1*09467b48Spatrick //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// 2*09467b48Spatrick // 3*09467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*09467b48Spatrick // See https://llvm.org/LICENSE.txt for license information. 5*09467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*09467b48Spatrick // 7*09467b48Spatrick //===----------------------------------------------------------------------===// 8*09467b48Spatrick // 9*09467b48Spatrick // This file defines the SparseMultiSet class, which adds multiset behavior to 10*09467b48Spatrick // the SparseSet. 11*09467b48Spatrick // 12*09467b48Spatrick // A sparse multiset holds a small number of objects identified by integer keys 13*09467b48Spatrick // from a moderately sized universe. The sparse multiset uses more memory than 14*09467b48Spatrick // other containers in order to provide faster operations. Any key can map to 15*09467b48Spatrick // multiple values. A SparseMultiSetNode class is provided, which serves as a 16*09467b48Spatrick // convenient base class for the contents of a SparseMultiSet. 17*09467b48Spatrick // 18*09467b48Spatrick //===----------------------------------------------------------------------===// 19*09467b48Spatrick 20*09467b48Spatrick #ifndef LLVM_ADT_SPARSEMULTISET_H 21*09467b48Spatrick #define LLVM_ADT_SPARSEMULTISET_H 22*09467b48Spatrick 23*09467b48Spatrick #include "llvm/ADT/STLExtras.h" 24*09467b48Spatrick #include "llvm/ADT/SmallVector.h" 25*09467b48Spatrick #include "llvm/ADT/SparseSet.h" 26*09467b48Spatrick #include <cassert> 27*09467b48Spatrick #include <cstdint> 28*09467b48Spatrick #include <cstdlib> 29*09467b48Spatrick #include <iterator> 30*09467b48Spatrick #include <limits> 31*09467b48Spatrick #include <utility> 32*09467b48Spatrick 33*09467b48Spatrick namespace llvm { 34*09467b48Spatrick 35*09467b48Spatrick /// Fast multiset implementation for objects that can be identified by small 36*09467b48Spatrick /// unsigned keys. 37*09467b48Spatrick /// 38*09467b48Spatrick /// SparseMultiSet allocates memory proportional to the size of the key 39*09467b48Spatrick /// universe, so it is not recommended for building composite data structures. 40*09467b48Spatrick /// It is useful for algorithms that require a single set with fast operations. 41*09467b48Spatrick /// 42*09467b48Spatrick /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time 43*09467b48Spatrick /// fast clear() as fast as a vector. The find(), insert(), and erase() 44*09467b48Spatrick /// operations are all constant time, and typically faster than a hash table. 45*09467b48Spatrick /// The iteration order doesn't depend on numerical key values, it only depends 46*09467b48Spatrick /// on the order of insert() and erase() operations. Iteration order is the 47*09467b48Spatrick /// insertion order. Iteration is only provided over elements of equivalent 48*09467b48Spatrick /// keys, but iterators are bidirectional. 49*09467b48Spatrick /// 50*09467b48Spatrick /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but 51*09467b48Spatrick /// offers constant-time clear() and size() operations as well as fast iteration 52*09467b48Spatrick /// independent on the size of the universe. 53*09467b48Spatrick /// 54*09467b48Spatrick /// SparseMultiSet contains a dense vector holding all the objects and a sparse 55*09467b48Spatrick /// array holding indexes into the dense vector. Most of the memory is used by 56*09467b48Spatrick /// the sparse array which is the size of the key universe. The SparseT template 57*09467b48Spatrick /// parameter provides a space/speed tradeoff for sets holding many elements. 58*09467b48Spatrick /// 59*09467b48Spatrick /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the 60*09467b48Spatrick /// sparse array uses 4 x Universe bytes. 