to the baton, so the memory will eventually be 3724 // cleaned up after destruction 3725 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3726 } 3727 3728 // Tries to set a breakpoint on the start of a kernel, resolved using the 3729 // kernel name. Argument 'coords', represents a three dimensional coordinate 3730 // which can be used to specify a single kernel instance to break on. If this 3731 // is set then we add a callback to the breakpoint. 3732 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3733 Stream &messages, 3734 const char *name, 3735 const RSCoordinate *coord) { 3736 if (!name) 3737 return false; 3738 3739 InitSearchFilter(target); 3740 3741 ConstString kernel_name(name); 3742 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3743 if (!bp) 3744 return false; 3745 3746 // We have a conditional breakpoint on a specific coordinate 3747 if (coord) 3748 SetConditional(bp, messages, *coord); 3749 3750 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3751 3752 return true; 3753 } 3754 3755 BreakpointSP 3756 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3757 bool stop_on_all) { 3758 Log *log( 3759 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3760 3761 if (!m_filtersp) { 3762 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.", 3763 __FUNCTION__); 3764 return nullptr; 3765 } 3766 3767 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3768 nullptr, name, m_scriptGroups, stop_on_all)); 3769 Target &target = GetProcess()->GetTarget(); 3770 BreakpointSP bp = target.CreateBreakpoint( 3771 m_filtersp, resolver_sp, false, false, false); 3772 // Give RS breakpoints a specific name, so the user can manipulate them as a 3773 // group. 3774 Status err; 3775 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3776 if (err.Fail() && log) 3777 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__, 3778 err.AsCString()); 3779 // ask the breakpoint to resolve itself 3780 bp->ResolveBreakpoint(); 3781 return bp; 3782 } 3783 3784 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3785 Stream &strm, 3786 ConstString name, 3787 bool multi) { 3788 InitSearchFilter(target); 3789 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3790 if (bp) 3791 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3792 return bool(bp); 3793 } 3794 3795 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3796 Stream &messages, 3797 const char *reduce_name, 3798 const RSCoordinate *coord, 3799 int kernel_types) { 3800 if (!reduce_name) 3801 return false; 3802 3803 InitSearchFilter(target); 3804 BreakpointSP bp = 3805 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3806 if (!bp) 3807 return false; 3808 3809 if (coord) 3810 SetConditional(bp, messages, *coord); 3811 3812 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3813 3814 return true; 3815 } 3816 3817 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3818 strm.Printf("RenderScript Modules:"); 3819 strm.EOL(); 3820 strm.IndentMore(); 3821 for (const auto &module : m_rsmodules) { 3822 module->Dump(strm); 3823 } 3824 strm.IndentLess(); 3825 } 3826 3827 RenderScriptRuntime::ScriptDetails * 3828 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3829 for (const auto &s : m_scripts) { 3830 if (s->script.isValid()) 3831 if (*s->script == address) 3832 return s.get(); 3833 } 3834 if (create) { 3835 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3836 s->script = address; 3837 m_scripts.push_back(std::move(s)); 3838 return m_scripts.back().get(); 3839 } 3840 return nullptr; 3841 } 3842 3843 RenderScriptRuntime::AllocationDetails * 3844 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3845 for (const auto &a : m_allocations) { 3846 if (a->address.isValid()) 3847 if (*a->address == address) 3848 return a.get(); 3849 } 3850 return nullptr; 3851 } 3852 3853 RenderScriptRuntime::AllocationDetails * 3854 RenderScriptRuntime::CreateAllocation(addr_t address) { 3855 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3856 3857 // Remove any previous allocation which contains the same address 3858 auto it = m_allocations.begin(); 3859 while (it != m_allocations.end()) { 3860 if (*((*it)->address) == address) { 3861 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64, 3862 __FUNCTION__, (*it)->id, address); 3863 3864 it = m_allocations.erase(it); 3865 } else { 3866 it++; 3867 } 3868 } 3869 3870 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3871 a->address = address; 3872 m_allocations.push_back(std::move(a)); 3873 return m_allocations.back().get(); 3874 } 3875 3876 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3877 ConstString &name) { 3878 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3879 3880 Target &target = GetProcess()->GetTarget(); 3881 Address resolved; 3882 // RenderScript module 3883 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3884 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3885 __FUNCTION__, kernel_addr); 3886 return false; 3887 } 3888 3889 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3890 if (!sym) 3891 return false; 3892 3893 name = sym->GetName(); 3894 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 3895 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 3896 kernel_addr, name.GetCString()); 3897 return true; 3898 } 3899 3900 void RSModuleDescriptor::Dump(Stream &strm) const { 3901 int indent = strm.GetIndentLevel(); 3902 3903 strm.Indent(); 3904 m_module->GetFileSpec().Dump(strm.AsRawOstream()); 3905 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 3906 : "Debug info does not exist."); 3907 strm.EOL(); 3908 strm.IndentMore(); 3909 3910 strm.Indent(); 3911 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 3912 strm.EOL(); 3913 strm.IndentMore(); 3914 for (const auto &global : m_globals) { 3915 global.Dump(strm); 3916 } 3917 strm.IndentLess(); 3918 3919 strm.Indent(); 3920 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 3921 strm.EOL(); 3922 strm.IndentMore(); 3923 for (const auto &kernel : m_kernels) { 3924 kernel.Dump(strm); 3925 } 3926 strm.IndentLess(); 3927 3928 strm.Indent(); 3929 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 3930 strm.EOL(); 3931 strm.IndentMore(); 3932 for (const auto &key_val : m_pragmas) { 3933 strm.Indent(); 3934 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 3935 strm.EOL(); 3936 } 3937 strm.IndentLess(); 3938 3939 strm.Indent(); 3940 strm.Printf("Reductions: %" PRIu64, 3941 static_cast<uint64_t>(m_reductions.size())); 3942 strm.EOL(); 3943 strm.IndentMore(); 3944 for (const auto &reduction : m_reductions) { 3945 reduction.Dump(strm); 3946 } 3947 3948 strm.SetIndentLevel(indent); 3949 } 3950 3951 void RSGlobalDescriptor::Dump(Stream &strm) const { 3952 strm.Indent(m_name.GetStringRef()); 3953 VariableList var_list; 3954 m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U, 3955 var_list); 3956 if (var_list.GetSize() == 1) { 3957 auto var = var_list.GetVariableAtIndex(0); 3958 auto type = var->GetType(); 3959 if (type) { 3960 strm.Printf(" - "); 3961 type->DumpTypeName(&strm); 3962 } else { 3963 strm.Printf(" - Unknown Type"); 3964 } 3965 } else { 3966 strm.Printf(" - variable identified, but not found in binary"); 3967 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 3968 m_name, eSymbolTypeData); 3969 if (s) { 3970 strm.Printf(" (symbol exists) "); 3971 } 3972 } 3973 3974 strm.EOL(); 3975 } 3976 3977 void RSKernelDescriptor::Dump(Stream &strm) const { 3978 strm.Indent(m_name.GetStringRef()); 3979 strm.EOL(); 3980 } 3981 3982 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 3983 stream.Indent(m_reduce_name.GetStringRef()); 3984 stream.IndentMore(); 3985 stream.EOL(); 3986 stream.Indent(); 3987 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 3988 stream.EOL(); 3989 stream.Indent(); 3990 stream.Printf("initializer: %s", m_init_name.AsCString()); 3991 stream.EOL(); 3992 stream.Indent(); 3993 stream.Printf("combiner: %s", m_comb_name.AsCString()); 3994 stream.EOL(); 3995 stream.Indent(); 3996 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 3997 stream.EOL(); 3998 // XXX This is currently unspecified by RenderScript, and unused 3999 // stream.Indent(); 4000 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4001 // stream.EOL(); 4002 stream.IndentLess(); 4003 } 4004 4005 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4006 public: 4007 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4008 : CommandObjectParsed( 4009 interpreter, "renderscript module dump", 4010 "Dumps renderscript specific information for all modules.", 4011 "renderscript module dump", 4012 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4013 4014 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4015 4016 bool DoExecute(Args &command, CommandReturnObject &result) override { 4017 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4018 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4019 eLanguageTypeExtRenderScript)); 4020 runtime->DumpModules(result.GetOutputStream()); 4021 result.SetStatus(eReturnStatusSuccessFinishResult); 4022 return true; 4023 } 4024 }; 4025 4026 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4027 public: 4028 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4029 : CommandObjectMultiword(interpreter, "renderscript module", 4030 "Commands that deal with RenderScript modules.", 4031 nullptr) { 4032 LoadSubCommand( 4033 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4034 interpreter))); 4035 } 4036 4037 ~CommandObjectRenderScriptRuntimeModule() override = default; 4038 }; 4039 4040 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4041 public: 4042 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4043 : CommandObjectParsed( 4044 interpreter, "renderscript kernel list", 4045 "Lists renderscript kernel names and associated script resources.", 4046 "renderscript kernel list", 