1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetMachine.h"
39
40 //===----------------------------------------------------------------------===//
41 //
42 // TBD:
43 // fastLowerArguments: Handle simple cases.
44 // PPCMaterializeGV: Handle TLS.
45 // SelectCall: Handle function pointers.
46 // SelectCall: Handle multi-register return values.
47 // SelectCall: Optimize away nops for local calls.
48 // processCallArgs: Handle bit-converted arguments.
49 // finishCall: Handle multi-register return values.
50 // PPCComputeAddress: Handle parameter references as FrameIndex's.
51 // PPCEmitCmp: Handle immediate as operand 1.
52 // SelectCall: Handle small byval arguments.
53 // SelectIntrinsicCall: Implement.
54 // SelectSelect: Implement.
55 // Consider factoring isTypeLegal into the base class.
56 // Implement switches and jump tables.
57 //
58 //===----------------------------------------------------------------------===//
59 using namespace llvm;
60
61 #define DEBUG_TYPE "ppcfastisel"
62
63 namespace {
64
65 struct Address {
66 enum {
67 RegBase,
68 FrameIndexBase
69 } BaseType;
70
71 union {
72 unsigned Reg;
73 int FI;
74 } Base;
75
76 int64_t Offset;
77
78 // Innocuous defaults for our address.
Address__anone4410f800111::Address79 Address()
80 : BaseType(RegBase), Offset(0) {
81 Base.Reg = 0;
82 }
83 };
84
85 class PPCFastISel final : public FastISel {
86
87 const TargetMachine &TM;
88 const PPCSubtarget *Subtarget;
89 PPCFunctionInfo *PPCFuncInfo;
90 const TargetInstrInfo &TII;
91 const TargetLowering &TLI;
92 LLVMContext *Context;
93
94 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)95 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
96 const TargetLibraryInfo *LibInfo)
97 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
98 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
99 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
100 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
101 Context(&FuncInfo.Fn->getContext()) {}
102
103 // Backend specific FastISel code.
104 private:
105 bool fastSelectInstruction(const Instruction *I) override;
106 unsigned fastMaterializeConstant(const Constant *C) override;
107 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
108 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109 const LoadInst *LI) override;
110 bool fastLowerArguments() override;
111 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
112 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
113 const TargetRegisterClass *RC,
114 unsigned Op0, uint64_t Imm);
115 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
116 const TargetRegisterClass *RC, unsigned Op0);
117 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
118 const TargetRegisterClass *RC,
119 unsigned Op0, unsigned Op1);
120
121 bool fastLowerCall(CallLoweringInfo &CLI) override;
122
123 // Instruction selection routines.
124 private:
125 bool SelectLoad(const Instruction *I);
126 bool SelectStore(const Instruction *I);
127 bool SelectBranch(const Instruction *I);
128 bool SelectIndirectBr(const Instruction *I);
129 bool SelectFPExt(const Instruction *I);
130 bool SelectFPTrunc(const Instruction *I);
131 bool SelectIToFP(const Instruction *I, bool IsSigned);
132 bool SelectFPToI(const Instruction *I, bool IsSigned);
133 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
134 bool SelectRet(const Instruction *I);
135 bool SelectTrunc(const Instruction *I);
136 bool SelectIntExt(const Instruction *I);
137
138 // Utility routines.
139 private:
140 bool isTypeLegal(Type *Ty, MVT &VT);
141 bool isLoadTypeLegal(Type *Ty, MVT &VT);
142 bool isValueAvailable(const Value *V) const;
isVSFRCRegClass(const TargetRegisterClass * RC) const143 bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
144 return RC->getID() == PPC::VSFRCRegClassID;
145 }
isVSSRCRegClass(const TargetRegisterClass * RC) const146 bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
147 return RC->getID() == PPC::VSSRCRegClassID;
148 }
copyRegToRegClass(const TargetRegisterClass * ToRC,unsigned SrcReg,unsigned Flag=0,unsigned SubReg=0)149 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
150 unsigned SrcReg, unsigned Flag = 0,
151 unsigned SubReg = 0) {
152 Register TmpReg = createResultReg(ToRC);
153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
154 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
155 return TmpReg;
156 }
157 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
158 bool isZExt, unsigned DestReg,
159 const PPC::Predicate Pred);
160 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
161 const TargetRegisterClass *RC, bool IsZExt = true,
162 unsigned FP64LoadOpc = PPC::LFD);
163 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
164 bool PPCComputeAddress(const Value *Obj, Address &Addr);
165 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
166 unsigned &IndexReg);
167 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
168 unsigned DestReg, bool IsZExt);
169 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
170 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
171 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
172 bool UseSExt = true);
173 unsigned PPCMaterialize32BitInt(int64_t Imm,
174 const TargetRegisterClass *RC);
175 unsigned PPCMaterialize64BitInt(int64_t Imm,
176 const TargetRegisterClass *RC);
177 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
178 unsigned SrcReg, bool IsSigned);
179 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
180
181 // Call handling routines.
182 private:
183 bool processCallArgs(SmallVectorImpl<Value*> &Args,
184 SmallVectorImpl<unsigned> &ArgRegs,
185 SmallVectorImpl<MVT> &ArgVTs,
186 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
187 SmallVectorImpl<unsigned> &RegArgs,
188 CallingConv::ID CC,
189 unsigned &NumBytes,
190 bool IsVarArg);
191 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
192
193 private:
194 #include "PPCGenFastISel.inc"
195
196 };
197
198 } // end anonymous namespace
199
getComparePred(CmpInst::Predicate Pred)200 static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
201 switch (Pred) {
202 // These are not representable with any single compare.
203 case CmpInst::FCMP_FALSE:
204 case CmpInst::FCMP_TRUE:
205 // Major concern about the following 6 cases is NaN result. The comparison
206 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
207 // only one of which will be set. The result is generated by fcmpu
208 // instruction. However, bc instruction only inspects one of the first 3
209 // bits, so when un is set, bc instruction may jump to an undesired
210 // place.
211 //
212 // More specifically, if we expect an unordered comparison and un is set, we
213 // expect to always go to true branch; in such case UEQ, UGT and ULT still
214 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
215 // since they are tested by inspecting !eq, !lt, !gt, respectively.
216 //
217 // Similarly, for ordered comparison, when un is set, we always expect the
218 // result to be false. In such case OGT, OLT and OEQ is good, since they are
219 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
220 // and ONE are tested through !lt, !gt and !eq, and these are true.
