1 #include "llvm/ADT/APFloat.h" 2 #include "llvm/ADT/STLExtras.h" 3 #include "llvm/IR/BasicBlock.h" 4 #include "llvm/IR/Constants.h" 5 #include "llvm/IR/DerivedTypes.h" 6 #include "llvm/IR/Function.h" 7 #include "llvm/IR/Instructions.h" 8 #include "llvm/IR/IRBuilder.h" 9 #include "llvm/IR/LLVMContext.h" 10 #include "llvm/IR/Module.h" 11 #include "llvm/IR/Type.h" 12 #include "llvm/IR/Verifier.h" 13 #include "llvm/Support/TargetSelect.h" 14 #include "llvm/Target/TargetMachine.h" 15 #include "KaleidoscopeJIT.h" 16 #include <algorithm> 17 #include <cassert> 18 #include <cctype> 19 #include <cstdint> 20 #include <cstdio> 21 #include <cstdlib> 22 #include <map> 23 #include <memory> 24 #include <string> 25 #include <utility> 26 #include <vector> 27 28 using namespace llvm; 29 using namespace llvm::orc; 30 31 //===----------------------------------------------------------------------===// 32 // Lexer 33 //===----------------------------------------------------------------------===// 34 35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 36 // of these for known things. 37 enum Token { 38 tok_eof = -1, 39 40 // commands 41 tok_def = -2, 42 tok_extern = -3, 43 44 // primary 45 tok_identifier = -4, 46 tok_number = -5, 47 48 // control 49 tok_if = -6, 50 tok_then = -7, 51 tok_else = -8, 52 tok_for = -9, 53 tok_in = -10, 54 55 // operators 56 tok_binary = -11, 57 tok_unary = -12, 58 59 // var definition 60 tok_var = -13 61 }; 62 63 static std::string IdentifierStr; // Filled in if tok_identifier 64 static double NumVal; // Filled in if tok_number 65 66 /// gettok - Return the next token from standard input. 67 static int gettok() { 68 static int LastChar = ' '; 69 70 // Skip any whitespace. 71 while (isspace(LastChar)) 72 LastChar = getchar(); 73 74 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 75 IdentifierStr = LastChar; 76 while (isalnum((LastChar = getchar()))) 77 IdentifierStr += LastChar; 78 79 if (IdentifierStr == "def") 80 return tok_def; 81 if (IdentifierStr == "extern") 82 return tok_extern; 83 if (IdentifierStr == "if") 84 return tok_if; 85 if (IdentifierStr == "then") 86 return tok_then; 87 if (IdentifierStr == "else") 88 return tok_else; 89 if (IdentifierStr == "for") 90 return tok_for; 91 if (IdentifierStr == "in") 92 return tok_in; 93 if (IdentifierStr == "binary") 94 return tok_binary; 95 if (IdentifierStr == "unary") 96 return tok_unary; 97 if (IdentifierStr == "var") 98 return tok_var; 99 return tok_identifier; 100 } 101 102 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 103 std::string NumStr; 104 do { 105 NumStr += LastChar; 106 LastChar = getchar(); 107 } while (isdigit(LastChar) || LastChar == '.'); 108 109 NumVal = strtod(NumStr.c_str(), nullptr); 110 return tok_number; 111 } 112 113 if (LastChar == '#') { 114 // Comment until end of line. 115 do 116 LastChar = getchar(); 117 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 118 119 if (LastChar != EOF) 120 return gettok(); 121 } 122 123 // Check for end of file. Don't eat the EOF. 124 if (LastChar == EOF) 125 return tok_eof; 126 127 // Otherwise, just return the character as its ascii value. 128 int ThisChar = LastChar; 129 LastChar = getchar(); 130 return ThisChar; 131 } 132 133 //===----------------------------------------------------------------------===// 134 // Abstract Syntax Tree (aka Parse Tree) 135 //===----------------------------------------------------------------------===// 136 137 namespace { 138 139 /// ExprAST - Base class for all expression nodes. 140 class ExprAST { 141 public: 142 virtual ~ExprAST() = default; 143 144 virtual Value *codegen() = 0; 145 }; 146 147 /// NumberExprAST - Expression class for numeric literals like "1.0". 148 class NumberExprAST : public ExprAST { 149 double Val; 150 151 public: 152 NumberExprAST(double Val) : Val(Val) {} 153 154 Value *codegen() override; 155 }; 156 157 /// VariableExprAST - Expression class for referencing a variable, like "a". 158 class VariableExprAST : public ExprAST { 159 std::string Name; 160 161 public: 162 VariableExprAST(const std::string &Name) : Name(Name) {} 163 164 Value *codegen() override; 165 const std::string &getName() const { return Name; } 166 }; 167 168 /// UnaryExprAST - Expression class for a unary operator. 169 class UnaryExprAST : public ExprAST { 170 char Opcode; 171 std::unique_ptr<ExprAST> Operand; 172 173 public: 174 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) 175 : Opcode(Opcode), Operand(std::move(Operand)) {} 176 177 Value *codegen() override; 178 }; 179 180 /// BinaryExprAST - Expression class for a binary operator. 