4047 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4048 4049 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4050 4051 bool DoExecute(Args &command, CommandReturnObject &result) override { 4052 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4053 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4054 eLanguageTypeExtRenderScript)); 4055 runtime->DumpKernels(result.GetOutputStream()); 4056 result.SetStatus(eReturnStatusSuccessFinishResult); 4057 return true; 4058 } 4059 }; 4060 4061 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4062 {LLDB_OPT_SET_1, false, "function-role", 't', 4063 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4064 "Break on a comma separated set of reduction kernel types " 4065 "(accumulator,outcoverter,combiner,initializer"}, 4066 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4067 nullptr, {}, 0, eArgTypeValue, 4068 "Set a breakpoint on a single invocation of the kernel with specified " 4069 "coordinate.\n" 4070 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4071 "integers representing kernel dimensions. " 4072 "Any unset dimensions will be defaulted to zero."}}; 4073 4074 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4075 : public CommandObjectParsed { 4076 public: 4077 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4078 CommandInterpreter &interpreter) 4079 : CommandObjectParsed( 4080 interpreter, "renderscript reduction breakpoint set", 4081 "Set a breakpoint on named RenderScript general reductions", 4082 "renderscript reduction breakpoint set <kernel_name> [-t " 4083 "<reduction_kernel_type,...>]", 4084 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4085 eCommandProcessMustBePaused), 4086 m_options(){}; 4087 4088 class CommandOptions : public Options { 4089 public: 4090 CommandOptions() : Options() {} 4091 4092 ~CommandOptions() override = default; 4093 4094 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4095 ExecutionContext *exe_ctx) override { 4096 Status err; 4097 StreamString err_str; 4098 const int short_option = m_getopt_table[option_idx].val; 4099 switch (short_option) { 4100 case 't': 4101 if (!ParseReductionTypes(option_arg, err_str)) 4102 err.SetErrorStringWithFormat( 4103 "Unable to deduce reduction types for %s: %s", 4104 option_arg.str().c_str(), err_str.GetData()); 4105 break; 4106 case 'c': { 4107 auto coord = RSCoordinate{}; 4108 if (!ParseCoordinate(option_arg, coord)) 4109 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4110 option_arg.str().c_str()); 4111 else { 4112 m_have_coord = true; 4113 m_coord = coord; 4114 } 4115 break; 4116 } 4117 default: 4118 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4119 } 4120 return err; 4121 } 4122 4123 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4124 m_have_coord = false; 4125 } 4126 4127 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4128 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4129 } 4130 4131 bool ParseReductionTypes(llvm::StringRef option_val, 4132 StreamString &err_str) { 4133 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4134 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4135 return llvm::StringSwitch<int>(name) 4136 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4137 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4138 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4139 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4140 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4141 // Currently not exposed by the runtime 4142 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4143 .Default(0); 4144 }; 4145 4146 // Matching a comma separated list of known words is fairly 4147 // straightforward with PCRE, but we're using ERE, so we end up with a 4148 // little ugliness... 4149 RegularExpression match_type_list( 4150 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4151 4152 assert(match_type_list.IsValid()); 4153 4154 if (!match_type_list.Execute(option_val)) { 4155 err_str.PutCString( 4156 "a comma-separated list of kernel types is required"); 4157 return false; 4158 } 4159 4160 // splitting on commas is much easier with llvm::StringRef than regex 4161 llvm::SmallVector<llvm::StringRef, 5> type_names; 4162 llvm::StringRef(option_val).split(type_names, ','); 4163 4164 for (const auto &name : type_names) { 4165 const int type = reduce_name_to_type(name); 4166 if (!type) { 4167 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4168 return false; 4169 } 4170 m_kernel_types |= type; 4171 } 4172 4173 return true; 4174 } 4175 4176 int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll; 4177 llvm::StringRef m_reduce_name; 4178 RSCoordinate m_coord; 4179 bool m_have_coord; 4180 }; 4181 4182 Options *GetOptions() override { return &m_options; } 4183 4184 bool DoExecute(Args &command, CommandReturnObject &result) override { 4185 const size_t argc = command.GetArgumentCount(); 4186 if (argc < 1) { 4187 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4188 "and an optional kernel type list", 4189 m_cmd_name.c_str()); 4190 return false; 4191 } 4192 4193 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4194 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4195 eLanguageTypeExtRenderScript)); 4196 4197 auto &outstream = result.GetOutputStream(); 4198 auto name = command.GetArgumentAtIndex(0); 4199 auto &target = m_exe_ctx.GetTargetSP(); 4200 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4201 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4202 m_options.m_kernel_types)) { 4203 result.AppendError("Error: unable to place breakpoint on reduction"); 4204 return false; 4205 } 4206 result.AppendMessage("Breakpoint(s) created"); 4207 result.SetStatus(eReturnStatusSuccessFinishResult); 4208 return true; 4209 } 4210 4211 private: 4212 CommandOptions m_options; 4213 }; 4214 4215 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4216 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4217 nullptr, {}, 0, eArgTypeValue, 4218 "Set a breakpoint on a single invocation of the kernel with specified " 4219 "coordinate.\n" 4220 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4221 "integers representing kernel dimensions. " 4222 "Any unset dimensions will be defaulted to zero."}}; 4223 4224 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4225 : public CommandObjectParsed { 4226 public: 4227 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4228 CommandInterpreter &interpreter) 4229 : CommandObjectParsed( 4230 interpreter, "renderscript kernel breakpoint set", 4231 "Sets a breakpoint on a renderscript kernel.", 4232 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4233 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4234 eCommandProcessMustBePaused), 4235 m_options() {} 4236 4237 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4238 4239 Options *GetOptions() override { return &m_options; } 4240 4241 class CommandOptions : public Options { 4242 public: 4243 CommandOptions() : Options() {} 4244 4245 ~CommandOptions() override = default; 4246 4247 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4248 ExecutionContext *exe_ctx) override { 4249 Status err; 4250 const int short_option = m_getopt_table[option_idx].val; 4251 4252 switch (short_option) { 4253 case 'c': { 4254 auto coord = RSCoordinate{}; 4255 if (!ParseCoordinate(option_arg, coord)) 4256 err.SetErrorStringWithFormat( 4257 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4258 option_arg.str().c_str()); 4259 else { 4260 m_have_coord = true; 4261 m_coord = coord; 4262 } 4263 break; 4264 } 4265 default: 4266 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4267 break; 4268 } 4269 return err; 4270 } 4271 4272 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4273 m_have_coord = false; 4274 } 4275 4276 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4277 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4278 } 4279 4280 RSCoordinate m_coord; 4281 bool m_have_coord; 4282 }; 4283 4284 bool DoExecute(Args &command, CommandReturnObject &result) override { 4285 const size_t argc = command.GetArgumentCount(); 4286 if (argc < 1) { 4287 result.AppendErrorWithFormat( 4288 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4289 m_cmd_name.c_str()); 4290 return false; 4291 } 4292 4293 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4294 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4295 eLanguageTypeExtRenderScript)); 4296 4297 auto &outstream = result.GetOutputStream(); 4298 auto &target = m_exe_ctx.GetTargetSP(); 4299 auto name = command.GetArgumentAtIndex(0); 4300 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4301 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4302 result.AppendErrorWithFormat( 4303 "Error: unable to set breakpoint on kernel '%s'", name); 4304 return false; 4305 } 4306 4307 result.AppendMessage("Breakpoint(s) created"); 4308 result.SetStatus(eReturnStatusSuccessFinishResult); 4309 return true; 4310 } 4311 4312 private: 4313 CommandOptions m_options; 4314 }; 4315 4316 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4317 : public CommandObjectParsed { 4318 public: 4319 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4320 CommandInterpreter &interpreter) 4321 : CommandObjectParsed( 4322 interpreter, "renderscript kernel breakpoint all", 4323 "Automatically sets a breakpoint on all renderscript kernels that " 4324 "are or will be loaded.