61*09467b48Spatrick /// 62*09467b48Spatrick /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache 63*09467b48Spatrick /// lines, but the sparse array is 4x smaller. N is the number of elements in 64*09467b48Spatrick /// the set. 65*09467b48Spatrick /// 66*09467b48Spatrick /// For sets that may grow to thousands of elements, SparseT should be set to 67*09467b48Spatrick /// uint16_t or uint32_t. 68*09467b48Spatrick /// 69*09467b48Spatrick /// Multiset behavior is provided by providing doubly linked lists for values 70*09467b48Spatrick /// that are inlined in the dense vector. SparseMultiSet is a good choice when 71*09467b48Spatrick /// one desires a growable number of entries per key, as it will retain the 72*09467b48Spatrick /// SparseSet algorithmic properties despite being growable. Thus, it is often a 73*09467b48Spatrick /// better choice than a SparseSet of growable containers or a vector of 74*09467b48Spatrick /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided 75*09467b48Spatrick /// the iterators don't point to the element erased), allowing for more 76*09467b48Spatrick /// intuitive and fast removal. 77*09467b48Spatrick /// 78*09467b48Spatrick /// @tparam ValueT The type of objects in the set. 79*09467b48Spatrick /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 80*09467b48Spatrick /// @tparam SparseT An unsigned integer type. See above. 81*09467b48Spatrick /// 82*09467b48Spatrick template<typename ValueT, 83*09467b48Spatrick typename KeyFunctorT = identity<unsigned>, 84*09467b48Spatrick typename SparseT = uint8_t> 85*09467b48Spatrick class SparseMultiSet { 86*09467b48Spatrick static_assert(std::numeric_limits<SparseT>::is_integer && 87*09467b48Spatrick !std::numeric_limits<SparseT>::is_signed, 88*09467b48Spatrick "SparseT must be an unsigned integer type"); 89*09467b48Spatrick 90*09467b48Spatrick /// The actual data that's stored, as a doubly-linked list implemented via 91*09467b48Spatrick /// indices into the DenseVector. The doubly linked list is implemented 92*09467b48Spatrick /// circular in Prev indices, and INVALID-terminated in Next indices. This 93*09467b48Spatrick /// provides efficient access to list tails. These nodes can also be 94*09467b48Spatrick /// tombstones, in which case they are actually nodes in a single-linked 95*09467b48Spatrick /// freelist of recyclable slots. 96*09467b48Spatrick struct SMSNode { 97*09467b48Spatrick static const unsigned INVALID = ~0U; 98*09467b48Spatrick 99*09467b48Spatrick ValueT Data; 100*09467b48Spatrick unsigned Prev; 101*09467b48Spatrick unsigned Next; 102*09467b48Spatrick 103*09467b48Spatrick SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} 104*09467b48Spatrick 105*09467b48Spatrick /// List tails have invalid Nexts. 106*09467b48Spatrick bool isTail() const { 107*09467b48Spatrick return Next == INVALID; 108*09467b48Spatrick } 109*09467b48Spatrick 110*09467b48Spatrick /// Whether this node is a tombstone node, and thus is in our freelist. 111*09467b48Spatrick bool isTombstone() const { 112*09467b48Spatrick return Prev == INVALID; 113*09467b48Spatrick } 114*09467b48Spatrick 115*09467b48Spatrick /// Since the list is circular in Prev, all non-tombstone nodes have a valid 116*09467b48Spatrick /// Prev. 117*09467b48Spatrick bool isValid() const { return Prev != INVALID; } 118*09467b48Spatrick }; 119*09467b48Spatrick 120*09467b48Spatrick using KeyT = typename KeyFunctorT::argument_type; 121*09467b48Spatrick using DenseT = SmallVector<SMSNode, 8>; 122*09467b48Spatrick DenseT Dense; 123*09467b48Spatrick SparseT *Sparse = nullptr; 124*09467b48Spatrick unsigned Universe = 0; 125*09467b48Spatrick KeyFunctorT KeyIndexOf; 126*09467b48Spatrick SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 127*09467b48Spatrick 128*09467b48Spatrick /// We have a built-in recycler for reusing tombstone slots. This recycler 129*09467b48Spatrick /// puts a singly-linked free list into tombstone slots, allowing us quick 130*09467b48Spatrick /// erasure, iterator