109467b48Spatrick //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// 209467b48Spatrick // 309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 609467b48Spatrick // 709467b48Spatrick //===----------------------------------------------------------------------===// 8*d415bd75Srobert /// 9*d415bd75Srobert /// \file 10*d415bd75Srobert /// This file defines the SparseMultiSet class, which adds multiset behavior to 11*d415bd75Srobert /// the SparseSet. 12*d415bd75Srobert /// 13*d415bd75Srobert /// A sparse multiset holds a small number of objects identified by integer keys 14*d415bd75Srobert /// from a moderately sized universe. The sparse multiset uses more memory than 15*d415bd75Srobert /// other containers in order to provide faster operations. Any key can map to 16*d415bd75Srobert /// multiple values. A SparseMultiSetNode class is provided, which serves as a 17*d415bd75Srobert /// convenient base class for the contents of a SparseMultiSet. 18*d415bd75Srobert /// 1909467b48Spatrick //===----------------------------------------------------------------------===// 2009467b48Spatrick 2109467b48Spatrick #ifndef LLVM_ADT_SPARSEMULTISET_H 2209467b48Spatrick #define LLVM_ADT_SPARSEMULTISET_H 2309467b48Spatrick 24*d415bd75Srobert #include "llvm/ADT/identity.h" 2509467b48Spatrick #include "llvm/ADT/SmallVector.h" 2609467b48Spatrick #include "llvm/ADT/SparseSet.h" 2709467b48Spatrick #include <cassert> 2809467b48Spatrick #include <cstdint> 2909467b48Spatrick #include <cstdlib> 3009467b48Spatrick #include <iterator> 3109467b48Spatrick #include <limits> 3209467b48Spatrick #include <utility> 3309467b48Spatrick 3409467b48Spatrick namespace llvm { 3509467b48Spatrick 3609467b48Spatrick /// Fast multiset implementation for objects that can be identified by small 3709467b48Spatrick /// unsigned keys. 3809467b48Spatrick /// 3909467b48Spatrick /// SparseMultiSet allocates memory proportional to the size of the key 4009467b48Spatrick /// universe, so it is not recommended for building composite data structures. 4109467b48Spatrick /// It is useful for algorithms that require a single set with fast operations. 4209467b48Spatrick /// 4309467b48Spatrick /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time 4409467b48Spatrick /// fast clear() as fast as a vector. The find(), insert(), and erase() 4509467b48Spatrick /// operations are all constant time, and typically faster than a hash table. 4609467b48Spatrick /// The iteration order doesn't depend on numerical key values, it only depends 4709467b48Spatrick /// on the order of insert() and erase() operations. Iteration order is the 4809467b48Spatrick /// insertion order. Iteration is only provided over elements of equivalent 4909467b48Spatrick /// keys, but iterators are bidirectional. 5009467b48Spatrick /// 5109467b48Spatrick /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but 5209467b48Spatrick /// offers constant-time clear() and size() operations as well as fast iteration 5309467b48Spatrick /// independent on the size of the universe. 5409467b48Spatrick /// 5509467b48Spatrick /// SparseMultiSet contains a dense vector holding all the objects and a sparse 5609467b48Spatrick /// array holding indexes into the dense vector. Most of the memory is used by 5709467b48Spatrick /// the sparse array which is the size of the key universe. The SparseT template 5809467b48Spatrick /// parameter provides a space/speed tradeoff for sets holding many elements. 5909467b48Spatrick /// 6009467b48Spatrick /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the 6109467b48Spatrick /// sparse array uses 4 x Universe bytes. 