1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/DataExtractor.h"
10 
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15 
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23 
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/LEB128.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29 
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35 
36 #include <cctype>
37 #include <cinttypes>
38 #include <cstring>
39 
40 using namespace lldb;
41 using namespace lldb_private;
42 
43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44   uint16_t value;
45   memcpy(&value, ptr + offset, 2);
46   return value;
47 }
48 
49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50                                  offset_t offset = 0) {
51   uint32_t value;
52   memcpy(&value, ptr + offset, 4);
53   return value;
54 }
55 
56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57                                  offset_t offset = 0) {
58   uint64_t value;
59   memcpy(&value, ptr + offset, 8);
60   return value;
61 }
62 
63 static inline uint16_t ReadInt16(const void *ptr) {
64   uint16_t value;
65   memcpy(&value, ptr, 2);
66   return value;
67 }
68 
69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70                                      offset_t offset) {
71   uint16_t value;
72   memcpy(&value, ptr + offset, 2);
73   return llvm::ByteSwap_16(value);
74 }
75 
76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77                                      offset_t offset) {
78   uint32_t value;
79   memcpy(&value, ptr + offset, 4);
80   return llvm::ByteSwap_32(value);
81 }
82 
83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84                                      offset_t offset) {
85   uint64_t value;
86   memcpy(&value, ptr + offset, 8);
87   return llvm::ByteSwap_64(value);
88 }
89 
90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91   uint16_t value;
92   memcpy(&value, ptr, 2);
93   return llvm::ByteSwap_16(value);
94 }
95 
96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97   uint32_t value;
98   memcpy(&value, ptr, 4);
99   return llvm::ByteSwap_32(value);
100 }
101 
102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103   uint64_t value;
104   memcpy(&value, ptr, 8);
105   return llvm::ByteSwap_64(value);
106 }
107 
108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109                                     ByteOrder byte_order) {
110   uint64_t res = 0;
111   if (byte_order == eByteOrderBig)
112     for (size_t i = 0; i < byte_size; ++i)
113       res = (res << 8) | data[i];
114   else {
115     assert(byte_order == eByteOrderLittle);
116     for (size_t i = 0; i < byte_size; ++i)
117       res = (res << 8) | data[byte_size - 1 - i];
118   }
119   return res;
120 }
121 
122 DataExtractor::DataExtractor()
123     : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
124       m_data_sp() {}
125 
126 // This constructor allows us to use data that is owned by someone else. The
127 // data must stay around as long as this object is valid.
128 DataExtractor::DataExtractor(const void *data, offset_t length,
129                              ByteOrder endian, uint32_t addr_size,
130                              uint32_t target_byte_size /*=1*/)
131     : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
132       m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
133       m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
134       m_target_byte_size(target_byte_size) {
135   assert(addr_size >= 1 && addr_size <= 8);
136 }
137 
138 // Make a shared pointer reference to the shared data in "data_sp" and set the
139 // endian swapping setting to "swap", and the address size to "addr_size". The
140 // shared data reference will ensure the data lives as long as any
141 // DataExtractor objects exist that have a reference to this data.
142 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
143                              uint32_t addr_size,
144                              uint32_t target_byte_size /*=1*/)
145     : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
146       m_addr_size(addr_size), m_data_sp(),
147       m_target_byte_size(target_byte_size) {
148   assert(addr_size >= 1 && addr_size <= 8);
149   SetData(data_sp);
150 }
151 
152 // Initialize this object with a subset of the data bytes in "data". If "data"
153 // contains shared data, then a reference to this shared data will added and
154 // the shared data will stay around as long as any object contains a reference
155 // to that data. The endian swap and address size settings are copied from
156 // "data".