preservation, and dense size. 131*09467b48Spatrick unsigned FreelistIdx = SMSNode::INVALID; 132*09467b48Spatrick unsigned NumFree = 0; 133*09467b48Spatrick 134*09467b48Spatrick unsigned sparseIndex(const ValueT &Val) const { 135*09467b48Spatrick assert(ValIndexOf(Val) < Universe && 136*09467b48Spatrick "Invalid key in set. Did object mutate?"); 137*09467b48Spatrick return ValIndexOf(Val); 138*09467b48Spatrick } 139*09467b48Spatrick unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } 140*09467b48Spatrick 141*09467b48Spatrick /// Whether the given entry is the head of the list. List heads's previous 142*09467b48Spatrick /// pointers are to the tail of the list, allowing for efficient access to the 143*09467b48Spatrick /// list tail. D must be a valid entry node. 144*09467b48Spatrick bool isHead(const SMSNode &D) const { 145*09467b48Spatrick assert(D.isValid() && "Invalid node for head"); 146*09467b48Spatrick return Dense[D.Prev].isTail(); 147*09467b48Spatrick } 148*09467b48Spatrick 149*09467b48Spatrick /// Whether the given entry is a singleton entry, i.e. the only entry with 150*09467b48Spatrick /// that key. 151*09467b48Spatrick bool isSingleton(const SMSNode &N) const { 152*09467b48Spatrick assert(N.isValid() && "Invalid node for singleton"); 153*09467b48Spatrick // Is N its own predecessor? 154*09467b48Spatrick return &Dense[N.Prev] == &N; 155*09467b48Spatrick } 156*09467b48Spatrick 157*09467b48Spatrick /// Add in the given SMSNode. Uses a free entry in our freelist if 158*09467b48Spatrick /// available. Returns the index of the added node. 159*09467b48Spatrick unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { 160*09467b48Spatrick if (NumFree == 0) { 161*09467b48Spatrick Dense.push_back(SMSNode(V, Prev, Next)); 162*09467b48Spatrick return Dense.size() - 1; 163*09467b48Spatrick } 164*09467b48Spatrick 165*09467b48Spatrick // Peel off a free slot 166*09467b48Spatrick unsigned Idx = FreelistIdx; 167*09467b48Spatrick unsigned NextFree = Dense[Idx].Next; 168*09467b48Spatrick assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); 169*09467b48Spatrick 170*09467b48Spatrick Dense[Idx] = SMSNode(V, Prev, Next); 171*09467b48Spatrick FreelistIdx = NextFree; 172*09467b48Spatrick --NumFree; 173*09467b48Spatrick return Idx; 174*09467b48Spatrick } 175*09467b48Spatrick 176*09467b48Spatrick /// Make the current index a new tombstone. Pushes it onto the freelist. 177*09467b48Spatrick void makeTombstone(unsigned Idx) { 178*09467b48Spatrick Dense[Idx].Prev = SMSNode::INVALID; 179*09467b48Spatrick Dense[Idx].Next = FreelistIdx; 180*09467b48Spatrick FreelistIdx = Idx; 181*09467b48Spatrick ++NumFree; 182*09467b48Spatrick } 183*09467b48Spatrick 184*09467b48Spatrick public: 185*09467b48Spatrick using value_type = ValueT; 186*09467b48Spatrick using reference = ValueT &; 187*09467b48Spatrick using const_reference = const ValueT &; 188*09467b48Spatrick using pointer = ValueT *; 189*09467b48Spatrick using const_pointer = const ValueT *; 190*09467b48Spatrick using size_type = unsigned; 191*09467b48Spatrick 192*09467b48Spatrick SparseMultiSet() = default; 193*09467b48Spatrick SparseMultiSet(const SparseMultiSet &) = delete; 194*09467b48Spatrick SparseMultiSet &operator=(const SparseMultiSet &) = delete; 195*09467b48Spatrick ~SparseMultiSet() { free(Sparse); } 196*09467b48Spatrick 197*09467b48Spatrick /// Set the universe size which determines the largest key the set can hold. 198*09467b48Spatrick /// The universe must be sized before any elements can be added. 199*09467b48Spatrick /// 200*09467b48Spatrick /// @param U Universe size. All object keys must be less than U. 201*09467b48Spatrick /// 202*09467b48Spatrick void setUniverse(unsigned U) { 203*09467b48Spatrick // It's not hard to resize the universe on a non-empty set, but it doesn't 204*09467b48Spatrick // seem like a likely use case, so we can add that code when we need it. 205*09467b48Spatrick assert(empty() && "Can only resize universe on an empty map"); 206*09467b48Spatrick // Hysteresis prevents needless reallocations. 