\n" 4325 "Disabling option means breakpoints will no longer be set on any " 4326 "kernels loaded in the future, " 4327 "but does not remove currently set breakpoints.", 4328 "renderscript kernel breakpoint all <enable/disable>", 4329 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4330 eCommandProcessMustBePaused) {} 4331 4332 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4333 4334 bool DoExecute(Args &command, CommandReturnObject &result) override { 4335 const size_t argc = command.GetArgumentCount(); 4336 if (argc != 1) { 4337 result.AppendErrorWithFormat( 4338 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4339 return false; 4340 } 4341 4342 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4343 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4344 eLanguageTypeExtRenderScript)); 4345 4346 bool do_break = false; 4347 const char *argument = command.GetArgumentAtIndex(0); 4348 if (strcmp(argument, "enable") == 0) { 4349 do_break = true; 4350 result.AppendMessage("Breakpoints will be set on all kernels."); 4351 } else if (strcmp(argument, "disable") == 0) { 4352 do_break = false; 4353 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4354 } else { 4355 result.AppendErrorWithFormat( 4356 "Argument must be either 'enable' or 'disable'"); 4357 return false; 4358 } 4359 4360 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4361 4362 result.SetStatus(eReturnStatusSuccessFinishResult); 4363 return true; 4364 } 4365 }; 4366 4367 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4368 : public CommandObjectMultiword { 4369 public: 4370 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4371 CommandInterpreter &interpreter) 4372 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4373 "Commands that manipulate breakpoints on " 4374 "renderscript general reductions.", 4375 nullptr) { 4376 LoadSubCommand( 4377 "set", CommandObjectSP( 4378 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4379 interpreter))); 4380 } 4381 4382 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4383 }; 4384 4385 class CommandObjectRenderScriptRuntimeKernelCoordinate 4386 : public CommandObjectParsed { 4387 public: 4388 CommandObjectRenderScriptRuntimeKernelCoordinate( 4389 CommandInterpreter &interpreter) 4390 : CommandObjectParsed( 4391 interpreter, "renderscript kernel coordinate", 4392 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4393 "renderscript kernel coordinate", 4394 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4395 eCommandProcessMustBePaused) {} 4396 4397 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4398 4399 bool DoExecute(Args &command, CommandReturnObject &result) override { 4400 RSCoordinate coord{}; 4401 bool success = RenderScriptRuntime::GetKernelCoordinate( 4402 coord, m_exe_ctx.GetThreadPtr()); 4403 Stream &stream = result.GetOutputStream(); 4404 4405 if (success) { 4406 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4407 stream.EOL(); 4408 result.SetStatus(eReturnStatusSuccessFinishResult); 4409 } else { 4410 stream.Printf("Error: Coordinate could not be found."); 4411 stream.EOL(); 4412 result.SetStatus(eReturnStatusFailed); 4413 } 4414 return true; 4415 } 4416 }; 4417 4418 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4419 : public CommandObjectMultiword { 4420 public: 4421 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4422 CommandInterpreter &interpreter) 4423 : CommandObjectMultiword( 4424 interpreter, "renderscript kernel", 4425 "Commands that generate breakpoints on renderscript kernels.", 4426 nullptr) { 4427 LoadSubCommand( 4428 "set", 4429 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4430 interpreter))); 4431 LoadSubCommand( 4432 "all", 4433 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4434 interpreter))); 4435 } 4436 4437 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4438 }; 4439 4440 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4441 public: 4442 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4443 : CommandObjectMultiword(interpreter, "renderscript kernel", 4444 "Commands that deal with RenderScript kernels.", 4445 nullptr) { 4446 LoadSubCommand( 4447 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4448 interpreter))); 4449 LoadSubCommand( 4450 "coordinate", 4451 CommandObjectSP( 4452 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4453 LoadSubCommand( 4454 "breakpoint", 4455 CommandObjectSP( 4456 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4457 } 4458 4459 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4460 }; 4461 4462 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4463 public: 4464 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4465 : CommandObjectParsed(interpreter, "renderscript context dump", 4466 "Dumps renderscript context information.", 4467 "renderscript context dump", 4468 eCommandRequiresProcess | 4469 eCommandProcessMustBeLaunched) {} 4470 4471 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4472 4473 bool DoExecute(Args &command, CommandReturnObject &result) override { 4474 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4475 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4476 eLanguageTypeExtRenderScript)); 4477 runtime->DumpContexts(result.GetOutputStream()); 4478 result.SetStatus(eReturnStatusSuccessFinishResult); 4479 return true; 4480 } 4481 }; 4482 4483 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4484 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4485 nullptr, {}, 0, eArgTypeFilename, 4486 "Print results to specified file instead of command line."