221 case CmpInst::FCMP_UEQ:
222 case CmpInst::FCMP_UGT:
223 case CmpInst::FCMP_ULT:
224 case CmpInst::FCMP_OGE:
225 case CmpInst::FCMP_OLE:
226 case CmpInst::FCMP_ONE:
227 default:
228 return std::nullopt;
229
230 case CmpInst::FCMP_OEQ:
231 case CmpInst::ICMP_EQ:
232 return PPC::PRED_EQ;
233
234 case CmpInst::FCMP_OGT:
235 case CmpInst::ICMP_UGT:
236 case CmpInst::ICMP_SGT:
237 return PPC::PRED_GT;
238
239 case CmpInst::FCMP_UGE:
240 case CmpInst::ICMP_UGE:
241 case CmpInst::ICMP_SGE:
242 return PPC::PRED_GE;
243
244 case CmpInst::FCMP_OLT:
245 case CmpInst::ICMP_ULT:
246 case CmpInst::ICMP_SLT:
247 return PPC::PRED_LT;
248
249 case CmpInst::FCMP_ULE:
250 case CmpInst::ICMP_ULE:
251 case CmpInst::ICMP_SLE:
252 return PPC::PRED_LE;
253
254 case CmpInst::FCMP_UNE:
255 case CmpInst::ICMP_NE:
256 return PPC::PRED_NE;
257
258 case CmpInst::FCMP_ORD:
259 return PPC::PRED_NU;
260
261 case CmpInst::FCMP_UNO:
262 return PPC::PRED_UN;
263 }
264 }
265
266 // Determine whether the type Ty is simple enough to be handled by
267 // fast-isel, and return its equivalent machine type in VT.
268 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)269 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
270 EVT Evt = TLI.getValueType(DL, Ty, true);
271
272 // Only handle simple types.
273 if (Evt == MVT::Other || !Evt.isSimple()) return false;
274 VT = Evt.getSimpleVT();
275
276 // Handle all legal types, i.e. a register that will directly hold this
277 // value.
278 return TLI.isTypeLegal(VT);
279 }
280
281 // Determine whether the type Ty is simple enough to be handled by
282 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)283 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
284 if (isTypeLegal(Ty, VT)) return true;
285
286 // If this is a type than can be sign or zero-extended to a basic operation
287 // go ahead and accept it now.
288 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
289 return true;
290 }
291
292 return false;
293 }
294
isValueAvailable(const Value * V) const295 bool PPCFastISel::isValueAvailable(const Value *V) const {
296 if (!isa<Instruction>(V))
297 return true;
298
299 const auto *I = cast<Instruction>(V);
300 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
301 }
302
303 // Given a value Obj, create an Address object Addr that represents its
304 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)305 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
306 const User *U = nullptr;
307 unsigned Opcode = Instruction::UserOp1;
308 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
309 // Don't walk into other basic blocks unless the object is an alloca from
310 // another block, otherwise it may not have a virtual register assigned.
311 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
312 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
313 Opcode = I->getOpcode();
314 U = I;
315 }
316 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
317 Opcode = C->getOpcode();
318 U = C;
319 }
320
321 switch (Opcode) {
322 default:
323 break;
324 case Instruction::BitCast:
325 // Look through bitcasts.
326 return PPCComputeAddress(U->getOperand(0), Addr);
327 case Instruction::IntToPtr:
328 // Look past no-op inttoptrs.
329 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
330 TLI.getPointerTy(DL))
331 return PPCComputeAddress(U->getOperand(0), Addr);
332 break;
333 case Instruction::PtrToInt:
334 // Look past no-op ptrtoints.
335 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
336 return PPCComputeAddress(U->getOperand(0), Addr);
337 break;
338 case Instruction::GetElementPtr: {
339 Address SavedAddr = Addr;
340 int64_t TmpOffset = Addr.Offset;
341
342 // Iterate through the GEP folding the constants into offsets where
343 // we can.
344 gep_type_iterator GTI = gep_type_begin(U);
345 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
346 II != IE; ++II, ++GTI) {
347 const Value *Op = *II;
348 if (StructType *STy = GTI.getStructTypeOrNull()) {
349 const StructLayout *SL = DL.getStructLayout(STy);
350 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
351 TmpOffset += SL->getElementOffset(Idx);
352 } else {
353 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
354 for (;;) {
355 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
356 // Constant-offset addressing.
357 TmpOffset += CI->getSExtValue() * S;
358 break;
359 }
360 if (canFoldAddIntoGEP(U, Op)) {
361 // A compatible add with a constant operand. Fold the constant.
362 ConstantInt *CI =
363 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
364 TmpOffset += CI->getSExtValue() * S;
365 // Iterate on the other operand.
366 Op = cast<AddOperator>(Op)->getOperand(0);
367 continue;
368 }
369 // Unsupported
370 goto unsupported_gep;
371 }
372 }
373 }
374
375 // Try to grab the base operand now.
376 Addr.Offset = TmpOffset;
377 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
378
379 // We failed, restore everything and try the other options.
380 Addr = SavedAddr;
381
382 unsupported_gep:
383 break;
384 }
385 case Instruction::Alloca: {
386 const AllocaInst *AI = cast<AllocaInst>(Obj);
387 DenseMap<const AllocaInst*, int>::iterator SI =
388 FuncInfo.StaticAllocaMap.find(AI);
389 if (SI != FuncInfo.StaticAllocaMap.end()) {
390 Addr.BaseType = Address::FrameIndexBase;
391 Addr.Base.FI = SI->second;
392 return true;
393 }
394 break;
395 }
396 }
397
398 // FIXME: References to parameters fall through to the behavior
399 // below. They should be able to reference a frame index since
400 // they are stored to the stack, so we can get "ld rx, offset(r1)"
401 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
402 // just contain the parameter. Try to handle this with a FI.
403
404 // Try to get this in a register if nothing else has worked.
405 if (Addr.Base.Reg == 0)
406 Addr.Base.Reg = getRegForValue(Obj);
407
408 // Prevent assignment of base register to X0, which is inappropriate
409 // for loads and stores alike.
410 if (Addr.Base.Reg != 0)
411 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
412
413 return Addr.Base.Reg != 0;
414 }
415
416 // Fix up some addresses that can't be used directly. For example, if
417 // an offset won't fit in an instruction field, we may need to move it
418 // into an index register.
PPCSimplifyAddress(Address & Addr,bool & UseOffset,unsigned & IndexReg)419 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
420 unsigned &IndexReg) {
421
422 // Check whether the offset fits in the instruction field.
423 if (!isInt<16>(Addr.Offset))
424 UseOffset = false;
425
426 // If this is a stack pointer and the offset needs to be simplified then
427 // put the alloca address into a register, set the base type back to
428 // register and continue. This should almost never happen.