207*09467b48Spatrick if (U >= Universe/4 && U <= Universe) 208*09467b48Spatrick return; 209*09467b48Spatrick free(Sparse); 210*09467b48Spatrick // The Sparse array doesn't actually need to be initialized, so malloc 211*09467b48Spatrick // would be enough here, but that will cause tools like valgrind to 212*09467b48Spatrick // complain about branching on uninitialized data. 213*09467b48Spatrick Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 214*09467b48Spatrick Universe = U; 215*09467b48Spatrick } 216*09467b48Spatrick 217*09467b48Spatrick /// Our iterators are iterators over the collection of objects that share a 218*09467b48Spatrick /// key. 219*09467b48Spatrick template<typename SMSPtrTy> 220*09467b48Spatrick class iterator_base : public std::iterator<std::bidirectional_iterator_tag, 221*09467b48Spatrick ValueT> { 222*09467b48Spatrick friend class SparseMultiSet; 223*09467b48Spatrick 224*09467b48Spatrick SMSPtrTy SMS; 225*09467b48Spatrick unsigned Idx; 226*09467b48Spatrick unsigned SparseIdx; 227*09467b48Spatrick 228*09467b48Spatrick iterator_base(SMSPtrTy P, unsigned I, unsigned SI) 229*09467b48Spatrick : SMS(P), Idx(I), SparseIdx(SI) {} 230*09467b48Spatrick 231*09467b48Spatrick /// Whether our iterator has fallen outside our dense vector. 232*09467b48Spatrick bool isEnd() const { 233*09467b48Spatrick if (Idx == SMSNode::INVALID) 234*09467b48Spatrick return true; 235*09467b48Spatrick 236*09467b48Spatrick assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); 237*09467b48Spatrick return false; 238*09467b48Spatrick } 239*09467b48Spatrick 240*09467b48Spatrick /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid 241*09467b48Spatrick bool isKeyed() const { return SparseIdx < SMS->Universe; } 242*09467b48Spatrick 243*09467b48Spatrick unsigned Prev() const { return SMS->Dense[Idx].Prev; } 244*09467b48Spatrick unsigned Next() const { return SMS->Dense[Idx].Next; } 245*09467b48Spatrick 246*09467b48Spatrick void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } 247*09467b48Spatrick void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } 248*09467b48Spatrick 249*09467b48Spatrick public: 250*09467b48Spatrick using super = std::iterator<std::bidirectional_iterator_tag, ValueT>; 251*09467b48Spatrick using value_type = typename super::value_type; 252*09467b48Spatrick using difference_type = typename super::difference_type; 253*09467b48Spatrick using pointer = typename super::pointer; 254*09467b48Spatrick using reference = typename super::reference; 255*09467b48Spatrick 256*09467b48Spatrick reference operator*() const { 257*09467b48Spatrick assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && 258*09467b48Spatrick "Dereferencing iterator of invalid key or index"); 259*09467b48Spatrick 260*09467b48Spatrick return SMS->Dense[Idx].Data; 261*09467b48Spatrick } 262*09467b48Spatrick pointer operator->() const { return &operator*(); } 263*09467b48Spatrick 264*09467b48Spatrick /// Comparison operators 265*09467b48Spatrick bool operator==(const iterator_base &RHS) const { 266*09467b48Spatrick // end compares equal 267*09467b48Spatrick if (SMS == RHS.SMS && Idx == RHS.Idx) { 268*09467b48Spatrick assert((isEnd() || SparseIdx == RHS.SparseIdx) && 269*09467b48Spatrick "Same dense entry, but different keys?"); 270*09467b48Spatrick return true; 271*09467b48Spatrick } 272*09467b48Spatrick 273*09467b48Spatrick return false; 274*09467b48Spatrick } 275*09467b48Spatrick 276*09467b48Spatrick bool operator!