181 class BinaryExprAST : public ExprAST { 182 char Op; 183 std::unique_ptr<ExprAST> LHS, RHS; 184 185 public: 186 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS, 187 std::unique_ptr<ExprAST> RHS) 188 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} 189 190 Value *codegen() override; 191 }; 192 193 /// CallExprAST - Expression class for function calls. 194 class CallExprAST : public ExprAST { 195 std::string Callee; 196 std::vector<std::unique_ptr<ExprAST>> Args; 197 198 public: 199 CallExprAST(const std::string &Callee, 200 std::vector<std::unique_ptr<ExprAST>> Args) 201 : Callee(Callee), Args(std::move(Args)) {} 202 203 Value *codegen() override; 204 }; 205 206 /// IfExprAST - Expression class for if/then/else. 207 class IfExprAST : public ExprAST { 208 std::unique_ptr<ExprAST> Cond, Then, Else; 209 210 public: 211 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then, 212 std::unique_ptr<ExprAST> Else) 213 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} 214 215 Value *codegen() override; 216 }; 217 218 /// ForExprAST - Expression class for for/in. 219 class ForExprAST : public ExprAST { 220 std::string VarName; 221 std::unique_ptr<ExprAST> Start, End, Step, Body; 222 223 public: 224 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start, 225 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step, 226 std::unique_ptr<ExprAST> Body) 227 : VarName(VarName), Start(std::move(Start)), End(std::move(End)), 228 Step(std::move(Step)), Body(std::move(Body)) {} 229 230 Value *codegen() override; 231 }; 232 233 /// VarExprAST - Expression class for var/in 234 class VarExprAST : public ExprAST { 235 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; 236 std::unique_ptr<ExprAST> Body; 237 238 public: 239 VarExprAST( 240 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames, 241 std::unique_ptr<ExprAST> Body) 242 : VarNames(std::move(VarNames)), Body(std::move(Body)) {} 243 244 Value *codegen() override; 245 }; 246 247 /// PrototypeAST - This class represents the "prototype" for a function, 248 /// which captures its name, and its argument names (thus implicitly the number 249 /// of arguments the function takes), as well as if it is an operator. 250 class PrototypeAST { 251 std::string Name; 252 std::vector<std::string> Args; 253 bool IsOperator; 254 unsigned Precedence; // Precedence if a binary op. 255 256 public: 257 PrototypeAST(const std::string &Name, std::vector<std::string> Args, 258 bool IsOperator = false, unsigned Prec = 0) 259 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator), 260 Precedence(Prec) {} 261 262 Function *codegen(); 263 const std::string &getName() const { return Name; } 264 265 bool isUnaryOp() const { return IsOperator && Args.size() == 1; } 266 bool isBinaryOp() const { return IsOperator && Args.size() == 2; } 267 268 char getOperatorName() const { 269 assert(isUnaryOp() || isBinaryOp()); 270 return Name[Name.size() - 1]; 271 } 272 273 unsigned getBinaryPrecedence() const { return Precedence; } 274 }; 275 276 /// FunctionAST - This class represents a function definition itself. 277 class FunctionAST { 278 std::unique_ptr<PrototypeAST> Proto; 279 std::unique_ptr<ExprAST> Body; 280 281 public: 282 FunctionAST(std::unique_ptr<PrototypeAST> Proto, 283 std::unique_ptr<ExprAST> Body) 284 : Proto(std::move(Proto)), Body(std::move(Body)) {} 285 286 Function *codegen(); 287 }; 288 289 } // end anonymous namespace 290 291 //===----------------------------------------------------------------------===// 292 // Parser 293 //===----------------------------------------------------------------------===// 294 295 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 296 /// token the parser is looking at. getNextToken reads another token from the 297 /// lexer and updates CurTok with its results. 298 static int CurTok; 299 static int getNextToken() { return CurTok = gettok(); } 300 301 /// BinopPrecedence - This holds the precedence for each binary operator that is 302 /// defined. 303 static std::map<char, int> BinopPrecedence; 304 305 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 306 static int GetTokPrecedence() { 307 if (!isascii(CurTok)) 308 return -1; 309 310 // Make sure it's a declared binop. 311 int TokPrec = BinopPrecedence[CurTok]; 312 if (TokPrec <= 0) 313 return -1; 314 return TokPrec; 315 } 316 317 /// LogError* - These are little helper functions for error handling. 