429 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
430 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
431 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
432 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
433 Addr.Base.Reg = ResultReg;
434 Addr.BaseType = Address::RegBase;
435 }
436
437 if (!UseOffset) {
438 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
439 const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, Addr.Offset);
440 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
441 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
442 }
443 }
444
445 // Emit a load instruction if possible, returning true if we succeeded,
446 // otherwise false. See commentary below for how the register class of
447 // the load is determined.
PPCEmitLoad(MVT VT,Register & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)448 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
449 const TargetRegisterClass *RC,
450 bool IsZExt, unsigned FP64LoadOpc) {
451 unsigned Opc;
452 bool UseOffset = true;
453 bool HasSPE = Subtarget->hasSPE();
454
455 // If ResultReg is given, it determines the register class of the load.
456 // Otherwise, RC is the register class to use. If the result of the
457 // load isn't anticipated in this block, both may be zero, in which
458 // case we must make a conservative guess. In particular, don't assign
459 // R0 or X0 to the result register, as the result may be used in a load,
460 // store, add-immediate, or isel that won't permit this. (Though
461 // perhaps the spill and reload of live-exit values would handle this?)
462 const TargetRegisterClass *UseRC =
463 (ResultReg ? MRI.getRegClass(ResultReg) :
464 (RC ? RC :
465 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
466 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
467 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
468 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
469
470 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
471
472 switch (VT.SimpleTy) {
473 default: // e.g., vector types not handled
474 return false;
475 case MVT::i8:
476 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
477 break;
478 case MVT::i16:
479 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
480 : (Is32BitInt ? PPC::LHA : PPC::LHA8));
481 break;
482 case MVT::i32:
483 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
484 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
485 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
486 UseOffset = false;
487 break;
488 case MVT::i64:
489 Opc = PPC::LD;
490 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
491 "64-bit load with 32-bit target??");
492 UseOffset = ((Addr.Offset & 3) == 0);
493 break;
494 case MVT::f32:
495 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
496 break;
497 case MVT::f64:
498 Opc = FP64LoadOpc;
499 break;
500 }
501
502 // If necessary, materialize the offset into a register and use
503 // the indexed form. Also handle stack pointers with special needs.
504 unsigned IndexReg = 0;
505 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
506
507 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
508 // be used.
509 bool IsVSSRC = isVSSRCRegClass(UseRC);
510 bool IsVSFRC = isVSFRCRegClass(UseRC);
511 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
512 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
513 if ((Is32VSXLoad || Is64VSXLoad) &&
514 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
515 (Addr.Offset == 0)) {
516 UseOffset = false;
517 }
518
519 if (ResultReg == 0)
520 ResultReg = createResultReg(UseRC);
521
522 // Note: If we still have a frame index here, we know the offset is
523 // in range, as otherwise PPCSimplifyAddress would have converted it
524 // into a RegBase.
525 if (Addr.BaseType == Address::FrameIndexBase) {
526 // VSX only provides an indexed load.
527 if (Is32VSXLoad || Is64VSXLoad) return false;
528
529 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
530 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
531 Addr.Offset),
532 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
533 MFI.getObjectAlign(Addr.Base.FI));
534
535 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
536 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
537
538 // Base reg with offset in range.
539 } else if (UseOffset) {
540 // VSX only provides an indexed load.
541 if (Is32VSXLoad || Is64VSXLoad) return false;
542
543 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
544 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
545
546 // Indexed form.
547 } else {
548 // Get the RR opcode corresponding to the RI one. FIXME: It would be
549 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
550 // is hard to get at.
551 switch (Opc) {
552 default: llvm_unreachable("Unexpected opcode!");
553 case PPC::LBZ: Opc = PPC::LBZX; break;
554 case PPC::LBZ8: Opc = PPC::LBZX8; break;
555 case PPC::LHZ: Opc = PPC::LHZX; break;
556 case PPC::LHZ8: Opc = PPC::LHZX8; break;
557 case PPC::LHA: Opc = PPC::LHAX; break;
558 case PPC::LHA8: Opc = PPC::LHAX8; break;
559 case PPC::LWZ: Opc = PPC::LWZX; break;
560 case PPC::LWZ8: Opc = PPC::LWZX8; break;
561 case PPC::LWA: Opc = PPC::LWAX; break;
562 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
563 case PPC::LD: Opc = PPC::LDX; break;
564 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
565 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
566 case PPC::EVLDD: Opc = PPC::EVLDDX; break;
567 case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
568 }
569
570 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
571 ResultReg);
572
573 // If we have an index register defined we use it in the store inst,
574 // otherwise we use X0 as base as it makes the vector instructions to
575 // use zero in the computation of the effective address regardless the
576 // content of the register.
577 if (IndexReg)
578 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
579 else
580 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
581 }
582
583 return true;
584 }
585
586 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)587 bool PPCFastISel::SelectLoad(const Instruction *I) {
588 // FIXME: No atomic loads are supported.
589 if (cast<LoadInst>(I)->isAtomic())
590 return false;
591
592 // Verify we have a legal type before going any further.
593 MVT VT;
594 if (!isLoadTypeLegal(I->getType(), VT))
595 return false;
596
597 // See if we can handle this address.
598 Address Addr;
599 if (!PPCComputeAddress(I->getOperand(0), Addr))
600 return false;
601
602 // Look at the currently assigned register for this instruction
603 // to determine the required register class. This is necessary
604 // to constrain RA from using R0/X0 when this is not legal.
605 Register AssignedReg = FuncInfo.ValueMap[I];
606 const TargetRegisterClass *RC =
607 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
608
609 Register ResultReg = 0;
610 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
611 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
612 return false;
613 updateValueMap(I, ResultReg);
614 return true;
615 }
616
617 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)618 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
619 assert(SrcReg && "Nothing to store!");
620 unsigned Opc;
621 bool UseOffset = true;
622
623 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
624 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
625
626 switch (VT.SimpleTy) {
627 default: // e.g., vector types not handled
628 return false;
629 case MVT::i8:
630 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
631 break;
632 case MVT::i16:
633 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
634 break;
635 case MVT::i32:
636 assert(Is32BitInt && "Not GPRC for i32??");
637 Opc = PPC::STW;
638 break;
639 case MVT::i64:
640 Opc = PPC::STD;
641 UseOffset = ((Addr.Offset & 3) == 0);
642 break;
643 case MVT::f32:
644 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
645 break;
646 case MVT::f64:
647 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
648 break;
649 }
650
651 // If necessary, materialize the offset into a register and use
652 // the indexed form. Also handle stack pointers with special needs.
653 unsigned IndexReg = 0;
654 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
655
656 // If this is a potential VSX store with an offset of 0, a VSX indexed store
657 // can be used.