=(const iterator_base &RHS) const { 277*09467b48Spatrick return !operator==(RHS); 278*09467b48Spatrick } 279*09467b48Spatrick 280*09467b48Spatrick /// Increment and decrement operators 281*09467b48Spatrick iterator_base &operator--() { // predecrement - Back up 282*09467b48Spatrick assert(isKeyed() && "Decrementing an invalid iterator"); 283*09467b48Spatrick assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && 284*09467b48Spatrick "Decrementing head of list"); 285*09467b48Spatrick 286*09467b48Spatrick // If we're at the end, then issue a new find() 287*09467b48Spatrick if (isEnd()) 288*09467b48Spatrick Idx = SMS->findIndex(SparseIdx).Prev(); 289*09467b48Spatrick else 290*09467b48Spatrick Idx = Prev(); 291*09467b48Spatrick 292*09467b48Spatrick return *this; 293*09467b48Spatrick } 294*09467b48Spatrick iterator_base &operator++() { // preincrement - Advance 295*09467b48Spatrick assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); 296*09467b48Spatrick Idx = Next(); 297*09467b48Spatrick return *this; 298*09467b48Spatrick } 299*09467b48Spatrick iterator_base operator--(int) { // postdecrement 300*09467b48Spatrick iterator_base I(*this); 301*09467b48Spatrick --*this; 302*09467b48Spatrick return I; 303*09467b48Spatrick } 304*09467b48Spatrick iterator_base operator++(int) { // postincrement 305*09467b48Spatrick iterator_base I(*this); 306*09467b48Spatrick ++*this; 307*09467b48Spatrick return I; 308*09467b48Spatrick } 309*09467b48Spatrick }; 310*09467b48Spatrick 311*09467b48Spatrick using iterator = iterator_base<SparseMultiSet *>; 312*09467b48Spatrick using const_iterator = iterator_base<const SparseMultiSet *>; 313*09467b48Spatrick 314*09467b48Spatrick // Convenience types 315*09467b48Spatrick using RangePair = std::pair<iterator, iterator>; 316*09467b48Spatrick 317*09467b48Spatrick /// Returns an iterator past this container. Note that such an iterator cannot 318*09467b48Spatrick /// be decremented, but will compare equal to other end iterators. 319*09467b48Spatrick iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } 320*09467b48Spatrick const_iterator end() const { 321*09467b48Spatrick return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); 322*09467b48Spatrick } 323*09467b48Spatrick 324*09467b48Spatrick /// Returns true if the set is empty. 325*09467b48Spatrick /// 326*09467b48Spatrick /// This is not the same as BitVector::empty(). 327*09467b48Spatrick /// 328*09467b48Spatrick bool empty() const { return size() == 0; } 329*09467b48Spatrick 330*09467b48Spatrick /// Returns the number of elements in the set. 331*09467b48Spatrick /// 332*09467b48Spatrick /// This is not the same as BitVector::size() which returns the size of the 333*09467b48Spatrick /// universe. 334*09467b48Spatrick /// 335*09467b48Spatrick size_type size() const { 336*09467b48Spatrick assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); 337*09467b48Spatrick return Dense.size() - NumFree; 338*09467b48Spatrick } 339*09467b48Spatrick 340*09467b48Spatrick /// Clears the set. This is a very fast constant time operation. 341*09467b48Spatrick /// 342*09467b48Spatrick void clear() { 343*09467b48Spatrick // Sparse does not need to be cleared, see find(). 344*09467b48Spatrick Dense.clear(); 345*09467b48Spatrick NumFree = 0; 346*09467b48Spatrick FreelistIdx = SMSNode::INVALID; 347*09467b48Spatrick } 348*09467b48Spatrick 349*09467b48Spatrick /// Find an element by its index. 350*09467b48Spatrick /// 351*09467b48Spatrick /// @param Idx A valid index to find. 352*09467b48Spatrick /// @returns An iterator to the element identified by key, or end(). 