157 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
158                              offset_t length, uint32_t target_byte_size /*=1*/)
159     : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
160       m_addr_size(data.m_addr_size), m_data_sp(),
161       m_target_byte_size(target_byte_size) {
162   assert(m_addr_size >= 1 && m_addr_size <= 8);
163   if (data.ValidOffset(offset)) {
164     offset_t bytes_available = data.GetByteSize() - offset;
165     if (length > bytes_available)
166       length = bytes_available;
167     SetData(data, offset, length);
168   }
169 }
170 
171 DataExtractor::DataExtractor(const DataExtractor &rhs)
172     : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
173       m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
174       m_target_byte_size(rhs.m_target_byte_size) {
175   assert(m_addr_size >= 1 && m_addr_size <= 8);
176 }
177 
178 // Assignment operator
179 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
180   if (this != &rhs) {
181     m_start = rhs.m_start;
182     m_end = rhs.m_end;
183     m_byte_order = rhs.m_byte_order;
184     m_addr_size = rhs.m_addr_size;
185     m_data_sp = rhs.m_data_sp;
186   }
187   return *this;
188 }
189 
190 DataExtractor::~DataExtractor() = default;
191 
192 // Clears the object contents back to a default invalid state, and release any
193 // references to shared data that this object may contain.
194 void DataExtractor::Clear() {
195   m_start = nullptr;
196   m_end = nullptr;
197   m_byte_order = endian::InlHostByteOrder();
198   m_addr_size = sizeof(void *);
199   m_data_sp.reset();
200 }
201 
202 // If this object contains shared data, this function returns the offset into
203 // that shared data. Else zero is returned.
204 size_t DataExtractor::GetSharedDataOffset() const {
205   if (m_start != nullptr) {
206     const DataBuffer *data = m_data_sp.get();
207     if (data != nullptr) {
208       const uint8_t *data_bytes = data->GetBytes();
209       if (data_bytes != nullptr) {
210         assert(m_start >= data_bytes);
211         return m_start - data_bytes;
212       }
213     }
214   }
215   return 0;
216 }
217 
218 // Set the data with which this object will extract from to data starting at
219 // BYTES and set the length of the data to LENGTH bytes long. The data is
220 // externally owned must be around at least as long as this object points to
221 // the data. No copy of the data is made, this object just refers to this data
222 // and can extract from it. If this object refers to any shared data upon
223 // entry, the reference to that data will be released. Is SWAP is set to true,
224 // any data extracted will be endian swapped.
225 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
226                                       ByteOrder endian) {
227   m_byte_order = endian;
228   m_data_sp.reset();
229   if (bytes == nullptr || length == 0) {
230     m_start = nullptr;
231     m_end = nullptr;
232   } else {
233     m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
234     m_end = m_start + length;
235   }
236   return GetByteSize();
237 }
238 
239 // Assign the data for this object to be a subrange in "data" starting
240 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
241 // "data_offset" is not a valid offset into "data", then this object will
242 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
243 // large, the length will be capped at the number of bytes remaining in "data".
244 // If "data" contains a shared pointer to other data, then a ref counted
245 // pointer to that data will be made in this object. If "data" doesn't contain
246 // a shared pointer to data, then the bytes referred to in "data" will need to
247 // exist at least as long as this object refers to those bytes. The address
248 // size and endian swap settings are copied from the current values in "data".
249 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
250                                       offset_t data_offset,
251                                       offset_t data_length) {
252   m_addr_size = data.m_addr_size;
253   assert(m_addr_size >= 1 && m_addr_size <= 8);
254   // If "data" contains shared pointer to data, then we can use that
255   if (data.m_data_sp) {
256     m_byte_order = data.m_byte_order;
257     return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
258                    data_length);
259   }
260 
261   // We have a DataExtractor object that just has a pointer to bytes
262   if (data.ValidOffset(data_offset)) {
263     if (data_length > data.GetByteSize() - data_offset)
264       data_length = data.GetByteSize() - data_offset;
265     return SetData(data.GetDataStart() + data_offset, data_length,
266                    data.GetByteOrder());
267   }
268   return 0;
269 }
270 
271 // Assign the data for this object to be a subrange of the shared data in
272 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
273 // "data_length" bytes later. If "data_offset" is not a valid offset into
274 // "data_sp", then this object will contain no bytes. If "data_offset" is
275 // within "data_sp" yet "data_length" is too large, the length will be capped
276 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
277 // data in "data_sp" will be made in this object IF the number of bytes this
278 // object refers to in greater than zero (if at least one byte was available
279 // starting at "data_offset") to ensure the data stays around as long as it is
280 // needed. The address size and endian swap settings will remain unchanged from
281 // their current settings.