658 bool IsVSSRC = isVSSRCRegClass(RC);
659 bool IsVSFRC = isVSFRCRegClass(RC);
660 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
661 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
662 if ((Is32VSXStore || Is64VSXStore) &&
663 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
664 (Addr.Offset == 0)) {
665 UseOffset = false;
666 }
667
668 // Note: If we still have a frame index here, we know the offset is
669 // in range, as otherwise PPCSimplifyAddress would have converted it
670 // into a RegBase.
671 if (Addr.BaseType == Address::FrameIndexBase) {
672 // VSX only provides an indexed store.
673 if (Is32VSXStore || Is64VSXStore) return false;
674
675 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
676 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
677 Addr.Offset),
678 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
679 MFI.getObjectAlign(Addr.Base.FI));
680
681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
682 .addReg(SrcReg)
683 .addImm(Addr.Offset)
684 .addFrameIndex(Addr.Base.FI)
685 .addMemOperand(MMO);
686
687 // Base reg with offset in range.
688 } else if (UseOffset) {
689 // VSX only provides an indexed store.
690 if (Is32VSXStore || Is64VSXStore)
691 return false;
692
693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
694 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
695
696 // Indexed form.
697 } else {
698 // Get the RR opcode corresponding to the RI one. FIXME: It would be
699 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
700 // is hard to get at.
701 switch (Opc) {
702 default: llvm_unreachable("Unexpected opcode!");
703 case PPC::STB: Opc = PPC::STBX; break;
704 case PPC::STH : Opc = PPC::STHX; break;
705 case PPC::STW : Opc = PPC::STWX; break;
706 case PPC::STB8: Opc = PPC::STBX8; break;
707 case PPC::STH8: Opc = PPC::STHX8; break;
708 case PPC::STW8: Opc = PPC::STWX8; break;
709 case PPC::STD: Opc = PPC::STDX; break;
710 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
711 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
712 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
713 case PPC::SPESTW: Opc = PPC::SPESTWX; break;
714 }
715
716 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
717 .addReg(SrcReg);
718
719 // If we have an index register defined we use it in the store inst,
720 // otherwise we use X0 as base as it makes the vector instructions to
721 // use zero in the computation of the effective address regardless the
722 // content of the register.
723 if (IndexReg)
724 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
725 else
726 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
727 }
728
729 return true;
730 }
731
732 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)733 bool PPCFastISel::SelectStore(const Instruction *I) {
734 Value *Op0 = I->getOperand(0);
735 unsigned SrcReg = 0;
736
737 // FIXME: No atomics loads are supported.
738 if (cast<StoreInst>(I)->isAtomic())
739 return false;
740
741 // Verify we have a legal type before going any further.
742 MVT VT;
743 if (!isLoadTypeLegal(Op0->getType(), VT))
744 return false;
745
746 // Get the value to be stored into a register.
747 SrcReg = getRegForValue(Op0);
748 if (SrcReg == 0)
749 return false;
750
751 // See if we can handle this address.
752 Address Addr;
753 if (!PPCComputeAddress(I->getOperand(1), Addr))
754 return false;
755
756 if (!PPCEmitStore(VT, SrcReg, Addr))
757 return false;
758
759 return true;
760 }
761
762 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)763 bool PPCFastISel::SelectBranch(const Instruction *I) {
764 const BranchInst *BI = cast<BranchInst>(I);
765 MachineBasicBlock *BrBB = FuncInfo.MBB;
766 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
767 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
768
769 // For now, just try the simplest case where it's fed by a compare.
770 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
771 if (isValueAvailable(CI)) {
772 std::optional<PPC::Predicate> OptPPCPred =
773 getComparePred(CI->getPredicate());
774 if (!OptPPCPred)
775 return false;
776
777 PPC::Predicate PPCPred = *OptPPCPred;
778
779 // Take advantage of fall-through opportunities.
780 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
781 std::swap(TBB, FBB);
782 PPCPred = PPC::InvertPredicate(PPCPred);
783 }
784
785 Register CondReg = createResultReg(&PPC::CRRCRegClass);
786
787 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
788 CondReg, PPCPred))
789 return false;
790
791 BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCC))
792 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
793 .addReg(CondReg)
794 .addMBB(TBB);
795 finishCondBranch(BI->getParent(), TBB, FBB);
796 return true;
797 }
798 } else if (const ConstantInt *CI =
799 dyn_cast<ConstantInt>(BI->getCondition())) {
800 uint64_t Imm = CI->getZExtValue();
801 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
802 fastEmitBranch(Target, MIMD.getDL());
803 return true;
804 }
805
806 // FIXME: ARM looks for a case where the block containing the compare
807 // has been split from the block containing the branch. If this happens,
808 // there is a vreg available containing the result of the compare. I'm
809 // not sure we can do much, as we've lost the predicate information with
810 // the compare instruction -- we have a 4-bit CR but don't know which bit
811 // to test here.
812 return false;
813 }
814
815 // Attempt to emit a compare of the two source values. Signed and unsigned
816 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg,const PPC::Predicate Pred)817 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
818 bool IsZExt, unsigned DestReg,
819 const PPC::Predicate Pred) {
820 Type *Ty = SrcValue1->getType();
821 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
822 if (!SrcEVT.isSimple())
823 return false;
824 MVT SrcVT = SrcEVT.getSimpleVT();
825
826 if (SrcVT == MVT::i1 && Subtarget->useCRBits())
827 return false;
828
829 // See if operand 2 is an immediate encodeable in the compare.
830 // FIXME: Operands are not in canonical order at -O0, so an immediate
831 // operand in position 1 is a lost opportunity for now. We are
832 // similar to ARM in this regard.
833 int64_t Imm = 0;
834 bool UseImm = false;
835 const bool HasSPE = Subtarget->hasSPE();
836
837 // Only 16-bit integer constants can be represented in compares for
838 // PowerPC. Others will be materialized into a register.