318 std::unique_ptr<ExprAST> LogError(const char *Str) { 319 fprintf(stderr, "Error: %s\n", Str); 320 return nullptr; 321 } 322 323 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) { 324 LogError(Str); 325 return nullptr; 326 } 327 328 static std::unique_ptr<ExprAST> ParseExpression(); 329 330 /// numberexpr ::= number 331 static std::unique_ptr<ExprAST> ParseNumberExpr() { 332 auto Result = std::make_unique<NumberExprAST>(NumVal); 333 getNextToken(); // consume the number 334 return std::move(Result); 335 } 336 337 /// parenexpr ::= '(' expression ')' 338 static std::unique_ptr<ExprAST> ParseParenExpr() { 339 getNextToken(); // eat (. 340 auto V = ParseExpression(); 341 if (!V) 342 return nullptr; 343 344 if (CurTok != ')') 345 return LogError("expected ')'"); 346 getNextToken(); // eat ). 347 return V; 348 } 349 350 /// identifierexpr 351 /// ::= identifier 352 /// ::= identifier '(' expression* ')' 353 static std::unique_ptr<ExprAST> ParseIdentifierExpr() { 354 std::string IdName = IdentifierStr; 355 356 getNextToken(); // eat identifier. 357 358 if (CurTok != '(') // Simple variable ref. 359 return std::make_unique<VariableExprAST>(IdName); 360 361 // Call. 362 getNextToken(); // eat ( 363 std::vector<std::unique_ptr<ExprAST>> Args; 364 if (CurTok != ')') { 365 while (true) { 366 if (auto Arg = ParseExpression()) 367 Args.push_back(std::move(Arg)); 368 else 369 return nullptr; 370 371 if (CurTok == ')') 372 break; 373 374 if (CurTok != ',') 375 return LogError("Expected ')' or ',' in argument list"); 376 getNextToken(); 377 } 378 } 379 380 // Eat the ')'. 381 getNextToken(); 382 383 return std::make_unique<CallExprAST>(IdName, std::move(Args)); 384 } 385 386 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 387 static std::unique_ptr<ExprAST> ParseIfExpr() { 388 getNextToken(); // eat the if. 389 390 // condition. 391 auto Cond = ParseExpression(); 392 if (!Cond) 393 return nullptr; 394 395 if (CurTok != tok_then) 396 return LogError("expected then"); 397 getNextToken(); // eat the then 398 399 auto Then = ParseExpression(); 400 if (!Then) 401 return nullptr; 402 403 if (CurTok != tok_else) 404 return LogError("expected else"); 405 406 getNextToken(); 407 408 auto Else = ParseExpression(); 409 if (!Else) 410 return nullptr; 411 412 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then), 413 std::move(Else)); 414 } 415 416 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 417 static std::unique_ptr<ExprAST> ParseForExpr() { 418 getNextToken(); // eat the for. 419 420 if (CurTok != tok_identifier) 421 return LogError("expected identifier after for"); 422 423 std::string IdName = IdentifierStr; 424 getNextToken(); // eat identifier. 425 426 if (CurTok != '=') 427 return LogError("expected '=' after for"); 428 getNextToken(); // eat '='. 429 430 auto Start = ParseExpression(); 431 if (!Start) 432 return nullptr; 433 if (CurTok != ',') 434 return LogError("expected ',' after for start value"); 435 getNextToken(); 436 437 auto End = ParseExpression(); 438 if (!End) 439 return nullptr; 440 441 // The step value is optional. 442 std::unique_ptr<ExprAST> Step; 443 if (CurTok == ',') { 444 getNextToken(); 445 Step = ParseExpression(); 446 if (!Step) 447 return nullptr; 448 } 449 450 if (CurTok != tok_in) 451 return LogError("expected 'in' after for"); 452 getNextToken(); // eat 'in'. 453 454 auto Body = ParseExpression(); 455 if (!Body) 456 return nullptr; 457 458 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End), 459 std::move(Step), std::move(Body)); 460 } 461 462 /// varexpr ::= 'var' identifier ('=' expression)? 463 // (',' identifier ('=' expression)?)* 'in' expression 464 static std::unique_ptr<ExprAST> ParseVarExpr() { 465 getNextToken(); // eat the var. 466 467 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; 468 469 // At least one variable name is required. 470 if (CurTok != tok_identifier) 471 return LogError("expected identifier after var"); 472 473 while (true) { 474 std::string Name = IdentifierStr; 475 getNextToken(); // eat identifier. 476 477 // Read the optional initializer. 478 std::unique_ptr<ExprAST> Init = nullptr; 479 if (CurTok == '=') { 480 getNextToken(); // eat the '='. 481 482 Init = ParseExpression(); 483 if (!Init) 484 return nullptr; 485 } 486 487 VarNames.push_back(std::make_pair(Name, std::move(Init))); 488 489 // End of var list, exit loop. 490 if (CurTok != ',') 491 break; 492 getNextToken(); // eat the ','. 