6209467b48Spatrick /// 6309467b48Spatrick /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache 6409467b48Spatrick /// lines, but the sparse array is 4x smaller. N is the number of elements in 6509467b48Spatrick /// the set. 6609467b48Spatrick /// 6709467b48Spatrick /// For sets that may grow to thousands of elements, SparseT should be set to 6809467b48Spatrick /// uint16_t or uint32_t. 6909467b48Spatrick /// 7009467b48Spatrick /// Multiset behavior is provided by providing doubly linked lists for values 7109467b48Spatrick /// that are inlined in the dense vector. SparseMultiSet is a good choice when 7209467b48Spatrick /// one desires a growable number of entries per key, as it will retain the 7309467b48Spatrick /// SparseSet algorithmic properties despite being growable. Thus, it is often a 7409467b48Spatrick /// better choice than a SparseSet of growable containers or a vector of 7509467b48Spatrick /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided 7609467b48Spatrick /// the iterators don't point to the element erased), allowing for more 7709467b48Spatrick /// intuitive and fast removal. 7809467b48Spatrick /// 7909467b48Spatrick /// @tparam ValueT The type of objects in the set. 8009467b48Spatrick /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 8109467b48Spatrick /// @tparam SparseT An unsigned integer type. See above. 8209467b48Spatrick /// 8309467b48Spatrick template<typename ValueT, 8409467b48Spatrick typename KeyFunctorT = identity<unsigned>, 8509467b48Spatrick typename SparseT = uint8_t> 8609467b48Spatrick class SparseMultiSet { 87*d415bd75Srobert static_assert(std::is_unsigned_v<SparseT>, 8809467b48Spatrick "SparseT must be an unsigned integer type"); 8909467b48Spatrick 9009467b48Spatrick /// The actual data that's stored, as a doubly-linked list implemented via 9109467b48Spatrick /// indices into the DenseVector. The doubly linked list is implemented 9209467b48Spatrick /// circular in Prev indices, and INVALID-terminated in Next indices. This 9309467b48Spatrick /// provides efficient access to list tails. These nodes can also be 9409467b48Spatrick /// tombstones, in which case they are actually nodes in a single-linked 9509467b48Spatrick /// freelist of recyclable slots. 9609467b48Spatrick struct SMSNode { 97097a140dSpatrick static constexpr unsigned INVALID = ~0U; 9809467b48Spatrick 9909467b48Spatrick ValueT Data; 10009467b48Spatrick unsigned Prev; 10109467b48Spatrick unsigned Next; 10209467b48Spatrick SMSNodeSMSNode10309467b48Spatrick SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} 10409467b48Spatrick 10509467b48Spatrick /// List tails have invalid Nexts. isTailSMSNode10609467b48Spatrick bool isTail() const { 10709467b48Spatrick return Next == INVALID; 10809467b48Spatrick } 10909467b48Spatrick 11009467b48Spatrick /// Whether this node is a tombstone node, and thus is in our freelist. isTombstoneSMSNode11109467b48Spatrick bool isTombstone() const { 11209467b48Spatrick return Prev == INVALID; 11309467b48Spatrick } 11409467b48Spatrick 11509467b48Spatrick /// Since the list is circular in Prev, all non-tombstone nodes have a valid 11609467b48Spatrick /// Prev. isValidSMSNode11709467b48Spatrick bool isValid() const { return Prev != INVALID; } 11809467b48Spatrick }; 11909467b48Spatrick 12009467b48Spatrick using KeyT = typename KeyFunctorT::argument_type; 12109467b48Spatrick using DenseT = SmallVector<SMSNode, 8>; 12209467b48Spatrick DenseT Dense; 12309467b48Spatrick SparseT *Sparse = nullptr; 12409467b48Spatrick unsigned Universe = 0; 12509467b48Spatrick KeyFunctorT KeyIndexOf; 12609467b48Spatrick SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 12709467b48Spatrick 12809467b48Spatrick /// We have a built-in recycler for reusing tombstone slots. This recycler 12909467b48Spatrick /// puts a singly-linked free list into tombstone slots, allowing us quick 13009467b48Spatrick /// erasure, iterator preservation, and dense size. 13109467b48Spatrick unsigned FreelistIdx = SMSNode::INVALID; 13209467b48Spatrick unsigned NumFree = 0; 13309467b48Spatrick sparseIndex(const ValueT & Val)13409467b48Spatrick unsigned