}}; 4487 4488 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4489 public: 4490 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4491 : CommandObjectMultiword(interpreter, "renderscript context", 4492 "Commands that deal with RenderScript contexts.", 4493 nullptr) { 4494 LoadSubCommand( 4495 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4496 interpreter))); 4497 } 4498 4499 ~CommandObjectRenderScriptRuntimeContext() override = default; 4500 }; 4501 4502 class CommandObjectRenderScriptRuntimeAllocationDump 4503 : public CommandObjectParsed { 4504 public: 4505 CommandObjectRenderScriptRuntimeAllocationDump( 4506 CommandInterpreter &interpreter) 4507 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4508 "Displays the contents of a particular allocation", 4509 "renderscript allocation dump <ID>", 4510 eCommandRequiresProcess | 4511 eCommandProcessMustBeLaunched), 4512 m_options() {} 4513 4514 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4515 4516 Options *GetOptions() override { return &m_options; } 4517 4518 class CommandOptions : public Options { 4519 public: 4520 CommandOptions() : Options() {} 4521 4522 ~CommandOptions() override = default; 4523 4524 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4525 ExecutionContext *exe_ctx) override { 4526 Status err; 4527 const int short_option = m_getopt_table[option_idx].val; 4528 4529 switch (short_option) { 4530 case 'f': 4531 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4532 FileSystem::Instance().Resolve(m_outfile); 4533 if (FileSystem::Instance().Exists(m_outfile)) { 4534 m_outfile.Clear(); 4535 err.SetErrorStringWithFormat("file already exists: '%s'", 4536 option_arg.str().c_str()); 4537 } 4538 break; 4539 default: 4540 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4541 break; 4542 } 4543 return err; 4544 } 4545 4546 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4547 m_outfile.Clear(); 4548 } 4549 4550 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4551 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4552 } 4553 4554 FileSpec m_outfile; 4555 }; 4556 4557 bool DoExecute(Args &command, CommandReturnObject &result) override { 4558 const size_t argc = command.GetArgumentCount(); 4559 if (argc < 1) { 4560 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4561 "As well as an optional -f argument", 4562 m_cmd_name.c_str()); 4563 return false; 4564 } 4565 4566 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4567 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4568 eLanguageTypeExtRenderScript)); 4569 4570 const char *id_cstr = command.GetArgumentAtIndex(0); 4571 bool success = false; 4572 const uint32_t id = 4573 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4574 if (!success) { 4575 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4576 id_cstr); 4577 return false; 4578 } 4579 4580 Stream *output_stream_p = nullptr; 4581 std::unique_ptr<Stream> output_stream_storage; 4582 4583 const FileSpec &outfile_spec = 4584 m_options.m_outfile; // Dump allocation to file instead 4585 if (outfile_spec) { 4586 // Open output file 4587 std::string path = outfile_spec.GetPath(); 4588 auto file = FileSystem::Instance().Open( 4589 outfile_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4590 if (file) { 4591 output_stream_storage = 4592 std::make_unique<StreamFile>(std::move(file.get())); 4593 output_stream_p = output_stream_storage.get(); 4594 result.GetOutputStream().Printf("Results written to '%s'", 4595 path.c_str()); 4596 result.GetOutputStream().EOL(); 4597 } else { 4598 std::string error = llvm::toString(file.takeError()); 4599 result.AppendErrorWithFormat("Couldn't open file '%s': %s", 4600 path.c_str(), error.c_str()); 4601 return false; 4602 } 4603 } else 4604 output_stream_p = &result.GetOutputStream(); 4605 4606 assert(output_stream_p != nullptr); 4607 bool dumped = 4608 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id); 4609 4610 if (dumped) 4611 result.SetStatus(eReturnStatusSuccessFinishResult); 4612 else 4613 result.SetStatus(eReturnStatusFailed); 4614 4615 return true; 4616 } 4617 4618 private: 4619 CommandOptions m_options; 4620 }; 4621 4622 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4623 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4624 {}, 0, eArgTypeIndex, 4625 "Only show details of a single allocation with specified id."