839 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
840 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
841 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
842 const APInt &CIVal = ConstInt->getValue();
843 Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() :
844 (int64_t)CIVal.getSExtValue();
845 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
846 UseImm = true;
847 }
848 }
849
850 Register SrcReg1 = getRegForValue(SrcValue1);
851 if (SrcReg1 == 0)
852 return false;
853
854 unsigned SrcReg2 = 0;
855 if (!UseImm) {
856 SrcReg2 = getRegForValue(SrcValue2);
857 if (SrcReg2 == 0)
858 return false;
859 }
860
861 unsigned CmpOpc;
862 bool NeedsExt = false;
863
864 auto RC1 = MRI.getRegClass(SrcReg1);
865 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
866
867 switch (SrcVT.SimpleTy) {
868 default: return false;
869 case MVT::f32:
870 if (HasSPE) {
871 switch (Pred) {
872 default: return false;
873 case PPC::PRED_EQ:
874 CmpOpc = PPC::EFSCMPEQ;
875 break;
876 case PPC::PRED_LT:
877 CmpOpc = PPC::EFSCMPLT;
878 break;
879 case PPC::PRED_GT:
880 CmpOpc = PPC::EFSCMPGT;
881 break;
882 }
883 } else {
884 CmpOpc = PPC::FCMPUS;
885 if (isVSSRCRegClass(RC1))
886 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
887 if (RC2 && isVSSRCRegClass(RC2))
888 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
889 }
890 break;
891 case MVT::f64:
892 if (HasSPE) {
893 switch (Pred) {
894 default: return false;
895 case PPC::PRED_EQ:
896 CmpOpc = PPC::EFDCMPEQ;
897 break;
898 case PPC::PRED_LT:
899 CmpOpc = PPC::EFDCMPLT;
900 break;
901 case PPC::PRED_GT:
902 CmpOpc = PPC::EFDCMPGT;
903 break;
904 }
905 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
906 CmpOpc = PPC::XSCMPUDP;
907 } else {
908 CmpOpc = PPC::FCMPUD;
909 }
910 break;
911 case MVT::i1:
912 case MVT::i8:
913 case MVT::i16:
914 NeedsExt = true;
915 [[fallthrough]];
916 case MVT::i32:
917 if (!UseImm)
918 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
919 else
920 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
921 break;
922 case MVT::i64:
923 if (!UseImm)
924 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
925 else
926 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
927 break;
928 }
929
930 if (NeedsExt) {
931 Register ExtReg = createResultReg(&PPC::GPRCRegClass);
932 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
933 return false;
934 SrcReg1 = ExtReg;
935
936 if (!UseImm) {
937 Register ExtReg = createResultReg(&PPC::GPRCRegClass);
938 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
939 return false;
940 SrcReg2 = ExtReg;
941 }
942 }
943
944 if (!UseImm)
945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
946 .addReg(SrcReg1).addReg(SrcReg2);
947 else
948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg)
949 .addReg(SrcReg1).addImm(Imm);
950
951 return true;
952 }
953
954 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)955 bool PPCFastISel::SelectFPExt(const Instruction *I) {
956 Value *Src = I->getOperand(0);
957 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
958 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
959
960 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
961 return false;
962
963 Register SrcReg = getRegForValue(Src);
964 if (!SrcReg)
965 return false;
966
967 // No code is generated for a FP extend.
968 updateValueMap(I, SrcReg);
969 return true;
970 }
971
972 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)973 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
974 Value *Src = I->getOperand(0);
975 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
976 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
977
978 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
979 return false;
980
981 Register SrcReg = getRegForValue(Src);
982 if (!SrcReg)
983 return false;
984
985 // Round the result to single precision.
986 unsigned DestReg;
987 auto RC = MRI.getRegClass(SrcReg);
988 if (Subtarget->hasSPE()) {
989 DestReg = createResultReg(&PPC::GPRCRegClass);
990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::EFSCFD),
991 DestReg)
992 .addReg(SrcReg);
993 } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) {
994 DestReg = createResultReg(&PPC::VSSRCRegClass);
995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::XSRSP),
996 DestReg)
997 .addReg(SrcReg);
998 } else {
999 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1000 DestReg = createResultReg(&PPC::F4RCRegClass);
1001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1002 TII.get(PPC::FRSP), DestReg)
1003 .addReg(SrcReg);
1004 }
1005
1006 updateValueMap(I, DestReg);
1007 return true;
1008 }
1009
1010 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1011 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1012 // those should be used instead of moving via a stack slot when the
1013 // subtarget permits.
1014 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1015 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1016 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)1017 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1018 bool IsSigned) {
1019
1020 // If necessary, extend 32-bit int to 64-bit.
1021 if (SrcVT == MVT::i32) {
1022 Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1023 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1024 return 0;
1025 SrcReg = TmpReg;
1026 }
1027
1028 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1029 Address Addr;
1030 Addr.BaseType = Address::FrameIndexBase;
1031 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1032
1033 // Store the value from the GPR.
1034 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1035 return 0;
1036
1037 // Load the integer value into an FPR. The kind of load used depends
1038 // on a number of conditions.
1039 unsigned LoadOpc = PPC::LFD;
1040
1041 if (SrcVT == MVT::i32) {
1042 if (!IsSigned) {
1043 LoadOpc = PPC::LFIWZX;
1044 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1045 } else if (Subtarget->hasLFIWAX()) {
1046 LoadOpc = PPC::LFIWAX;
1047 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1048 }
1049 }
1050
1051 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1052 Register ResultReg = 0;
1053 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1054 return 0;
1055
1056 return ResultReg;
1057 }
1058
1059 // Attempt to fast-select an integer-to-floating-point conversion.
1060 // FIXME: Once fast-isel has better support for VSX, conversions using
1061 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)1062 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1063 MVT DstVT;
1064 Type *DstTy = I->getType();
1065 if (!isTypeLegal(DstTy, DstVT))
1066 return false;
1067
1068 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1069 return false;
1070
1071 Value *Src = I->getOperand(0);
1072 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1073 if (!SrcEVT.isSimple())
1074 return false;
1075
1076 MVT SrcVT = SrcEVT.getSimpleVT();
1077
1078 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1079 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1080 return false;
1081
1082 Register SrcReg = getRegForValue(Src);
1083 if (SrcReg == 0)
1084 return false;
1085
1086 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1087 if (Subtarget->hasSPE()) {
1088 unsigned Opc;
1089 if (DstVT == MVT::f32)
1090 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1091 else
1092 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1093
1094 Register DestReg = createResultReg(&PPC::SPERCRegClass);
1095 // Generate the convert.
1096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1097 .addReg(SrcReg);
1098 updateValueMap(I, DestReg);
1099 return true;
1100 }
1101
1102 // We can only lower an unsigned convert if we have the newer
1103 // floating-point conversion operations.
1104 if (!IsSigned && !Subtarget->hasFPCVT())
1105 return false;
1106
1107 // FIXME: For now we require the newer floating-point conversion operations
1108 // (which are present only on P7 and A2 server models) when converting
1109 // to single-precision float. Otherwise we have to generate a lot of
1110 // fiddly code to avoid double rounding. If necessary, the fiddly code
1111 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1112 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1113 return false;
1114
1115 // Extend the input if necessary.
1116 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1117 Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1118 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1119 return false;
1120 SrcVT = MVT::i64;
1121 SrcReg = TmpReg;
1122 }
1123
1124 // Move the integer value to an FPR.
1125 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1126 if (FPReg == 0)
1127 return false;
1128
1129 // Determine the opcode for the conversion.
1130 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1131 Register DestReg = createResultReg(RC);
1132 unsigned Opc;
1133
1134 if (DstVT == MVT::f32)
1135 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1136 else
1137 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1138
1139 // Generate the convert.