sparseIndex(const ValueT &Val) const { 13509467b48Spatrick assert(ValIndexOf(Val) < Universe && 13609467b48Spatrick "Invalid key in set. Did object mutate?"); 13709467b48Spatrick return ValIndexOf(Val); 13809467b48Spatrick } sparseIndex(const SMSNode & N)13909467b48Spatrick unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } 14009467b48Spatrick 14109467b48Spatrick /// Whether the given entry is the head of the list. List heads's previous 14209467b48Spatrick /// pointers are to the tail of the list, allowing for efficient access to the 14309467b48Spatrick /// list tail. D must be a valid entry node. isHead(const SMSNode & D)14409467b48Spatrick bool isHead(const SMSNode &D) const { 14509467b48Spatrick assert(D.isValid() && "Invalid node for head"); 14609467b48Spatrick return Dense[D.Prev].isTail(); 14709467b48Spatrick } 14809467b48Spatrick 14909467b48Spatrick /// Whether the given entry is a singleton entry, i.e. the only entry with 15009467b48Spatrick /// that key. isSingleton(const SMSNode & N)15109467b48Spatrick bool isSingleton(const SMSNode &N) const { 15209467b48Spatrick assert(N.isValid() && "Invalid node for singleton"); 15309467b48Spatrick // Is N its own predecessor? 15409467b48Spatrick return &Dense[N.Prev] == &N; 15509467b48Spatrick } 15609467b48Spatrick 15709467b48Spatrick /// Add in the given SMSNode. Uses a free entry in our freelist if 15809467b48Spatrick /// available. Returns the index of the added node. addValue(const ValueT & V,unsigned Prev,unsigned Next)15909467b48Spatrick unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { 16009467b48Spatrick if (NumFree == 0) { 16109467b48Spatrick Dense.push_back(SMSNode(V, Prev, Next)); 16209467b48Spatrick return Dense.size() - 1; 16309467b48Spatrick } 16409467b48Spatrick 16509467b48Spatrick // Peel off a free slot 16609467b48Spatrick unsigned Idx = FreelistIdx; 16709467b48Spatrick unsigned NextFree = Dense[Idx].Next; 16809467b48Spatrick assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); 16909467b48Spatrick 17009467b48Spatrick Dense[Idx] = SMSNode(V, Prev, Next); 17109467b48Spatrick FreelistIdx = NextFree; 17209467b48Spatrick --NumFree; 17309467b48Spatrick return Idx; 17409467b48Spatrick } 17509467b48Spatrick 17609467b48Spatrick /// Make the current index a new tombstone. Pushes it onto the freelist. makeTombstone(unsigned Idx)17709467b48Spatrick void makeTombstone(unsigned Idx) { 17809467b48Spatrick Dense[Idx].Prev = SMSNode::INVALID; 17909467b48Spatrick Dense[Idx].Next = FreelistIdx; 18009467b48Spatrick FreelistIdx = Idx; 18109467b48Spatrick ++NumFree; 18209467b48Spatrick } 18309467b48Spatrick 18409467b48Spatrick public: 18509467b48Spatrick using value_type = ValueT; 18609467b48Spatrick using reference = ValueT &; 18709467b48Spatrick using const_reference = const ValueT &; 18809467b48Spatrick using pointer = ValueT *; 18909467b48Spatrick using const_pointer = const ValueT *; 19009467b48Spatrick using size_type = unsigned; 19109467b48Spatrick 19209467b48Spatrick SparseMultiSet() = default; 19309467b48Spatrick SparseMultiSet(const SparseMultiSet &) = delete; 19409467b48Spatrick SparseMultiSet &operator=(const SparseMultiSet &) = delete; ~SparseMultiSet()19509467b48Spatrick ~SparseMultiSet() { free(Sparse); } 19609467b48Spatrick 19709467b48Spatrick /// Set the universe size which determines the largest key the set can hold. 19809467b48Spatrick /// The universe must be sized before any elements can be added. 19909467b48Spatrick /// 20009467b48Spatrick /// @param U Universe size. All object keys must be less than U. 20109467b48Spatrick /// setUniverse(unsigned U)20209467b48Spatrick void setUniverse(unsigned U) { 20309467b48Spatrick // It's not hard to resize the universe on a non-empty set, but it doesn't 20409467b48Spatrick // seem like a likely use case, so we can add that code when we need it. 20509467b48Spatrick assert(empty() && "Can only resize universe on an empty map"); 20609467b48Spatrick // Hysteresis prevents needless reallocations. 