}}; 4626 4627 class CommandObjectRenderScriptRuntimeAllocationList 4628 : public CommandObjectParsed { 4629 public: 4630 CommandObjectRenderScriptRuntimeAllocationList( 4631 CommandInterpreter &interpreter) 4632 : CommandObjectParsed( 4633 interpreter, "renderscript allocation list", 4634 "List renderscript allocations and their information.", 4635 "renderscript allocation list", 4636 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4637 m_options() {} 4638 4639 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4640 4641 Options *GetOptions() override { return &m_options; } 4642 4643 class CommandOptions : public Options { 4644 public: 4645 CommandOptions() : Options() {} 4646 4647 ~CommandOptions() override = default; 4648 4649 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4650 ExecutionContext *exe_ctx) override { 4651 Status err; 4652 const int short_option = m_getopt_table[option_idx].val; 4653 4654 switch (short_option) { 4655 case 'i': 4656 if (option_arg.getAsInteger(0, m_id)) 4657 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4658 short_option); 4659 break; 4660 default: 4661 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4662 break; 4663 } 4664 return err; 4665 } 4666 4667 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4668 4669 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4670 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4671 } 4672 4673 uint32_t m_id = 0; 4674 }; 4675 4676 bool DoExecute(Args &command, CommandReturnObject &result) override { 4677 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4678 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4679 eLanguageTypeExtRenderScript)); 4680 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4681 m_options.m_id); 4682 result.SetStatus(eReturnStatusSuccessFinishResult); 4683 return true; 4684 } 4685 4686 private: 4687 CommandOptions m_options; 4688 }; 4689 4690 class CommandObjectRenderScriptRuntimeAllocationLoad 4691 : public CommandObjectParsed { 4692 public: 4693 CommandObjectRenderScriptRuntimeAllocationLoad( 4694 CommandInterpreter &interpreter) 4695 : CommandObjectParsed( 4696 interpreter, "renderscript allocation load", 4697 "Loads renderscript allocation contents from a file.", 4698 "renderscript allocation load <ID> <filename>", 4699 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4700 4701 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4702 4703 bool DoExecute(Args &command, CommandReturnObject &result) override { 4704 const size_t argc = command.GetArgumentCount(); 4705 if (argc != 2) { 4706 result.AppendErrorWithFormat( 4707 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4708 m_cmd_name.c_str()); 4709 return false; 4710 } 4711 4712 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4713 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4714 eLanguageTypeExtRenderScript)); 4715 4716 const char *id_cstr = command.GetArgumentAtIndex(0); 4717 bool success = false; 4718 const uint32_t id = 4719 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4720 if (!success) { 4721 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4722 id_cstr); 4723 return false; 4724 } 4725 4726 const char *path = command.GetArgumentAtIndex(1); 4727 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4728 m_exe_ctx.GetFramePtr()); 4729 4730 if (loaded) 4731 result.SetStatus(eReturnStatusSuccessFinishResult); 4732 else 4733 result.SetStatus(eReturnStatusFailed); 4734 4735 return true; 4736 } 4737 }; 4738 4739 class CommandObjectRenderScriptRuntimeAllocationSave 4740 : public CommandObjectParsed { 4741 public: 4742 CommandObjectRenderScriptRuntimeAllocationSave( 4743 CommandInterpreter &interpreter) 4744 : CommandObjectParsed(interpreter, "renderscript allocation save", 4745 "Write renderscript allocation contents to a file.", 4746 "renderscript allocation save <ID> <filename>", 4747 eCommandRequiresProcess | 4748 eCommandProcessMustBeLaunched) {} 4749 4750 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4751 4752 bool DoExecute(Args &command, CommandReturnObject &result) override { 4753 const size_t argc = command.GetArgumentCount(); 4754 if (argc != 2) { 4755 result.AppendErrorWithFormat( 4756 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4757 m_cmd_name.c_str()); 4758 return false; 4759 } 4760 4761 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4762 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4763 eLanguageTypeExtRenderScript)); 4764 4765 const char *id_cstr = command.GetArgumentAtIndex(0); 4766 bool success = false; 4767 const uint32_t id = 4768 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4769 if (!success) { 4770 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4771 id_cstr); 4772 return false; 4773 } 4774 4775 const char *path = command.GetArgumentAtIndex(1); 4776 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4777 m_exe_ctx.GetFramePtr()); 4778 4779 if (saved) 4780 result.SetStatus(eReturnStatusSuccessFinishResult); 4781 else 4782 result.SetStatus(eReturnStatusFailed); 4783 4784 return true; 4785 } 4786 }; 4787 4788 class CommandObjectRenderScriptRuntimeAllocationRefresh 4789 : public CommandObjectParsed { 4790 public: 4791 CommandObjectRenderScriptRuntimeAllocationRefresh( 