1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1141 .addReg(FPReg);
1142
1143 updateValueMap(I, DestReg);
1144 return true;
1145 }
1146
1147 // Move the floating-point value in SrcReg into an integer destination
1148 // register, and return the register (or zero if we can't handle it).
1149 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1150 // those should be used instead of moving via a stack slot when the
1151 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1152 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1153 unsigned SrcReg, bool IsSigned) {
1154 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1155 // Note that if have STFIWX available, we could use a 4-byte stack
1156 // slot for i32, but this being fast-isel we'll just go with the
1157 // easiest code gen possible.
1158 Address Addr;
1159 Addr.BaseType = Address::FrameIndexBase;
1160 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1161
1162 // Store the value from the FPR.
1163 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1164 return 0;
1165
1166 // Reload it into a GPR. If we want an i32 on big endian, modify the
1167 // address to have a 4-byte offset so we load from the right place.
1168 if (VT == MVT::i32)
1169 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1170
1171 // Look at the currently assigned register for this instruction
1172 // to determine the required register class.
1173 Register AssignedReg = FuncInfo.ValueMap[I];
1174 const TargetRegisterClass *RC =
1175 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1176
1177 Register ResultReg = 0;
1178 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1179 return 0;
1180
1181 return ResultReg;
1182 }
1183
1184 // Attempt to fast-select a floating-point-to-integer conversion.
1185 // FIXME: Once fast-isel has better support for VSX, conversions using
1186 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1187 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1188 MVT DstVT, SrcVT;
1189 Type *DstTy = I->getType();
1190 if (!isTypeLegal(DstTy, DstVT))
1191 return false;
1192
1193 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1194 return false;
1195
1196 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1197 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1198 !Subtarget->hasSPE())
1199 return false;
1200
1201 Value *Src = I->getOperand(0);
1202 Type *SrcTy = Src->getType();
1203 if (!isTypeLegal(SrcTy, SrcVT))
1204 return false;
1205
1206 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1207 return false;
1208
1209 Register SrcReg = getRegForValue(Src);
1210 if (SrcReg == 0)
1211 return false;
1212
1213 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1214 // meaningless copy to get the register class right.
1215 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1216 if (InRC == &PPC::F4RCRegClass)
1217 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1218 else if (InRC == &PPC::VSSRCRegClass)
1219 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1220
1221 // Determine the opcode for the conversion, which takes place
1222 // entirely within FPRs or VSRs.
1223 unsigned DestReg;
1224 unsigned Opc;
1225 auto RC = MRI.getRegClass(SrcReg);
1226
1227 if (Subtarget->hasSPE()) {
1228 DestReg = createResultReg(&PPC::GPRCRegClass);
1229 if (IsSigned)
1230 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1231 else
1232 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1233 } else if (isVSFRCRegClass(RC)) {
1234 DestReg = createResultReg(&PPC::VSFRCRegClass);
1235 if (DstVT == MVT::i32)
1236 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1237 else
1238 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1239 } else {
1240 DestReg = createResultReg(&PPC::F8RCRegClass);
1241 if (DstVT == MVT::i32)
1242 if (IsSigned)
1243 Opc = PPC::FCTIWZ;
1244 else
1245 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1246 else
1247 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1248 }
1249
1250 // Generate the convert.
1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1252 .addReg(SrcReg);
1253
1254 // Now move the integer value from a float register to an integer register.
1255 unsigned IntReg = Subtarget->hasSPE()
1256 ? DestReg
1257 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1258
1259 if (IntReg == 0)
1260 return false;
1261
1262 updateValueMap(I, IntReg);
1263 return true;
1264 }
1265
1266 // Attempt to fast-select a binary integer operation that isn't already
1267 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1268 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1269 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1270
1271 // We can get here in the case when we have a binary operation on a non-legal
1272 // type and the target independent selector doesn't know how to handle it.
1273 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1274 return false;
1275
1276 // Look at the currently assigned register for this instruction
1277 // to determine the required register class. If there is no register,
1278 // make a conservative choice (don't assign R0).
1279 Register AssignedReg = FuncInfo.ValueMap[I];
1280 const TargetRegisterClass *RC =
1281 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1282 &PPC::GPRC_and_GPRC_NOR0RegClass);
1283 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1284
1285 unsigned Opc;
1286 switch (ISDOpcode) {
1287 default: return false;
1288 case ISD::ADD:
1289 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1290 break;
1291 case ISD::OR:
1292 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1293 break;
1294 case ISD::SUB:
1295 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1296 break;
1297 }
1298
1299 Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1300 Register SrcReg1 = getRegForValue(I->getOperand(0));
1301 if (SrcReg1 == 0) return false;
1302
1303 // Handle case of small immediate operand.
1304 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1305 const APInt &CIVal = ConstInt->getValue();
1306 int Imm = (int)CIVal.getSExtValue();
1307 bool UseImm = true;
1308 if (isInt<16>(Imm)) {
1309 switch (Opc) {
1310 default:
1311 llvm_unreachable("Missing case!");
1312 case PPC::ADD4:
1313 Opc = PPC::ADDI;
1314 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1315 break;
1316 case PPC::ADD8:
1317 Opc = PPC::ADDI8;
1318 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1319 break;
1320 case PPC::OR:
1321 Opc = PPC::ORI;
1322 break;
1323 case PPC::OR8:
1324 Opc = PPC::ORI8;
1325 break;
1326 case PPC::SUBF:
1327 if (Imm == -32768)
1328 UseImm = false;
1329 else {
1330 Opc = PPC::ADDI;
1331 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1332 Imm = -Imm;
1333 }
1334 break;
1335 case PPC::SUBF8:
1336 if (Imm == -32768)
1337 UseImm = false;
1338 else {
1339 Opc = PPC::ADDI8;
1340 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1341 Imm = -Imm;
1342 }
1343 break;
1344 }
1345
1346 if (UseImm) {
1347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
1348 ResultReg)
1349 .addReg(SrcReg1)
1350 .addImm(Imm);
1351 updateValueMap(I, ResultReg);
1352 return true;
1353 }
1354 }
1355 }
1356
1357 // Reg-reg case.
1358 Register SrcReg2 = getRegForValue(I->getOperand(1));
1359 if (SrcReg2 == 0) return false;
1360
1361 // Reverse operands for subtract-from.
1362 if (ISDOpcode == ISD::SUB)
1363 std::swap(SrcReg1, SrcReg2);
1364
1365 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
1366 .addReg(SrcReg1).addReg(SrcReg2);
1367 updateValueMap(I, ResultReg);
1368 return true;
1369 }
1370
1371 // Handle arguments to a call that we're attempting to fast-select.