282 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
283                                       offset_t data_offset,
284                                       offset_t data_length) {
285   m_start = m_end = nullptr;
286 
287   if (data_length > 0) {
288     m_data_sp = data_sp;
289     if (data_sp) {
290       const size_t data_size = data_sp->GetByteSize();
291       if (data_offset < data_size) {
292         m_start = data_sp->GetBytes() + data_offset;
293         const size_t bytes_left = data_size - data_offset;
294         // Cap the length of we asked for too many
295         if (data_length <= bytes_left)
296           m_end = m_start + data_length; // We got all the bytes we wanted
297         else
298           m_end = m_start + bytes_left; // Not all the bytes requested were
299                                         // available in the shared data
300       }
301     }
302   }
303 
304   size_t new_size = GetByteSize();
305 
306   // Don't hold a shared pointer to the data buffer if we don't share any valid
307   // bytes in the shared buffer.
308   if (new_size == 0)
309     m_data_sp.reset();
310 
311   return new_size;
312 }
313 
314 // Extract a single unsigned char from the binary data and update the offset
315 // pointed to by "offset_ptr".
316 //
317 // RETURNS the byte that was extracted, or zero on failure.
318 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
319   const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
320   if (data)
321     return *data;
322   return 0;
323 }
324 
325 // Extract "count" unsigned chars from the binary data and update the offset
326 // pointed to by "offset_ptr". The extracted data is copied into "dst".
327 //
328 // RETURNS the non-nullptr buffer pointer upon successful extraction of
329 // all the requested bytes, or nullptr when the data is not available in the
330 // buffer due to being out of bounds, or insufficient data.
331 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
332                            uint32_t count) const {
333   const uint8_t *data =
334       static_cast<const uint8_t *>(GetData(offset_ptr, count));
335   if (data) {
336     // Copy the data into the buffer
337     memcpy(dst, data, count);
338     // Return a non-nullptr pointer to the converted data as an indicator of
339     // success
340     return dst;
341   }
342   return nullptr;
343 }
344 
345 // Extract a single uint16_t from the data and update the offset pointed to by
346 // "offset_ptr".
347 //
348 // RETURNS the uint16_t that was extracted, or zero on failure.
349 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
350   uint16_t val = 0;
351   const uint8_t *data =
352       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
353   if (data) {
354     if (m_byte_order != endian::InlHostByteOrder())
355       val = ReadSwapInt16(data);
356     else
357       val = ReadInt16(data);
358   }
359   return val;
360 }
361 
362 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
363   uint16_t val;
364   if (m_byte_order == endian::InlHostByteOrder())
365     val = ReadInt16(m_start, *offset_ptr);
366   else
367     val = ReadSwapInt16(m_start, *offset_ptr);
368   *offset_ptr += sizeof(val);
369   return val;
370 }
371 
372 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
373   uint32_t val;
374   if (m_byte_order == endian::InlHostByteOrder())
375     val = ReadInt32(m_start, *offset_ptr);
376   else
377     val = ReadSwapInt32(m_start, *offset_ptr);
378   *offset_ptr += sizeof(val);
379   return val;
380 }
381 
382 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
383   uint64_t val;
384   if (m_byte_order == endian::InlHostByteOrder())
385     val = ReadInt64(m_start, *offset_ptr);
386   else
387     val = ReadSwapInt64(m_start, *offset_ptr);
388   *offset_ptr += sizeof(val);
389   return val;
390 }
391 
392 // Extract "count" uint16_t values from the binary data and update the offset
393 // pointed to by "offset_ptr". The extracted data is copied into "dst".
394 //
395 // RETURNS the non-nullptr buffer pointer upon successful extraction of
396 // all the requested bytes, or nullptr when the data is not available in the
397 // buffer due to being out of bounds, or insufficient data.