493 494 if (CurTok != tok_identifier) 495 return LogError("expected identifier list after var"); 496 } 497 498 // At this point, we have to have 'in'. 499 if (CurTok != tok_in) 500 return LogError("expected 'in' keyword after 'var'"); 501 getNextToken(); // eat 'in'. 502 503 auto Body = ParseExpression(); 504 if (!Body) 505 return nullptr; 506 507 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body)); 508 } 509 510 /// primary 511 /// ::= identifierexpr 512 /// ::= numberexpr 513 /// ::= parenexpr 514 /// ::= ifexpr 515 /// ::= forexpr 516 /// ::= varexpr 517 static std::unique_ptr<ExprAST> ParsePrimary() { 518 switch (CurTok) { 519 default: 520 return LogError("unknown token when expecting an expression"); 521 case tok_identifier: 522 return ParseIdentifierExpr(); 523 case tok_number: 524 return ParseNumberExpr(); 525 case '(': 526 return ParseParenExpr(); 527 case tok_if: 528 return ParseIfExpr(); 529 case tok_for: 530 return ParseForExpr(); 531 case tok_var: 532 return ParseVarExpr(); 533 } 534 } 535 536 /// unary 537 /// ::= primary 538 /// ::= '!' unary 539 static std::unique_ptr<ExprAST> ParseUnary() { 540 // If the current token is not an operator, it must be a primary expr. 541 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 542 return ParsePrimary(); 543 544 // If this is a unary operator, read it. 545 int Opc = CurTok; 546 getNextToken(); 547 if (auto Operand = ParseUnary()) 548 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand)); 549 return nullptr; 550 } 551 552 /// binoprhs 553 /// ::= ('+' unary)* 554 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, 555 std::unique_ptr<ExprAST> LHS) { 556 // If this is a binop, find its precedence. 557 while (true) { 558 int TokPrec = GetTokPrecedence(); 559 560 // If this is a binop that binds at least as tightly as the current binop, 561 // consume it, otherwise we are done. 562 if (TokPrec < ExprPrec) 563 return LHS; 564 565 // Okay, we know this is a binop. 566 int BinOp = CurTok; 567 getNextToken(); // eat binop 568 569 // Parse the unary expression after the binary operator. 570 auto RHS = ParseUnary(); 571 if (!RHS) 572 return nullptr; 573 574 // If BinOp binds less tightly with RHS than the operator after RHS, let 575 // the pending operator take RHS as its LHS. 576 int NextPrec = GetTokPrecedence(); 577 if (TokPrec < NextPrec) { 578 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); 579 if (!RHS) 580 return nullptr; 581 } 582 583 // Merge LHS/RHS. 584 LHS = 585 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS)); 586 } 587 } 588 589 /// expression 590 /// ::= unary binoprhs 591 /// 592 static std::unique_ptr<ExprAST> ParseExpression() { 593 auto LHS = ParseUnary(); 594 if (!LHS) 595 return nullptr; 596 597 return ParseBinOpRHS(0, std::move(LHS)); 598 } 599 600 /// prototype 601 /// ::= id '(' id* ')' 602 /// ::= binary LETTER number? (id, id) 603 /// ::= unary LETTER (id) 604 static std::unique_ptr<PrototypeAST> ParsePrototype() { 605 std::string FnName; 606 607 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 608 unsigned BinaryPrecedence = 30; 609 610 switch (CurTok) { 611 default: 612 return LogErrorP("Expected function name in prototype"); 613 case tok_identifier: 614 FnName = IdentifierStr; 615 Kind = 0; 616 getNextToken(); 617 break; 618 case tok_unary: 619 getNextToken(); 620 if (!isascii(CurTok)) 621 return LogErrorP("Expected unary operator"); 622 FnName = "unary"; 623 FnName += (char)CurTok; 624 Kind = 1; 625 getNextToken(); 626 break; 627 case tok_binary: 628 getNextToken(); 629 if (!isascii(CurTok)) 630 return LogErrorP("Expected binary operator"); 631 FnName = "binary"; 632 FnName += (char)CurTok; 633 Kind = 2; 634 getNextToken(); 635 636 // Read the precedence if present. 637 if (CurTok == tok_number) { 638 if (NumVal < 1 || NumVal > 100) 639 return LogErrorP("Invalid precedecnce: must be 1..100"); 640 BinaryPrecedence = (unsigned)NumVal; 641 getNextToken(); 642 } 643 break; 644 } 645 646 if (CurTok != '(') 647 return LogErrorP("Expected '(' in prototype"); 648 649 std::vector<std::string> ArgNames; 650 while (getNextToken() == tok_identifier) 651 ArgNames.push_back(IdentifierStr); 652 if (CurTok != ')') 653 return LogErrorP("Expected ')' in prototype"); 654 655 // success. 656 getNextToken(); // eat ')'. 657 658 // Verify right number of names for operator. 