1372 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1373 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1374 SmallVectorImpl<unsigned> &ArgRegs,
1375 SmallVectorImpl<MVT> &ArgVTs,
1376 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1377 SmallVectorImpl<unsigned> &RegArgs,
1378 CallingConv::ID CC,
1379 unsigned &NumBytes,
1380 bool IsVarArg) {
1381 SmallVector<CCValAssign, 16> ArgLocs;
1382 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1383
1384 // Reserve space for the linkage area on the stack.
1385 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1386 CCInfo.AllocateStack(LinkageSize, Align(8));
1387
1388 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1389
1390 // Bail out if we can't handle any of the arguments.
1391 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1392 CCValAssign &VA = ArgLocs[I];
1393 MVT ArgVT = ArgVTs[VA.getValNo()];
1394
1395 // Skip vector arguments for now, as well as long double and
1396 // uint128_t, and anything that isn't passed in a register.
1397 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1398 !VA.isRegLoc() || VA.needsCustom())
1399 return false;
1400
1401 // Skip bit-converted arguments for now.
1402 if (VA.getLocInfo() == CCValAssign::BCvt)
1403 return false;
1404 }
1405
1406 // Get a count of how many bytes are to be pushed onto the stack.
1407 NumBytes = CCInfo.getNextStackOffset();
1408
1409 // The prolog code of the callee may store up to 8 GPR argument registers to
1410 // the stack, allowing va_start to index over them in memory if its varargs.
1411 // Because we cannot tell if this is needed on the caller side, we have to
1412 // conservatively assume that it is needed. As such, make sure we have at
1413 // least enough stack space for the caller to store the 8 GPRs.
1414 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1415 NumBytes = std::max(NumBytes, LinkageSize + 64);
1416
1417 // Issue CALLSEQ_START.
1418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1419 TII.get(TII.getCallFrameSetupOpcode()))
1420 .addImm(NumBytes).addImm(0);
1421
1422 // Prepare to assign register arguments. Every argument uses up a
1423 // GPR protocol register even if it's passed in a floating-point
1424 // register (unless we're using the fast calling convention).
1425 unsigned NextGPR = PPC::X3;
1426 unsigned NextFPR = PPC::F1;
1427
1428 // Process arguments.
1429 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1430 CCValAssign &VA = ArgLocs[I];
1431 unsigned Arg = ArgRegs[VA.getValNo()];
1432 MVT ArgVT = ArgVTs[VA.getValNo()];
1433
1434 // Handle argument promotion and bitcasts.
1435 switch (VA.getLocInfo()) {
1436 default:
1437 llvm_unreachable("Unknown loc info!");
1438 case CCValAssign::Full:
1439 break;
1440 case CCValAssign::SExt: {
1441 MVT DestVT = VA.getLocVT();
1442 const TargetRegisterClass *RC =
1443 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1444 Register TmpReg = createResultReg(RC);
1445 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1446 llvm_unreachable("Failed to emit a sext!");
1447 ArgVT = DestVT;
1448 Arg = TmpReg;
1449 break;
1450 }
1451 case CCValAssign::AExt:
1452 case CCValAssign::ZExt: {
1453 MVT DestVT = VA.getLocVT();
1454 const TargetRegisterClass *RC =
1455 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1456 Register TmpReg = createResultReg(RC);
1457 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1458 llvm_unreachable("Failed to emit a zext!");
1459 ArgVT = DestVT;
1460 Arg = TmpReg;
1461 break;
1462 }
1463 case CCValAssign::BCvt: {
1464 // FIXME: Not yet handled.
1465 llvm_unreachable("Should have bailed before getting here!");
1466 break;
1467 }
1468 }
1469
1470 // Copy this argument to the appropriate register.
1471 unsigned ArgReg;
1472 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1473 ArgReg = NextFPR++;
1474 if (CC != CallingConv::Fast)
1475 ++NextGPR;
1476 } else
1477 ArgReg = NextGPR++;
1478
1479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1480 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1481 RegArgs.push_back(ArgReg);
1482 }
1483
1484 return true;
1485 }
1486
1487 // For a call that we've determined we can fast-select, finish the
1488 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1489 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1490 CallingConv::ID CC = CLI.CallConv;
1491
1492 // Issue CallSEQ_END.
1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1494 TII.get(TII.getCallFrameDestroyOpcode()))
1495 .addImm(NumBytes).addImm(0);
1496
1497 // Next, generate a copy to obtain the return value.
1498 // FIXME: No multi-register return values yet, though I don't foresee
1499 // any real difficulties there.
1500 if (RetVT != MVT::isVoid) {
1501 SmallVector<CCValAssign, 16> RVLocs;
1502 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1503 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1504 CCValAssign &VA = RVLocs[0];
1505 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1506 assert(VA.isRegLoc() && "Can only return in registers!");
1507
1508 MVT DestVT = VA.getValVT();
1509 MVT CopyVT = DestVT;
1510
1511 // Ints smaller than a register still arrive in a full 64-bit
1512 // register, so make sure we recognize this.
1513 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1514 CopyVT = MVT::i64;
1515
1516 unsigned SourcePhysReg = VA.getLocReg();
1517 unsigned ResultReg = 0;
1518
1519 if (RetVT == CopyVT) {
1520 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1521 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1522
1523 // If necessary, round the floating result to single precision.
1524 } else if (CopyVT == MVT::f64) {
1525 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::FRSP),
1527 ResultReg).addReg(SourcePhysReg);
1528
1529 // If only the low half of a general register is needed, generate
1530 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1531 // used along the fast-isel path (not lowered), and downstream logic
1532 // also doesn't like a direct subreg copy on a physical reg.)
1533 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1534 // Convert physical register from G8RC to GPRC.
1535 SourcePhysReg -= PPC::X0 - PPC::R0;
1536 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1537 }
1538
1539 assert(ResultReg && "ResultReg unset!");
1540 CLI.InRegs.push_back(SourcePhysReg);
1541 CLI.ResultReg = ResultReg;
1542 CLI.NumResultRegs = 1;
1543 }
1544
1545 return true;
1546 }
1547
fastLowerCall(CallLoweringInfo & CLI)1548 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1549 CallingConv::ID CC = CLI.CallConv;
1550 bool IsTailCall = CLI.IsTailCall;
1551 bool IsVarArg = CLI.IsVarArg;
1552 const Value *Callee = CLI.Callee;
1553 const MCSymbol *Symbol = CLI.Symbol;
1554
1555 if (!Callee && !Symbol)
1556 return false;
1557
1558 // Allow SelectionDAG isel to handle tail calls.
1559 if (IsTailCall)
1560 return false;
1561
1562 // Let SDISel handle vararg functions.