398 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
399                             uint32_t count) const {
400   const size_t src_size = sizeof(uint16_t) * count;
401   const uint16_t *src =
402       static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
403   if (src) {
404     if (m_byte_order != endian::InlHostByteOrder()) {
405       uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
406       uint16_t *dst_end = dst_pos + count;
407       const uint16_t *src_pos = src;
408       while (dst_pos < dst_end) {
409         *dst_pos = ReadSwapInt16(src_pos);
410         ++dst_pos;
411         ++src_pos;
412       }
413     } else {
414       memcpy(void_dst, src, src_size);
415     }
416     // Return a non-nullptr pointer to the converted data as an indicator of
417     // success
418     return void_dst;
419   }
420   return nullptr;
421 }
422 
423 // Extract a single uint32_t from the data and update the offset pointed to by
424 // "offset_ptr".
425 //
426 // RETURNS the uint32_t that was extracted, or zero on failure.
427 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
428   uint32_t val = 0;
429   const uint8_t *data =
430       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
431   if (data) {
432     if (m_byte_order != endian::InlHostByteOrder()) {
433       val = ReadSwapInt32(data);
434     } else {
435       memcpy(&val, data, 4);
436     }
437   }
438   return val;
439 }
440 
441 // Extract "count" uint32_t values from the binary data and update the offset
442 // pointed to by "offset_ptr". The extracted data is copied into "dst".
443 //
444 // RETURNS the non-nullptr buffer pointer upon successful extraction of
445 // all the requested bytes, or nullptr when the data is not available in the
446 // buffer due to being out of bounds, or insufficient data.
447 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
448                             uint32_t count) const {
449   const size_t src_size = sizeof(uint32_t) * count;
450   const uint32_t *src =
451       static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
452   if (src) {
453     if (m_byte_order != endian::InlHostByteOrder()) {
454       uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
455       uint32_t *dst_end = dst_pos + count;
456       const uint32_t *src_pos = src;
457       while (dst_pos < dst_end) {
458         *dst_pos = ReadSwapInt32(src_pos);
459         ++dst_pos;
460         ++src_pos;
461       }
462     } else {
463       memcpy(void_dst, src, src_size);
464     }
465     // Return a non-nullptr pointer to the converted data as an indicator of
466     // success
467     return void_dst;
468   }
469   return nullptr;
470 }
471 
472 // Extract a single uint64_t from the data and update the offset pointed to by
473 // "offset_ptr".
474 //
475 // RETURNS the uint64_t that was extracted, or zero on failure.
476 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
477   uint64_t val = 0;
478   const uint8_t *data =
479       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
480   if (data) {
481     if (m_byte_order != endian::InlHostByteOrder()) {
482       val = ReadSwapInt64(data);
483     } else {
484       memcpy(&val, data, 8);
485     }
486   }
487   return val;
488 }
489 
490 // GetU64
491 //
492 // Get multiple consecutive 64 bit values. Return true if the entire read
493 // succeeds and increment the offset pointed to by offset_ptr, else return
494 // false and leave the offset pointed to by offset_ptr unchanged.
495 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
496                             uint32_t count) const {
497   const size_t src_size = sizeof(uint64_t) * count;
498   const uint64_t *src =
499       static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
500   if (src) {
501     if (m_byte_order != endian::InlHostByteOrder()) {
502       uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
503       uint64_t *dst_end = dst_pos + count;
504       const uint64_t *src_pos = src;
505       while (dst_pos < dst_end) {
506         *dst_pos = ReadSwapInt64(src_pos);
507         ++dst_pos;
508         ++src_pos;
509       }
510     } else {
511       memcpy(void_dst, src, src_size);
512     }
513     // Return a non-nullptr pointer to the converted data as an indicator of
514     // success
515     return void_dst;
516   }
517   return nullptr;
518 }
519 
520 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
521                                   size_t byte_size) const {
522   lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
523   return GetMaxU64(offset_ptr, byte_size);
524 }
525 
526 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
527                                   size_t byte_size) const {
528   lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
529   switch (byte_size) {
530   case 1:
531     return GetU8(offset_ptr);
532   case 2:
533     return GetU16(offset_ptr);
534   case 4:
535     return GetU32(offset_ptr);
536   case 8:
537     return GetU64(offset_ptr);
538   default: {
539     // General case.