659 if (Kind && ArgNames.size() != Kind) 660 return LogErrorP("Invalid number of operands for operator"); 661 662 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0, 663 BinaryPrecedence); 664 } 665 666 /// definition ::= 'def' prototype expression 667 static std::unique_ptr<FunctionAST> ParseDefinition() { 668 getNextToken(); // eat def. 669 auto Proto = ParsePrototype(); 670 if (!Proto) 671 return nullptr; 672 673 if (auto E = ParseExpression()) 674 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E)); 675 return nullptr; 676 } 677 678 /// toplevelexpr ::= expression 679 static std::unique_ptr<FunctionAST> ParseTopLevelExpr(unsigned ExprCount) { 680 if (auto E = ParseExpression()) { 681 // Make an anonymous proto. 682 auto Proto = std::make_unique<PrototypeAST> 683 (("__anon_expr" + Twine(ExprCount)).str(), std::vector<std::string>()); 684 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E)); 685 } 686 return nullptr; 687 } 688 689 /// external ::= 'extern' prototype 690 static std::unique_ptr<PrototypeAST> ParseExtern() { 691 getNextToken(); // eat extern. 692 return ParsePrototype(); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // Code Generation 697 //===----------------------------------------------------------------------===// 698 699 static std::unique_ptr<KaleidoscopeJIT> TheJIT; 700 static LLVMContext *TheContext; 701 static std::unique_ptr<IRBuilder<>> Builder; 702 static std::unique_ptr<Module> TheModule; 703 static std::map<std::string, AllocaInst *> NamedValues; 704 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos; 705 static ExitOnError ExitOnErr; 706 707 Value *LogErrorV(const char *Str) { 708 LogError(Str); 709 return nullptr; 710 } 711 712 Function *getFunction(std::string Name) { 713 // First, see if the function has already been added to the current module. 714 if (auto *F = TheModule->getFunction(Name)) 715 return F; 716 717 // If not, check whether we can codegen the declaration from some existing 718 // prototype. 719 auto FI = FunctionProtos.find(Name); 720 if (FI != FunctionProtos.end()) 721 return FI->second->codegen(); 722 723 // If no existing prototype exists, return null. 724 return nullptr; 725 } 726 727 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 728 /// the function. This is used for mutable variables etc. 729 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 730 StringRef VarName) { 731 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 732 TheFunction->getEntryBlock().begin()); 733 return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName); 734 } 735 736 Value *NumberExprAST::codegen() { 737 return ConstantFP::get(*TheContext, APFloat(Val)); 738 } 739 740 Value *VariableExprAST::codegen() { 741 // Look this variable up in the function. 742 Value *V = NamedValues[Name]; 743 if (!V) 744 return LogErrorV("Unknown variable name"); 745 746 // Load the value. 747 return Builder->CreateLoad(V, Name.c_str()); 748 } 749 750 Value *UnaryExprAST::codegen() { 751 Value *OperandV = Operand->codegen(); 752 if (!OperandV) 753 return nullptr; 754 755 Function *F = getFunction(std::string("unary") + Opcode); 756 if (!F) 757 return LogErrorV("Unknown unary operator"); 758 759 return Builder->CreateCall(F, OperandV, "unop"); 760 } 761 762 Value *BinaryExprAST::codegen() { 763 // Special case '=' because we don't want to emit the LHS as an expression. 764 if (Op == '=') { 765 // Assignment requires the LHS to be an identifier. 766 // This assume we're building without RTTI because LLVM builds that way by 767 // default. If you build LLVM with RTTI this can be changed to a 768 // dynamic_cast for automatic error checking. 769 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get()); 770 if (!LHSE) 771 return LogErrorV("destination of '=' must be a variable"); 772 // Codegen the RHS. 773 Value *Val = RHS->codegen(); 774 if (!Val) 775 return nullptr; 776 777 // Look up the name. 778 Value *Variable = NamedValues[LHSE->getName()]; 779 if (!Variable) 780 return LogErrorV("Unknown variable name"); 781 782 Builder->CreateStore(Val, Variable); 783 return Val; 784 } 785 786 Value *L = LHS->codegen(); 787 Value *R = RHS->codegen(); 788 if (!L || !R) 789 return nullptr; 790 791 switch (Op) { 792 case '+': 793 return Builder->CreateFAdd(L, R, "addtmp"); 794 case '-': 795 return Builder->CreateFSub(L, R, "subtmp"); 796 case '*': 797 return Builder->CreateFMul(L, R, "multmp"); 798 case '<': 799 L = Builder->CreateFCmpULT(L, R, "cmptmp"); 800 // Convert bool 0/1 to double 0.0 or 1.0 801 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp"); 802 default: 803 break; 804 } 805 806 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 807 // a call to it. 808 Function *F = getFunction(std::string("binary") + Op); 809 assert(F && "binary operator not found!"); 810 811 Value *Ops[] = {L, R}; 812 return Builder->CreateCall(F, Ops, "binop"); 813 } 814 815 Value *CallExprAST::codegen() { 816 // Look up the name in the global module table. 