20709467b48Spatrick if (U >= Universe/4 && U <= Universe) 20809467b48Spatrick return; 20909467b48Spatrick free(Sparse); 21009467b48Spatrick // The Sparse array doesn't actually need to be initialized, so malloc 21109467b48Spatrick // would be enough here, but that will cause tools like valgrind to 21209467b48Spatrick // complain about branching on uninitialized data. 21309467b48Spatrick Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 21409467b48Spatrick Universe = U; 21509467b48Spatrick } 21609467b48Spatrick 21709467b48Spatrick /// Our iterators are iterators over the collection of objects that share a 21809467b48Spatrick /// key. 21973471bf0Spatrick template <typename SMSPtrTy> class iterator_base { 22009467b48Spatrick friend class SparseMultiSet; 22109467b48Spatrick 22273471bf0Spatrick public: 22373471bf0Spatrick using iterator_category = std::bidirectional_iterator_tag; 22473471bf0Spatrick using value_type = ValueT; 22573471bf0Spatrick using difference_type = std::ptrdiff_t; 22673471bf0Spatrick using pointer = value_type *; 22773471bf0Spatrick using reference = value_type &; 22873471bf0Spatrick 22973471bf0Spatrick private: 23009467b48Spatrick SMSPtrTy SMS; 23109467b48Spatrick unsigned Idx; 23209467b48Spatrick unsigned SparseIdx; 23309467b48Spatrick iterator_base(SMSPtrTy P,unsigned I,unsigned SI)23409467b48Spatrick iterator_base(SMSPtrTy P, unsigned I, unsigned SI) 23509467b48Spatrick : SMS(P), Idx(I), SparseIdx(SI) {} 23609467b48Spatrick 23709467b48Spatrick /// Whether our iterator has fallen outside our dense vector. isEnd()23809467b48Spatrick bool isEnd() const { 23909467b48Spatrick if (Idx == SMSNode::INVALID) 24009467b48Spatrick return true; 24109467b48Spatrick 24209467b48Spatrick assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); 24309467b48Spatrick return false; 24409467b48Spatrick } 24509467b48Spatrick 24609467b48Spatrick /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid isKeyed()24709467b48Spatrick bool isKeyed() const { return SparseIdx < SMS->Universe; } 24809467b48Spatrick Prev()24909467b48Spatrick unsigned Prev() const { return SMS->Dense[Idx].Prev; } Next()25009467b48Spatrick unsigned Next() const { return SMS->Dense[Idx].Next; } 25109467b48Spatrick setPrev(unsigned P)25209467b48Spatrick void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } setNext(unsigned N)25309467b48Spatrick void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } 25409467b48Spatrick 25509467b48Spatrick public: 25609467b48Spatrick reference operator*() const { 25709467b48Spatrick assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && 25809467b48Spatrick "Dereferencing iterator of invalid key or index"); 25909467b48Spatrick 26009467b48Spatrick return SMS->Dense[Idx].Data; 26109467b48Spatrick } 26209467b48Spatrick pointer operator->() const { return &operator*(); } 26309467b48Spatrick 26409467b48Spatrick /// Comparison operators 26509467b48Spatrick bool operator==(const iterator_base &RHS) const { 26609467b48Spatrick // end compares equal 26709467b48Spatrick if (SMS == RHS.SMS && Idx == RHS.Idx) { 26809467b48Spatrick assert((isEnd() || SparseIdx == RHS.SparseIdx) && 26909467b48Spatrick "Same dense entry, but different keys?"); 27009467b48Spatrick return true; 27109467b48Spatrick } 27209467b48Spatrick 27309467b48Spatrick return false; 27409467b48Spatrick } 27509467b48Spatrick 27609467b48Spatrick bool operator!