540     const uint8_t *data =
541         static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
542     if (data == nullptr)
543       return 0;
544     return ReadMaxInt64(data, byte_size, m_byte_order);
545   }
546   }
547   return 0;
548 }
549 
550 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
551                                             size_t byte_size) const {
552   switch (byte_size) {
553   case 1:
554     return GetU8_unchecked(offset_ptr);
555   case 2:
556     return GetU16_unchecked(offset_ptr);
557   case 4:
558     return GetU32_unchecked(offset_ptr);
559   case 8:
560     return GetU64_unchecked(offset_ptr);
561   default: {
562     uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
563     *offset_ptr += byte_size;
564     return res;
565   }
566   }
567   return 0;
568 }
569 
570 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
571   uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
572   return llvm::SignExtend64(u64, 8 * byte_size);
573 }
574 
575 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
576                                           uint32_t bitfield_bit_size,
577                                           uint32_t bitfield_bit_offset) const {
578   assert(bitfield_bit_size <= 64);
579   uint64_t uval64 = GetMaxU64(offset_ptr, size);
580 
581   if (bitfield_bit_size == 0)
582     return uval64;
583 
584   int32_t lsbcount = bitfield_bit_offset;
585   if (m_byte_order == eByteOrderBig)
586     lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
587 
588   if (lsbcount > 0)
589     uval64 >>= lsbcount;
590 
591   uint64_t bitfield_mask =
592       (bitfield_bit_size == 64
593            ? std::numeric_limits<uint64_t>::max()
594            : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
595   if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
596     return uval64;
597 
598   uval64 &= bitfield_mask;
599 
600   return uval64;
601 }
602 
603 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
604                                          uint32_t bitfield_bit_size,
605                                          uint32_t bitfield_bit_offset) const {
606   assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
607   assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
608   int64_t sval64 = GetMaxS64(offset_ptr, size);
609   if (bitfield_bit_size == 0)
610     return sval64;
611   int32_t lsbcount = bitfield_bit_offset;
612   if (m_byte_order == eByteOrderBig)
613     lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
614   if (lsbcount > 0)
615     sval64 >>= lsbcount;
616   uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
617   sval64 &= bitfield_mask;
618   // sign extend if needed
619   if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
620     sval64 |= ~bitfield_mask;
621   return sval64;
622 }
623 
624 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
625   return Get<float>(offset_ptr, 0.0f);
626 }
627 
628 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
629   return Get<double>(offset_ptr, 0.0);
630 }
631 
632 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
633   long double val = 0.0;
634 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
635     defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
636   *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
637                                      endian::InlHostByteOrder());
638 #else
639   *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
640                                      sizeof(val), endian::InlHostByteOrder());
641 #endif
642   return val;
643 }
644 
645 // Extract a single address from the data and update the offset pointed to by
646 // "offset_ptr". The size of the extracted address comes from the
647 // "this->m_addr_size" member variable and should be set correctly prior to
648 // extracting any address values.
649 //
650 // RETURNS the address that was extracted, or zero on failure.