817 Function *CalleeF = getFunction(Callee); 818 if (!CalleeF) 819 return LogErrorV("Unknown function referenced"); 820 821 // If argument mismatch error. 822 if (CalleeF->arg_size() != Args.size()) 823 return LogErrorV("Incorrect # arguments passed"); 824 825 std::vector<Value *> ArgsV; 826 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 827 ArgsV.push_back(Args[i]->codegen()); 828 if (!ArgsV.back()) 829 return nullptr; 830 } 831 832 return Builder->CreateCall(CalleeF, ArgsV, "calltmp"); 833 } 834 835 Value *IfExprAST::codegen() { 836 Value *CondV = Cond->codegen(); 837 if (!CondV) 838 return nullptr; 839 840 // Convert condition to a bool by comparing equal to 0.0. 841 CondV = Builder->CreateFCmpONE( 842 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond"); 843 844 Function *TheFunction = Builder->GetInsertBlock()->getParent(); 845 846 // Create blocks for the then and else cases. Insert the 'then' block at the 847 // end of the function. 848 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction); 849 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else"); 850 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont"); 851 852 Builder->CreateCondBr(CondV, ThenBB, ElseBB); 853 854 // Emit then value. 855 Builder->SetInsertPoint(ThenBB); 856 857 Value *ThenV = Then->codegen(); 858 if (!ThenV) 859 return nullptr; 860 861 Builder->CreateBr(MergeBB); 862 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 863 ThenBB = Builder->GetInsertBlock(); 864 865 // Emit else block. 866 TheFunction->getBasicBlockList().push_back(ElseBB); 867 Builder->SetInsertPoint(ElseBB); 868 869 Value *ElseV = Else->codegen(); 870 if (!ElseV) 871 return nullptr; 872 873 Builder->CreateBr(MergeBB); 874 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 875 ElseBB = Builder->GetInsertBlock(); 876 877 // Emit merge block. 878 TheFunction->getBasicBlockList().push_back(MergeBB); 879 Builder->SetInsertPoint(MergeBB); 880 PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp"); 881 882 PN->addIncoming(ThenV, ThenBB); 883 PN->addIncoming(ElseV, ElseBB); 884 return PN; 885 } 886 887 // Output for-loop as: 888 // var = alloca double 889 // ... 890 // start = startexpr 891 // store start -> var 892 // goto loop 893 // loop: 894 // ... 895 // bodyexpr 896 // ... 897 // loopend: 898 // step = stepexpr 899 // endcond = endexpr 900 // 901 // curvar = load var 902 // nextvar = curvar + step 903 // store nextvar -> var 904 // br endcond, loop, endloop 905 // outloop: 906 Value *ForExprAST::codegen() { 907 Function *TheFunction = Builder->GetInsertBlock()->getParent(); 908 909 // Create an alloca for the variable in the entry block. 910 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 911 912 // Emit the start code first, without 'variable' in scope. 913 Value *StartVal = Start->codegen(); 914 if (!StartVal) 915 return nullptr; 916 917 // Store the value into the alloca. 918 Builder->CreateStore(StartVal, Alloca); 919 920 // Make the new basic block for the loop header, inserting after current 921 // block. 922 BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction); 923 924 // Insert an explicit fall through from the current block to the LoopBB. 925 Builder->CreateBr(LoopBB); 926 927 // Start insertion in LoopBB. 928 Builder->SetInsertPoint(LoopBB); 929 930 // Within the loop, the variable is defined equal to the PHI node. If it 931 // shadows an existing variable, we have to restore it, so save it now. 932 AllocaInst *OldVal = NamedValues[VarName]; 933 NamedValues[VarName] = Alloca; 934 935 // Emit the body of the loop. This, like any other expr, can change the 936 // current BB. Note that we ignore the value computed by the body, but don't 937 // allow an error. 938 if (!Body->codegen()) 939 return nullptr; 940 941 // Emit the step value. 942 Value *StepVal = nullptr; 943 if (Step) { 944 StepVal = Step->codegen(); 945 if (!StepVal) 946 return nullptr; 947 } else { 948 // If not specified, use 1.0. 949 StepVal = ConstantFP::get(*TheContext, APFloat(1.0)); 950 } 951 952 // Compute the end condition. 