353*09467b48Spatrick /// 354*09467b48Spatrick iterator findIndex(unsigned Idx) { 355*09467b48Spatrick assert(Idx < Universe && "Key out of range"); 356*09467b48Spatrick const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 357*09467b48Spatrick for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { 358*09467b48Spatrick const unsigned FoundIdx = sparseIndex(Dense[i]); 359*09467b48Spatrick // Check that we're pointing at the correct entry and that it is the head 360*09467b48Spatrick // of a valid list. 361*09467b48Spatrick if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) 362*09467b48Spatrick return iterator(this, i, Idx); 363*09467b48Spatrick // Stride is 0 when SparseT >= unsigned. We don't need to loop. 364*09467b48Spatrick if (!Stride) 365*09467b48Spatrick break; 366*09467b48Spatrick } 367*09467b48Spatrick return end(); 368*09467b48Spatrick } 369*09467b48Spatrick 370*09467b48Spatrick /// Find an element by its key. 371*09467b48Spatrick /// 372*09467b48Spatrick /// @param Key A valid key to find. 373*09467b48Spatrick /// @returns An iterator to the element identified by key, or end(). 374*09467b48Spatrick /// 375*09467b48Spatrick iterator find(const KeyT &Key) { 376*09467b48Spatrick return findIndex(KeyIndexOf(Key)); 377*09467b48Spatrick } 378*09467b48Spatrick 379*09467b48Spatrick const_iterator find(const KeyT &Key) const { 380*09467b48Spatrick iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); 381*09467b48Spatrick return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); 382*09467b48Spatrick } 383*09467b48Spatrick 384*09467b48Spatrick /// Returns the number of elements identified by Key. This will be linear in 385*09467b48Spatrick /// the number of elements of that key. 386*09467b48Spatrick size_type count(const KeyT &Key) const { 387*09467b48Spatrick unsigned Ret = 0; 388*09467b48Spatrick for (const_iterator It = find(Key); It != end(); ++It) 389*09467b48Spatrick ++Ret; 390*09467b48Spatrick 391*09467b48Spatrick return Ret; 392*09467b48Spatrick } 393*09467b48Spatrick 394*09467b48Spatrick /// Returns true if this set contains an element identified by Key. 395*09467b48Spatrick bool contains(const KeyT &Key) const { 396*09467b48Spatrick return find(Key) != end(); 397*09467b48Spatrick } 398*09467b48Spatrick 399*09467b48Spatrick /// Return the head and tail of the subset's list, otherwise returns end(). 400*09467b48Spatrick iterator getHead(const KeyT &Key) { return find(Key); } 401*09467b48Spatrick iterator getTail(const KeyT &Key) { 402*09467b48Spatrick iterator I = find(Key); 403*09467b48Spatrick if (I != end()) 404*09467b48Spatrick I = iterator(this, I.Prev(), KeyIndexOf(Key)); 405*09467b48Spatrick return I; 406*09467b48Spatrick } 407*09467b48Spatrick 408*09467b48Spatrick /// The bounds of the range of items sharing Key K. First member is the head 409*09467b48Spatrick /// of the list, and the second member is a decrementable end iterator for 410*09467b48Spatrick /// that key. 411*09467b48Spatrick RangePair equal_range(const KeyT &K) { 412*09467b48Spatrick iterator B = find(K); 413*09467b48Spatrick iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); 414*09467b48Spatrick return make_pair(B, E); 415*09467b48Spatrick } 416*09467b48Spatrick 417*09467b48Spatrick /// Insert a new element at the tail of the subset list. Returns an iterator 418*09467b48Spatrick /// to the newly added entry. 419*09467b48Spatrick iterator insert(const ValueT &Val) { 420*09467b48Spatrick unsigned Idx = sparseIndex(Val); 421*09467b48Spatrick iterator I = findIndex(Idx); 422*09467b48Spatrick 423*09467b48Spatrick unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); 424*09467b48Spatrick 425*09467b48Spatrick if (I == end()) { 426*09467b48Spatrick // Make a singleton list 427*09467b48Spatrick Sparse[Idx] = NodeIdx; 428*09467b48Spatrick Dense[NodeIdx].Prev = NodeIdx; 429*09467b48Spatrick return iterator(this, NodeIdx, Idx); 430*09467b48Spatrick } 431*09467b48Spatrick 432*09467b48Spatrick // Stick it at the end. 433*09467b48Spatrick unsigned HeadIdx = I.Idx; 434*09467b48Spatrick unsigned TailIdx = I.Prev(); 435*09467b48Spatrick Dense[TailIdx].Next = NodeIdx; 436*09467b48Spatrick Dense[HeadIdx].Prev = NodeIdx; 437*09467b48Spatrick Dense[NodeIdx].Prev = TailIdx; 438*09467b48Spatrick 439*09467b48Spatrick return iterator(this, NodeIdx, Idx); 440*09467b48Spatrick } 441*09467b48Spatrick 442*09467b48Spatrick /// Erases an existing element identified by a valid iterator. 