651 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
652   assert(m_addr_size >= 1 && m_addr_size <= 8);
653   return GetMaxU64(offset_ptr, m_addr_size);
654 }
655 
656 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
657   assert(m_addr_size >= 1 && m_addr_size <= 8);
658   return GetMaxU64_unchecked(offset_ptr, m_addr_size);
659 }
660 
661 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
662                                    ByteOrder dst_byte_order, void *dst) const {
663   const uint8_t *src = PeekData(offset, length);
664   if (src) {
665     if (dst_byte_order != GetByteOrder()) {
666       // Validate that only a word- or register-sized dst is byte swapped
667       assert(length == 1 || length == 2 || length == 4 || length == 8 ||
668              length == 10 || length == 16 || length == 32);
669 
670       for (uint32_t i = 0; i < length; ++i)
671         (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
672     } else
673       ::memcpy(dst, src, length);
674     return length;
675   }
676   return 0;
677 }
678 
679 // Extract data as it exists in target memory
680 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
681                                        void *dst) const {
682   const uint8_t *src = PeekData(offset, length);
683   if (src) {
684     ::memcpy(dst, src, length);
685     return length;
686   }
687   return 0;
688 }
689 
690 // Extract data and swap if needed when doing the copy
691 lldb::offset_t
692 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
693                                    void *dst_void_ptr, offset_t dst_len,
694                                    ByteOrder dst_byte_order) const {
695   // Validate the source info
696   if (!ValidOffsetForDataOfSize(src_offset, src_len))
697     assert(ValidOffsetForDataOfSize(src_offset, src_len));
698   assert(src_len > 0);
699   assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
700 
701   // Validate the destination info
702   assert(dst_void_ptr != nullptr);
703   assert(dst_len > 0);
704   assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
705 
706   // Validate that only a word- or register-sized dst is byte swapped
707   assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
708          dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
709          dst_len == 32);
710 
711   // Must have valid byte orders set in this object and for destination
712   if (!(dst_byte_order == eByteOrderBig ||
713         dst_byte_order == eByteOrderLittle) ||
714       !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
715     return 0;
716 
717   uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
718   const uint8_t *src = PeekData(src_offset, src_len);
719   if (src) {
720     if (dst_len >= src_len) {
721       // We are copying the entire value from src into dst. Calculate how many,
722       // if any, zeroes we need for the most significant bytes if "dst_len" is
723       // greater than "src_len"...
724       const size_t num_zeroes = dst_len - src_len;
725       if (dst_byte_order == eByteOrderBig) {
726         // Big endian, so we lead with zeroes...
727         if (num_zeroes > 0)
728           ::memset(dst, 0, num_zeroes);
729         // Then either copy or swap the rest
730         if (m_byte_order == eByteOrderBig) {
731           ::memcpy(dst + num_zeroes, src, src_len);
732         } else {
733           for (uint32_t i = 0; i < src_len; ++i)
734             dst[i + num_zeroes] = src[src_len - 1 - i];
735         }
736       } else {
737         // Little endian destination, so we lead the value bytes
738         if (m_byte_order == eByteOrderBig) {
739           for (uint32_t i = 0; i < src_len; ++i)
740             dst[i] = src[src_len - 1 - i];
741         } else {
742           ::memcpy(dst, src, src_len);
743         }
744         // And zero the rest...
745         if (num_zeroes > 0)
746           ::memset(dst + src_len, 0, num_zeroes);
747       }
748       return src_len;
749     } else {
750       // We are only copying some of the value from src into dst..
751 
752       if (dst_byte_order == eByteOrderBig) {
753         // Big endian dst
754         if (m_byte_order == eByteOrderBig) {
755           // Big endian dst, with big endian src
756           ::memcpy(dst, src + (src_len - dst_len), dst_len);
757         } else {
758           // Big endian dst, with little endian src
759           for (uint32_t i = 0; i < dst_len; ++i)
760             dst[i] = src[dst_len - 1 - i];
761         }
762       } else {
763         // Little endian dst
764         if (m_byte_order == eByteOrderBig) {
765           // Little endian dst, with big endian src
766           for (uint32_t i = 0; i < dst_len; ++i)
767             dst[i] = src[src_len - 1 - i];
768         } else {
769           // Little endian dst, with big endian src
770           ::memcpy(dst, src, dst_len);
771         }
772       }
773       return dst_len;
774     }
775   }
776   return 0;
777 }
778 
779 // Extracts a variable length NULL terminated C string from the data at the
780 // offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
781 // the offset of the byte that follows the NULL terminator byte.
782 //
783 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
784 // non-zero and there aren't enough available bytes, nullptr will be returned
785 // and "offset_ptr" will not be updated.