953 Value *EndCond = End->codegen(); 954 if (!EndCond) 955 return nullptr; 956 957 // Reload, increment, and restore the alloca. This handles the case where 958 // the body of the loop mutates the variable. 959 Value *CurVar = Builder->CreateLoad(Alloca, VarName.c_str()); 960 Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar"); 961 Builder->CreateStore(NextVar, Alloca); 962 963 // Convert condition to a bool by comparing equal to 0.0. 964 EndCond = Builder->CreateFCmpONE( 965 EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond"); 966 967 // Create the "after loop" block and insert it. 968 BasicBlock *AfterBB = 969 BasicBlock::Create(*TheContext, "afterloop", TheFunction); 970 971 // Insert the conditional branch into the end of LoopEndBB. 972 Builder->CreateCondBr(EndCond, LoopBB, AfterBB); 973 974 // Any new code will be inserted in AfterBB. 975 Builder->SetInsertPoint(AfterBB); 976 977 // Restore the unshadowed variable. 978 if (OldVal) 979 NamedValues[VarName] = OldVal; 980 else 981 NamedValues.erase(VarName); 982 983 // for expr always returns 0.0. 984 return Constant::getNullValue(Type::getDoubleTy(*TheContext)); 985 } 986 987 Value *VarExprAST::codegen() { 988 std::vector<AllocaInst *> OldBindings; 989 990 Function *TheFunction = Builder->GetInsertBlock()->getParent(); 991 992 // Register all variables and emit their initializer. 993 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 994 const std::string &VarName = VarNames[i].first; 995 ExprAST *Init = VarNames[i].second.get(); 996 997 // Emit the initializer before adding the variable to scope, this prevents 998 // the initializer from referencing the variable itself, and permits stuff 999 // like this: 1000 // var a = 1 in 1001 // var a = a in ... # refers to outer 'a'. 1002 Value *InitVal; 1003 if (Init) { 1004 InitVal = Init->codegen(); 1005 if (!InitVal) 1006 return nullptr; 1007 } else { // If not specified, use 0.0. 1008 InitVal = ConstantFP::get(*TheContext, APFloat(0.0)); 1009 } 1010 1011 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1012 Builder->CreateStore(InitVal, Alloca); 1013 1014 // Remember the old variable binding so that we can restore the binding when 1015 // we unrecurse. 1016 OldBindings.push_back(NamedValues[VarName]); 1017 1018 // Remember this binding. 1019 NamedValues[VarName] = Alloca; 1020 } 1021 1022 // Codegen the body, now that all vars are in scope. 1023 Value *BodyVal = Body->codegen(); 1024 if (!BodyVal) 1025 return nullptr; 1026 1027 // Pop all our variables from scope. 1028 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1029 NamedValues[VarNames[i].first] = OldBindings[i]; 1030 1031 // Return the body computation. 1032 return BodyVal; 1033 } 1034 1035 Function *PrototypeAST::codegen() { 1036 // Make the function type: double(double,double) etc. 1037 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext)); 1038 FunctionType *FT = 1039 FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false); 1040 1041 Function *F = 1042 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get()); 1043 1044 // Set names for all arguments. 1045 unsigned Idx = 0; 1046 for (auto &Arg : F->args()) 1047 Arg.setName(Args[Idx++]); 1048 1049 return F; 1050 } 1051 1052 Function *FunctionAST::codegen() { 1053 // Transfer ownership of the prototype to the FunctionProtos map, but keep a 1054 // reference to it for use below. 1055 auto &P = *Proto; 1056 FunctionProtos[Proto->getName()] = std::move(Proto); 1057 Function *TheFunction = getFunction(P.getName()); 1058 if (!TheFunction) 1059 return nullptr; 1060 1061 // If this is an operator, install it. 1062 if (P.isBinaryOp()) 1063 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence(); 1064 1065 // Create a new basic block to start insertion into. 1066 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction); 1067 Builder->SetInsertPoint(BB); 1068 1069 // Record the function arguments in the NamedValues map. 1070 NamedValues.clear(); 1071 for (auto &Arg : TheFunction->args()) { 1072 // Create an alloca for this variable. 1073 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName()); 1074 1075 // Store the initial value into the alloca. 1076 Builder->CreateStore(&Arg, Alloca); 1077 1078 // Add arguments to variable symbol table. 1079 NamedValues[std::string(Arg.getName())] = Alloca; 1080 } 1081 1082 if (Value *RetVal = Body->codegen()) { 1083 // Finish off the function. 1084 Builder->CreateRet(RetVal); 1085 1086 // Validate the generated code, checking for consistency. 