443*09467b48Spatrick /// 444*09467b48Spatrick /// This invalidates iterators pointing at the same entry, but erase() returns 445*09467b48Spatrick /// an iterator pointing to the next element in the subset's list. This makes 446*09467b48Spatrick /// it possible to erase selected elements while iterating over the subset: 447*09467b48Spatrick /// 448*09467b48Spatrick /// tie(I, E) = Set.equal_range(Key); 449*09467b48Spatrick /// while (I != E) 450*09467b48Spatrick /// if (test(*I)) 451*09467b48Spatrick /// I = Set.erase(I); 452*09467b48Spatrick /// else 453*09467b48Spatrick /// ++I; 454*09467b48Spatrick /// 455*09467b48Spatrick /// Note that if the last element in the subset list is erased, this will 456*09467b48Spatrick /// return an end iterator which can be decremented to get the new tail (if it 457*09467b48Spatrick /// exists): 458*09467b48Spatrick /// 459*09467b48Spatrick /// tie(B, I) = Set.equal_range(Key); 460*09467b48Spatrick /// for (bool isBegin = B == I; !isBegin; /* empty */) { 461*09467b48Spatrick /// isBegin = (--I) == B; 462*09467b48Spatrick /// if (test(I)) 463*09467b48Spatrick /// break; 464*09467b48Spatrick /// I = erase(I); 465*09467b48Spatrick /// } 466*09467b48Spatrick iterator erase(iterator I) { 467*09467b48Spatrick assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && 468*09467b48Spatrick "erasing invalid/end/tombstone iterator"); 469*09467b48Spatrick 470*09467b48Spatrick // First, unlink the node from its list. Then swap the node out with the 471*09467b48Spatrick // dense vector's last entry 472*09467b48Spatrick iterator NextI = unlink(Dense[I.Idx]); 473*09467b48Spatrick 474*09467b48Spatrick // Put in a tombstone. 475*09467b48Spatrick makeTombstone(I.Idx); 476*09467b48Spatrick 477*09467b48Spatrick return NextI; 478*09467b48Spatrick } 479*09467b48Spatrick 480*09467b48Spatrick /// Erase all elements with the given key. This invalidates all 481*09467b48Spatrick /// iterators of that key. 482*09467b48Spatrick void eraseAll(const KeyT &K) { 483*09467b48Spatrick for (iterator I = find(K); I != end(); /* empty */) 484*09467b48Spatrick I = erase(I); 485*09467b48Spatrick } 486*09467b48Spatrick 487*09467b48Spatrick private: 488*09467b48Spatrick /// Unlink the node from its list. Returns the next node in the list. 489*09467b48Spatrick iterator unlink(const SMSNode &N) { 490*09467b48Spatrick if (isSingleton(N)) { 491*09467b48Spatrick // Singleton is already unlinked 492*09467b48Spatrick assert(N.Next == SMSNode::INVALID && "Singleton has next?"); 493*09467b48Spatrick return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); 494*09467b48Spatrick } 495*09467b48Spatrick 496*09467b48Spatrick if (isHead(N)) { 497*09467b48Spatrick // If we're the head, then update the sparse array and our next. 498*09467b48Spatrick Sparse[sparseIndex(N)] = N.Next; 499*09467b48Spatrick Dense[N.Next].Prev = N.Prev; 500*09467b48Spatrick return iterator(this, N.Next, ValIndexOf(N.Data)); 501*09467b48Spatrick } 502*09467b48Spatrick 503*09467b48Spatrick if (N.isTail()) { 504*09467b48Spatrick // If we're the tail, then update our head and our previous. 505*09467b48Spatrick findIndex(sparseIndex(N)).setPrev(N.Prev); 506*09467b48Spatrick Dense[N.Prev].Next = N.Next; 507*09467b48Spatrick 508*09467b48Spatrick // Give back an end iterator that can be decremented 509*09467b48Spatrick iterator I(this, N.Prev, ValIndexOf(N.Data)); 510*09467b48Spatrick return ++I; 511*09467b48Spatrick } 512*09467b48Spatrick 513*09467b48Spatrick // Otherwise, just drop us 514*09467b48Spatrick Dense[N.Next].Prev = N.Prev; 515*09467b48Spatrick Dense[N.Prev].Next = N.Next; 516*09467b48Spatrick return iterator(this, N.Next, ValIndexOf(N.Data)); 517*09467b48Spatrick } 518*09467b48Spatrick }; 519*09467b48Spatrick 520*09467b48Spatrick } // end namespace llvm 521*09467b48Spatrick 522*09467b48Spatrick #endif // LLVM_ADT_SPARSEMULTISET_H 523