786 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
787   const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
788   // Already at the end of the data.
789   if (!start)
790     return nullptr;
791 
792   const char *end = reinterpret_cast<const char *>(m_end);
793 
794   // Check all bytes for a null terminator that terminates a C string.
795   const char *terminator_or_end = std::find(start, end, '\0');
796 
797   // We didn't find a null terminator, so return nullptr to indicate that there
798   // is no valid C string at that offset.
799   if (terminator_or_end == end)
800     return nullptr;
801 
802   // Update offset_ptr for the caller to point to the data behind the
803   // terminator (which is 1 byte long).
804   *offset_ptr += (terminator_or_end - start + 1UL);
805   return start;
806 }
807 
808 // Extracts a NULL terminated C string from the fixed length field of length
809 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
810 // updated with the offset of the byte that follows the fixed length field.
811 //
812 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
813 // plus the length of the field is out of bounds, or if the field does not
814 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
815 // will not be updated.
816 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
817   const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
818   if (cstr != nullptr) {
819     if (memchr(cstr, '\0', len) == nullptr) {
820       return nullptr;
821     }
822     *offset_ptr += len;
823     return cstr;
824   }
825   return nullptr;
826 }
827 
828 // Peeks at a string in the contained data. No verification is done to make
829 // sure the entire string lies within the bounds of this object's data, only
830 // "offset" is verified to be a valid offset.
831 //
832 // Returns a valid C string pointer if "offset" is a valid offset in this
833 // object's data, else nullptr is returned.
834 const char *DataExtractor::PeekCStr(offset_t offset) const {
835   return reinterpret_cast<const char *>(PeekData(offset, 1));
836 }
837 
838 // Extracts an unsigned LEB128 number from this object's data starting at the
839 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
840 // will be updated with the offset of the byte following the last extracted
841 // byte.
842 //
843 // Returned the extracted integer value.
844 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
845   const uint8_t *src = PeekData(*offset_ptr, 1);
846   if (src == nullptr)
847     return 0;
848 
849   unsigned byte_count = 0;
850   uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
851   *offset_ptr += byte_count;
852   return result;
853 }
854 
855 // Extracts an signed LEB128 number from this object's data starting at the
856 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
857 // will be updated with the offset of the byte following the last extracted
858 // byte.
859 //
860 // Returned the extracted integer value.
861 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
862   const uint8_t *src = PeekData(*offset_ptr, 1);
863   if (src == nullptr)
864     return 0;
865 
866   unsigned byte_count = 0;
867   int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
868   *offset_ptr += byte_count;
869   return result;
870 }
871 
872 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
873 // at the offset pointed to by "offset_ptr". The offset pointed to by
874 // "offset_ptr" will be updated with the offset of the byte following the last
875 // extracted byte.
876 //
877 // Returns the number of bytes consumed during the extraction.
878 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
879   uint32_t bytes_consumed = 0;
880   const uint8_t *src = PeekData(*offset_ptr, 1);
881   if (src == nullptr)
882     return 0;
883 
884   const uint8_t *end = m_end;
885 
886   if (src < end) {
887     const uint8_t *src_pos = src;
888     while ((src_pos < end) && (*src_pos++ & 0x80))
889       ++bytes_consumed;
890     *offset_ptr += src_pos - src;
891   }
892   return bytes_consumed;
893 }
894 
895 // Dumps bytes from this object's data to the stream "s" starting
896 // "start_offset" bytes into this data, and ending with the byte before
897 // "end_offset". "base_addr" will be added to the offset into the dumped data
898 // when showing the offset into the data in the output information.
899 // "num_per_line" objects of type "type" will be dumped with the option to
900 // override the format for each object with "type_format". "type_format" is a
901 // printf style formatting string. If "type_format" is nullptr, then an
902 // appropriate format string will be used for the supplied "type". If the
903 // stream "s" is nullptr, then the output will be send to Log().