4792 CommandInterpreter &interpreter) 4793 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4794 "Recomputes the details of all allocations.", 4795 "renderscript allocation refresh", 4796 eCommandRequiresProcess | 4797 eCommandProcessMustBeLaunched) {} 4798 4799 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4800 4801 bool DoExecute(Args &command, CommandReturnObject &result) override { 4802 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4803 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4804 eLanguageTypeExtRenderScript)); 4805 4806 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4807 m_exe_ctx.GetFramePtr()); 4808 4809 if (success) { 4810 result.SetStatus(eReturnStatusSuccessFinishResult); 4811 return true; 4812 } else { 4813 result.SetStatus(eReturnStatusFailed); 4814 return false; 4815 } 4816 } 4817 }; 4818 4819 class CommandObjectRenderScriptRuntimeAllocation 4820 : public CommandObjectMultiword { 4821 public: 4822 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4823 : CommandObjectMultiword( 4824 interpreter, "renderscript allocation", 4825 "Commands that deal with RenderScript allocations.", nullptr) { 4826 LoadSubCommand( 4827 "list", 4828 CommandObjectSP( 4829 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4830 LoadSubCommand( 4831 "dump", 4832 CommandObjectSP( 4833 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4834 LoadSubCommand( 4835 "save", 4836 CommandObjectSP( 4837 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4838 LoadSubCommand( 4839 "load", 4840 CommandObjectSP( 4841 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4842 LoadSubCommand( 4843 "refresh", 4844 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4845 interpreter))); 4846 } 4847 4848 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4849 }; 4850 4851 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4852 public: 4853 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4854 : CommandObjectParsed(interpreter, "renderscript status", 4855 "Displays current RenderScript runtime status.", 4856 "renderscript status", 4857 eCommandRequiresProcess | 4858 eCommandProcessMustBeLaunched) {} 4859 4860 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4861 4862 bool DoExecute(Args &command, CommandReturnObject &result) override { 4863 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4864 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4865 eLanguageTypeExtRenderScript)); 4866 runtime->DumpStatus(result.GetOutputStream()); 4867 result.SetStatus(eReturnStatusSuccessFinishResult); 4868 return true; 4869 } 4870 }; 4871 4872 class CommandObjectRenderScriptRuntimeReduction 4873 : public CommandObjectMultiword { 4874 public: 4875 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4876 : CommandObjectMultiword(interpreter, "renderscript reduction", 4877 "Commands that handle general reduction kernels", 4878 nullptr) { 4879 LoadSubCommand( 4880 "breakpoint", 4881 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 4882 interpreter))); 4883 } 4884 ~CommandObjectRenderScriptRuntimeReduction() override = default; 4885 }; 4886 4887 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 4888 public: 4889 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 4890 : CommandObjectMultiword( 4891 interpreter, "renderscript", 4892 "Commands for operating on the RenderScript runtime.", 4893 "renderscript <subcommand> [<subcommand-options>]") { 4894 LoadSubCommand( 4895 "module", CommandObjectSP( 4896 new CommandObjectRenderScriptRuntimeModule(interpreter))); 4897 LoadSubCommand( 4898 "status", CommandObjectSP( 4899 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 4900 LoadSubCommand( 4901 "kernel", CommandObjectSP( 4902 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 4903 LoadSubCommand("context", 4904 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 4905 interpreter))); 4906 LoadSubCommand( 4907 "allocation", 4908 CommandObjectSP( 4909 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 4910 LoadSubCommand("scriptgroup", 4911 NewCommandObjectRenderScriptScriptGroup(interpreter)); 4912 LoadSubCommand( 4913 "reduction", 4914 CommandObjectSP( 4915 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 4916 } 4917 4918 ~CommandObjectRenderScriptRuntime() override = default; 4919 }; 4920 4921 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 4922 4923 RenderScriptRuntime::RenderScriptRuntime(Process *process) 4924 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 4925 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 4926 m_ir_passes(nullptr) { 4927 ModulesDidLoad(process->GetTarget().GetImages()); 4928 } 4929 4930 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 4931 lldb_private::CommandInterpreter &interpreter) { 4932 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 4933 } 4934 4935 RenderScriptRuntime::~RenderScriptRuntime() = default; 4936