=(const iterator_base &RHS) const { 27709467b48Spatrick return !operator==(RHS); 27809467b48Spatrick } 27909467b48Spatrick 28009467b48Spatrick /// Increment and decrement operators 28109467b48Spatrick iterator_base &operator--() { // predecrement - Back up 28209467b48Spatrick assert(isKeyed() && "Decrementing an invalid iterator"); 28309467b48Spatrick assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && 28409467b48Spatrick "Decrementing head of list"); 28509467b48Spatrick 28609467b48Spatrick // If we're at the end, then issue a new find() 28709467b48Spatrick if (isEnd()) 28809467b48Spatrick Idx = SMS->findIndex(SparseIdx).Prev(); 28909467b48Spatrick else 29009467b48Spatrick Idx = Prev(); 29109467b48Spatrick 29209467b48Spatrick return *this; 29309467b48Spatrick } 29409467b48Spatrick iterator_base &operator++() { // preincrement - Advance 29509467b48Spatrick assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); 29609467b48Spatrick Idx = Next(); 29709467b48Spatrick return *this; 29809467b48Spatrick } 29909467b48Spatrick iterator_base operator--(int) { // postdecrement 30009467b48Spatrick iterator_base I(*this); 30109467b48Spatrick --*this; 30209467b48Spatrick return I; 30309467b48Spatrick } 30409467b48Spatrick iterator_base operator++(int) { // postincrement 30509467b48Spatrick iterator_base I(*this); 30609467b48Spatrick ++*this; 30709467b48Spatrick return I; 30809467b48Spatrick } 30909467b48Spatrick }; 31009467b48Spatrick 31109467b48Spatrick using iterator = iterator_base<SparseMultiSet *>; 31209467b48Spatrick using const_iterator = iterator_base<const SparseMultiSet *>; 31309467b48Spatrick 31409467b48Spatrick // Convenience types 31509467b48Spatrick using RangePair = std::pair<iterator, iterator>; 31609467b48Spatrick 31709467b48Spatrick /// Returns an iterator past this container. Note that such an iterator cannot 31809467b48Spatrick /// be decremented, but will compare equal to other end iterators. end()31909467b48Spatrick iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } end()32009467b48Spatrick const_iterator end() const { 32109467b48Spatrick return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); 32209467b48Spatrick } 32309467b48Spatrick 32409467b48Spatrick /// Returns true if the set is empty. 32509467b48Spatrick /// 32609467b48Spatrick /// This is not the same as BitVector::empty(). 32709467b48Spatrick /// empty()32809467b48Spatrick bool empty() const { return size() == 0; } 32909467b48Spatrick 33009467b48Spatrick /// Returns the number of elements in the set. 33109467b48Spatrick /// 33209467b48Spatrick /// This is not the same as BitVector::size() which returns the size of the 33309467b48Spatrick /// universe. 33409467b48Spatrick /// size()33509467b48Spatrick size_type size() const { 33609467b48Spatrick assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); 33709467b48Spatrick return Dense.size() - NumFree; 33809467b48Spatrick } 33909467b48Spatrick 34009467b48Spatrick /// Clears the set. This is a very fast constant time operation. 34109467b48Spatrick /// clear()34209467b48Spatrick void clear() { 34309467b48Spatrick // Sparse does not need to be cleared, see find(). 34409467b48Spatrick Dense.clear(); 34509467b48Spatrick NumFree = 0; 34609467b48Spatrick FreelistIdx = SMSNode::INVALID; 34709467b48Spatrick } 34809467b48Spatrick 34909467b48Spatrick /// Find an element by its index. 35009467b48Spatrick /// 35109467b48Spatrick /// @param Idx A valid index to find. 35209467b48Spatrick /// @returns An iterator to the element identified by key, or end(). 35309467b48Spatrick /// findIndex(unsigned Idx)35409467b48Spatrick iterator findIndex(unsigned Idx) { 35509467b48Spatrick assert(Idx < Universe && "Key out of range"); 35609467b48Spatrick const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 35709467b48Spatrick for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { 35809467b48Spatrick const unsigned FoundIdx = sparseIndex(Dense[i]); 35909467b48Spatrick // Check that we're pointing at the correct entry and that it is the head 36009467b48Spatrick // of a valid list. 36109467b48Spatrick if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) 36209467b48Spatrick return iterator(this, i, Idx); 36309467b48Spatrick // Stride is 0 when SparseT >= unsigned. We don't need to loop. 36409467b48Spatrick if (!Stride) 36509467b48Spatrick break; 36609467b48Spatrick } 36709467b48Spatrick return end(); 36809467b48Spatrick } 36909467b48Spatrick 37009467b48Spatrick /// Find an element by its key. 37109467b48Spatrick /// 37209467b48Spatrick /// @param Key A valid key to find. 37309467b48Spatrick /// @returns An iterator to the element identified by key, or end(). 