904 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
905                                        offset_t length, uint64_t base_addr,
906                                        uint32_t num_per_line,
907                                        DataExtractor::Type type) const {
908   if (log == nullptr)
909     return start_offset;
910 
911   offset_t offset;
912   offset_t end_offset;
913   uint32_t count;
914   StreamString sstr;
915   for (offset = start_offset, end_offset = offset + length, count = 0;
916        ValidOffset(offset) && offset < end_offset; ++count) {
917     if ((count % num_per_line) == 0) {
918       // Print out any previous string
919       if (sstr.GetSize() > 0) {
920         log->PutString(sstr.GetString());
921         sstr.Clear();
922       }
923       // Reset string offset and fill the current line string with address:
924       if (base_addr != LLDB_INVALID_ADDRESS)
925         sstr.Printf("0x%8.8" PRIx64 ":",
926                     static_cast<uint64_t>(base_addr + (offset - start_offset)));
927     }
928 
929     switch (type) {
930     case TypeUInt8:
931       sstr.Printf(" %2.2x", GetU8(&offset));
932       break;
933     case TypeChar: {
934       char ch = GetU8(&offset);
935       sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
936     } break;
937     case TypeUInt16:
938       sstr.Printf(" %4.4x", GetU16(&offset));
939       break;
940     case TypeUInt32:
941       sstr.Printf(" %8.8x", GetU32(&offset));
942       break;
943     case TypeUInt64:
944       sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
945       break;
946     case TypePointer:
947       sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
948       break;
949     case TypeULEB128:
950       sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
951       break;
952     case TypeSLEB128:
953       sstr.Printf(" %" PRId64, GetSLEB128(&offset));
954       break;
955     }
956   }
957 
958   if (!sstr.Empty())
959     log->PutString(sstr.GetString());
960 
961   return offset; // Return the offset at which we ended up
962 }
963 
964 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
965   if (m_data_sp) {
966     // we can pass along the SP to the data
967     dest_data.SetData(m_data_sp);
968   } else {
969     const uint8_t *base_ptr = m_start;
970     size_t data_size = GetByteSize();
971     dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
972   }
973   return GetByteSize();
974 }
975 
976 bool DataExtractor::Append(DataExtractor &rhs) {
977   if (rhs.GetByteOrder() != GetByteOrder())
978     return false;
979 
980   if (rhs.GetByteSize() == 0)
981     return true;
982 
983   if (GetByteSize() == 0)
984     return (rhs.Copy(*this) > 0);
985 
986   size_t bytes = GetByteSize() + rhs.GetByteSize();
987 
988   DataBufferHeap *buffer_heap_ptr = nullptr;
989   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
990 
991   if (!buffer_sp || buffer_heap_ptr == nullptr)
992     return false;
993 
994   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
995 
996   memcpy(bytes_ptr, GetDataStart(), GetByteSize());
997   memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
998 
999   SetData(buffer_sp);
1000 
1001   return true;
1002 }
1003 
1004 bool DataExtractor::Append(void *buf, offset_t length) {
1005   if (buf == nullptr)
1006     return false;
1007 
1008   if (length == 0)
1009     return true;
1010 
1011   size_t bytes = GetByteSize() + length;
1012 
1013   DataBufferHeap *buffer_heap_ptr = nullptr;
1014   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1015 
1016   if (!buffer_sp || buffer_heap_ptr == nullptr)
1017     return false;
1018 
1019   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1020 
1021   if (GetByteSize() > 0)
1022     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1023 
1024   memcpy(bytes_ptr + GetByteSize(), buf, length);
1025 
1026   SetData(buffer_sp);
1027 
1028   return true;
1029 }
1030 
1031 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1032                              uint64_t max_data) {
1033   if (max_data == 0)
1034     max_data = GetByteSize();
1035   else
1036     max_data = std::min(max_data, GetByteSize());
1037 
1038   llvm::MD5 md5;
1039 
1040   const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1041   md5.update(data);
1042 
1043   llvm::MD5::MD5Result result;
1044   md5.final(result);
1045 
1046   dest.clear();
1047   dest.append(result.Bytes.begin(), result.Bytes.end());
1048 }
1049