1087 verifyFunction(*TheFunction); 1088 1089 return TheFunction; 1090 } 1091 1092 // Error reading body, remove function. 1093 TheFunction->eraseFromParent(); 1094 1095 if (P.isBinaryOp()) 1096 BinopPrecedence.erase(P.getOperatorName()); 1097 return nullptr; 1098 } 1099 1100 //===----------------------------------------------------------------------===// 1101 // Top-Level parsing and JIT Driver 1102 //===----------------------------------------------------------------------===// 1103 1104 static void InitializeModule() { 1105 // Open a new module. 1106 TheModule = std::make_unique<Module>("my cool jit", *TheContext); 1107 TheModule->setDataLayout(TheJIT->getDataLayout()); 1108 1109 // Create a new builder for the module. 1110 Builder = std::make_unique<IRBuilder<>>(*TheContext); 1111 } 1112 1113 static void HandleDefinition() { 1114 if (auto FnAST = ParseDefinition()) { 1115 if (auto *FnIR = FnAST->codegen()) { 1116 fprintf(stderr, "Read function definition:"); 1117 FnIR->print(errs()); 1118 fprintf(stderr, "\n"); 1119 ExitOnErr(TheJIT->addModule(std::move(TheModule))); 1120 InitializeModule(); 1121 } 1122 } else { 1123 // Skip token for error recovery. 1124 getNextToken(); 1125 } 1126 } 1127 1128 static void HandleExtern() { 1129 if (auto ProtoAST = ParseExtern()) { 1130 if (auto *FnIR = ProtoAST->codegen()) { 1131 fprintf(stderr, "Read extern: "); 1132 FnIR->print(errs()); 1133 fprintf(stderr, "\n"); 1134 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST); 1135 } 1136 } else { 1137 // Skip token for error recovery. 1138 getNextToken(); 1139 } 1140 } 1141 1142 static void HandleTopLevelExpression() { 1143 static unsigned ExprCount = 0; 1144 1145 // Update ExprCount. This number will be added to anonymous expressions to 1146 // prevent them from clashing. 1147 ++ExprCount; 1148 1149 // Evaluate a top-level expression into an anonymous function. 1150 if (auto FnAST = ParseTopLevelExpr(ExprCount)) { 1151 if (FnAST->codegen()) { 1152 // JIT the module containing the anonymous expression, keeping a handle so 1153 // we can free it later. 1154 ExitOnErr(TheJIT->addModule(std::move(TheModule))); 1155 InitializeModule(); 1156 1157 // Get the anonymous expression's JITSymbol. 1158 auto Sym = 1159 ExitOnErr(TheJIT->lookup(("__anon_expr" + Twine(ExprCount)).str())); 1160 1161 auto *FP = (double (*)())(intptr_t)Sym.getAddress(); 1162 assert(FP && "Failed to codegen function"); 1163 fprintf(stderr, "Evaluated to %f\n", FP()); 1164 } 1165 } else { 1166 // Skip token for error recovery. 1167 getNextToken(); 1168 } 1169 } 1170 1171 /// top ::= definition | external | expression | ';' 1172 static void MainLoop() { 1173 while (true) { 1174 fprintf(stderr, "ready> "); 1175 switch (CurTok) { 1176 case tok_eof: 1177 return; 1178 case ';': // ignore top-level semicolons. 1179 getNextToken(); 1180 break; 1181 case tok_def: 1182 HandleDefinition(); 1183 break; 1184 case tok_extern: 1185 HandleExtern(); 1186 break; 1187 default: 1188 HandleTopLevelExpression(); 1189 break; 1190 } 1191 } 1192 } 1193 1194 //===----------------------------------------------------------------------===// 1195 // "Library" functions that can be "extern'd" from user code. 1196 //===----------------------------------------------------------------------===// 1197 1198 /// putchard - putchar that takes a double and returns 0. 1199 extern "C" double putchard(double X) { 1200 fputc((char)X, stderr); 1201 return 0; 1202 } 1203 1204 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1205 extern "C" double printd(double X) { 1206 fprintf(stderr, "%f\n", X); 1207 return 0; 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Main driver code. 1212 //===----------------------------------------------------------------------===// 1213 1214 int main() { 1215 InitializeNativeTarget(); 1216 InitializeNativeTargetAsmPrinter(); 1217 InitializeNativeTargetAsmParser(); 1218 1219 // Install standard binary operators. 1220 // 1 is lowest precedence. 1221 BinopPrecedence['='] = 2; 1222 BinopPrecedence['<'] = 10; 1223 BinopPrecedence['+'] = 20; 1224 BinopPrecedence['-'] = 20; 1225 BinopPrecedence['*'] = 40; // highest. 1226 1227 // Prime the first token. 1228 fprintf(stderr, "ready> "); 1229 getNextToken(); 1230 1231 TheJIT = ExitOnErr(KaleidoscopeJIT::Create()); 1232 TheContext = &TheJIT->getContext(); 1233 1234 InitializeModule(); 1235 1236 // Run the main "interpreter loop" now. 1237 MainLoop(); 1238 1239 return 0; 1240 } 1241