37409467b48Spatrick /// find(const KeyT & Key)37509467b48Spatrick iterator find(const KeyT &Key) { 37609467b48Spatrick return findIndex(KeyIndexOf(Key)); 37709467b48Spatrick } 37809467b48Spatrick find(const KeyT & Key)37909467b48Spatrick const_iterator find(const KeyT &Key) const { 38009467b48Spatrick iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); 38109467b48Spatrick return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); 38209467b48Spatrick } 38309467b48Spatrick 38409467b48Spatrick /// Returns the number of elements identified by Key. This will be linear in 38509467b48Spatrick /// the number of elements of that key. count(const KeyT & Key)38609467b48Spatrick size_type count(const KeyT &Key) const { 38709467b48Spatrick unsigned Ret = 0; 38809467b48Spatrick for (const_iterator It = find(Key); It != end(); ++It) 38909467b48Spatrick ++Ret; 39009467b48Spatrick 39109467b48Spatrick return Ret; 39209467b48Spatrick } 39309467b48Spatrick 39409467b48Spatrick /// Returns true if this set contains an element identified by Key. contains(const KeyT & Key)39509467b48Spatrick bool contains(const KeyT &Key) const { 39609467b48Spatrick return find(Key) != end(); 39709467b48Spatrick } 39809467b48Spatrick 39909467b48Spatrick /// Return the head and tail of the subset's list, otherwise returns end(). getHead(const KeyT & Key)40009467b48Spatrick iterator getHead(const KeyT &Key) { return find(Key); } getTail(const KeyT & Key)40109467b48Spatrick iterator getTail(const KeyT &Key) { 40209467b48Spatrick iterator I = find(Key); 40309467b48Spatrick if (I != end()) 40409467b48Spatrick I = iterator(this, I.Prev(), KeyIndexOf(Key)); 40509467b48Spatrick return I; 40609467b48Spatrick } 40709467b48Spatrick 40809467b48Spatrick /// The bounds of the range of items sharing Key K. First member is the head 40909467b48Spatrick /// of the list, and the second member is a decrementable end iterator for 41009467b48Spatrick /// that key. equal_range(const KeyT & K)41109467b48Spatrick RangePair equal_range(const KeyT &K) { 41209467b48Spatrick iterator B = find(K); 41309467b48Spatrick iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); 41473471bf0Spatrick return std::make_pair(B, E); 41509467b48Spatrick } 41609467b48Spatrick 41709467b48Spatrick /// Insert a new element at the tail of the subset list. Returns an iterator 41809467b48Spatrick /// to the newly added entry. insert(const ValueT & Val)41909467b48Spatrick iterator insert(const ValueT &Val) { 42009467b48Spatrick unsigned Idx = sparseIndex(Val); 42109467b48Spatrick iterator I = findIndex(Idx); 42209467b48Spatrick 42309467b48Spatrick unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); 42409467b48Spatrick 42509467b48Spatrick if (I == end()) { 42609467b48Spatrick // Make a singleton list 42709467b48Spatrick Sparse[Idx] = NodeIdx; 42809467b48Spatrick Dense[NodeIdx].Prev = NodeIdx; 42909467b48Spatrick return iterator(this, NodeIdx, Idx); 43009467b48Spatrick } 43109467b48Spatrick 43209467b48Spatrick // Stick it at the end. 43309467b48Spatrick unsigned HeadIdx = I.Idx; 43409467b48Spatrick unsigned TailIdx = I.Prev(); 43509467b48Spatrick Dense[TailIdx].Next = NodeIdx; 43609467b48Spatrick Dense[HeadIdx].Prev = NodeIdx; 43709467b48Spatrick Dense[NodeIdx].Prev = TailIdx; 43809467b48Spatrick 43909467b48Spatrick return iterator(this, NodeIdx, Idx); 44009467b48Spatrick } 44109467b48Spatrick 44209467b48Spatrick /// Erases an existing element identified by a valid iterator. 44309467b48Spatrick /// 44409467b48Spatrick /// This invalidates iterators pointing at the same entry, but erase() returns 44509467b48Spatrick /// an iterator pointing to the next element in the subset's list. This makes 44609467b48Spatrick /// it possible to erase selected elements while iterating over the subset: 44709467b48Spatrick /// 44809467b48Spatrick /// tie(I, E) = Set.equal_range(Key); 44909467b48Spatrick /// while (I != E) 45009467b48Spatrick /// if (test(*I)) 45109467b48Spatrick /// I = Set.erase(I); 45209467b48Spatrick /// else 45309467b48Spatrick /// ++I; 45409467b48Spatrick /// 45509467b48Spatrick /// Note that if the last element in the subset list is erased, this will 45609467b48Spatrick /// return an end iterator which can be decremented to get the new tail (if it 45709467b48Spatrick /// exists): 45809467b48Spatrick /// 45909467b48Spatrick /// tie(B, I) = Set.equal_range(Key); 46009467b48Spatrick /// for (bool isBegin = B == I; !isBegin; /* empty */) { 46109467b48Spatrick /// isBegin = (--I) == B; 46209467b48Spatrick /// if (test(I)) 46309467b48Spatrick /// break; 46409467b48Spatrick /// I = erase(I); 46509467b48Spatrick /// } erase(iterator I)46609467b48Spatrick iterator erase(iterator I) { 46709467b48Spatrick assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && 46809467b48Spatrick "erasing invalid/end/tombstone iterator"); 46909467b48Spatrick 47009467b48Spatrick // First, unlink the node from its list. Then swap the node out with the 47109467b48Spatrick // dense vector's last entry 47209467b48Spatrick iterator NextI = unlink(Dense[I.Idx]); 47309467b48Spatrick 47409467b48Spatrick // Put in a tombstone. 47509467b48Spatrick makeTombstone(I.Idx); 47609467b48Spatrick 47709467b48Spatrick return NextI; 47809467b48Spatrick } 47909467b48Spatrick 48009467b48Spatrick /// Erase all elements with the given key. This invalidates all 48109467b48Spatrick /// iterators of that key. eraseAll(const KeyT & K)48209467b48Spatrick void eraseAll(const KeyT &K) { 48309467b48Spatrick for (iterator I = find(K); I != end(); /* empty */) 48409467b48Spatrick I = erase(I); 48509467b48Spatrick } 48609467b48Spatrick 48709467b48Spatrick private: 48809467b48Spatrick /// Unlink the node from its list. Returns the next node in the list. unlink(const SMSNode & N)48909467b48Spatrick iterator unlink(const SMSNode &N) { 49009467b48Spatrick if (isSingleton(N)) { 49109467b48Spatrick // Singleton is already unlinked 49209467b48Spatrick assert(N.Next == SMSNode::INVALID && "Singleton has next?"); 49309467b48Spatrick return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); 49409467b48Spatrick } 49509467b48Spatrick 49609467b48Spatrick if (isHead(N)) { 49709467b48Spatrick // If we're the head, then update the sparse array and our next. 49809467b48Spatrick Sparse[sparseIndex(N)] = N.Next; 49909467b48Spatrick Dense[N.Next].Prev = N.Prev; 50009467b48Spatrick return iterator(this, N.Next, ValIndexOf(N.Data)); 50109467b48Spatrick } 50209467b48Spatrick 50309467b48Spatrick if (N.isTail()) { 50409467b48Spatrick // If we're the tail, then update our head and our previous. 50509467b48Spatrick findIndex(sparseIndex(N)).setPrev(N.Prev); 50609467b48Spatrick Dense[N.Prev].Next = N.Next; 50709467b48Spatrick 50809467b48Spatrick // Give back an end iterator that can be decremented 50909467b48Spatrick iterator I(this, N.Prev, ValIndexOf(N.Data)); 51009467b48Spatrick return ++I; 51109467b48Spatrick } 51209467b48Spatrick 51309467b48Spatrick // Otherwise, just drop us 51409467b48Spatrick Dense[N.Next].Prev = N.Prev; 51509467b48Spatrick Dense[N.Prev].Next = N.Next; 51609467b48Spatrick return iterator(this, N.Next, ValIndexOf(N.Data)); 51709467b48Spatrick } 51809467b48Spatrick }; 51909467b48Spatrick 52009467b48Spatrick } // end namespace llvm 52109467b48Spatrick 52209467b48Spatrick #endif // LLVM_ADT_SPARSEMULTISET_H 523