1563 if (IsVarArg)
1564 return false;
1565
1566 // If this is a PC-Rel function, let SDISel handle the call.
1567 if (Subtarget->isUsingPCRelativeCalls())
1568 return false;
1569
1570 // Handle simple calls for now, with legal return types and
1571 // those that can be extended.
1572 Type *RetTy = CLI.RetTy;
1573 MVT RetVT;
1574 if (RetTy->isVoidTy())
1575 RetVT = MVT::isVoid;
1576 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1577 RetVT != MVT::i8)
1578 return false;
1579 else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1580 // We can't handle boolean returns when CR bits are in use.
1581 return false;
1582
1583 // FIXME: No multi-register return values yet.
1584 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1585 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1586 RetVT != MVT::f64) {
1587 SmallVector<CCValAssign, 16> RVLocs;
1588 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1589 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1590 if (RVLocs.size() > 1)
1591 return false;
1592 }
1593
1594 // Bail early if more than 8 arguments, as we only currently
1595 // handle arguments passed in registers.
1596 unsigned NumArgs = CLI.OutVals.size();
1597 if (NumArgs > 8)
1598 return false;
1599
1600 // Set up the argument vectors.
1601 SmallVector<Value*, 8> Args;
1602 SmallVector<unsigned, 8> ArgRegs;
1603 SmallVector<MVT, 8> ArgVTs;
1604 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1605
1606 Args.reserve(NumArgs);
1607 ArgRegs.reserve(NumArgs);
1608 ArgVTs.reserve(NumArgs);
1609 ArgFlags.reserve(NumArgs);
1610
1611 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1612 // Only handle easy calls for now. It would be reasonably easy
1613 // to handle <= 8-byte structures passed ByVal in registers, but we
1614 // have to ensure they are right-justified in the register.
1615 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1616 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1617 return false;
1618
1619 Value *ArgValue = CLI.OutVals[i];
1620 Type *ArgTy = ArgValue->getType();
1621 MVT ArgVT;
1622 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1623 return false;
1624
1625 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1626 // types, which is passed through vector register. Skip these types and
1627 // fallback to default SelectionDAG based selection.
1628 if (ArgVT.isVector() || ArgVT == MVT::f128)
1629 return false;
1630
1631 Register Arg = getRegForValue(ArgValue);
1632 if (Arg == 0)
1633 return false;
1634
1635 Args.push_back(ArgValue);
1636 ArgRegs.push_back(Arg);
1637 ArgVTs.push_back(ArgVT);
1638 ArgFlags.push_back(Flags);
1639 }
1640
1641 // Process the arguments.
1642 SmallVector<unsigned, 8> RegArgs;
1643 unsigned NumBytes;
1644
1645 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1646 RegArgs, CC, NumBytes, IsVarArg))
1647 return false;
1648
1649 MachineInstrBuilder MIB;
1650 // FIXME: No handling for function pointers yet. This requires
1651 // implementing the function descriptor (OPD) setup.
1652 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1653 if (!GV) {
1654 // patchpoints are a special case; they always dispatch to a pointer value.
1655 // However, we don't actually want to generate the indirect call sequence
1656 // here (that will be generated, as necessary, during asm printing), and
1657 // the call we generate here will be erased by FastISel::selectPatchpoint,
1658 // so don't try very hard...
1659 if (CLI.IsPatchPoint)
1660 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::NOP));
1661 else
1662 return false;
1663 } else {
1664 // Build direct call with NOP for TOC restore.
1665 // FIXME: We can and should optimize away the NOP for local calls.
1666 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1667 TII.get(PPC::BL8_NOP));
1668 // Add callee.
1669 MIB.addGlobalAddress(GV);
1670 }
1671
1672 // Add implicit physical register uses to the call.
1673 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1674 MIB.addReg(RegArgs[II], RegState::Implicit);
1675
1676 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1677 // into the call.
1678 PPCFuncInfo->setUsesTOCBasePtr();
1679 MIB.addReg(PPC::X2, RegState::Implicit);
1680
1681 // Add a register mask with the call-preserved registers. Proper
1682 // defs for return values will be added by setPhysRegsDeadExcept().
1683 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1684
1685 CLI.Call = MIB;
1686
1687 // Finish off the call including any return values.
1688 return finishCall(RetVT, CLI, NumBytes);
1689 }
1690
1691 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1692 bool PPCFastISel::SelectRet(const Instruction *I) {
1693
1694 if (!FuncInfo.CanLowerReturn)
1695 return false;
1696
1697 const ReturnInst *Ret = cast<ReturnInst>(I);
1698 const Function &F = *I->getParent()->getParent();
1699
1700 // Build a list of return value registers.
1701 SmallVector<unsigned, 4> RetRegs;
1702 CallingConv::ID CC = F.getCallingConv();
1703
1704 if (Ret->getNumOperands() > 0) {
1705 SmallVector<ISD::OutputArg, 4> Outs;
1706 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1707
1708 // Analyze operands of the call, assigning locations to each operand.
1709 SmallVector<CCValAssign, 16> ValLocs;
1710 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1711 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1712 const Value *RV = Ret->getOperand(0);
1713
1714 // FIXME: Only one output register for now.
1715 if (ValLocs.size() > 1)
1716 return false;
1717
1718 // Special case for returning a constant integer of any size - materialize
1719 // the constant as an i64 and copy it to the return register.
1720 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1721 CCValAssign &VA = ValLocs[0];
1722
1723 Register RetReg = VA.getLocReg();
1724 // We still need to worry about properly extending the sign. For example,
1725 // we could have only a single bit or a constant that needs zero
1726 // extension rather than sign extension. Make sure we pass the return
1727 // value extension property to integer materialization.
1728 unsigned SrcReg =
1729 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1730
1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1732 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1733
1734 RetRegs.push_back(RetReg);
1735
1736 } else {
1737 Register Reg = getRegForValue(RV);
1738
1739 if (Reg == 0)
1740 return false;
1741
1742 // Copy the result values into the output registers.
1743 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1744
1745 CCValAssign &VA = ValLocs[i];
1746 assert(VA.isRegLoc() && "Can only return in registers!");
1747 RetRegs.push_back(VA.getLocReg());
1748 unsigned SrcReg = Reg + VA.getValNo();
1749
1750 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1751 if (!RVEVT.isSimple())
1752 return false;
1753 MVT RVVT = RVEVT.getSimpleVT();
1754 MVT DestVT = VA.getLocVT();
1755
1756 if (RVVT != DestVT && RVVT != MVT::i8 &&
1757 RVVT != MVT::i16 && RVVT != MVT::i32)
1758 return false;
1759
1760 if (RVVT != DestVT) {
1761 switch (VA.getLocInfo()) {
1762 default:
1763 llvm_unreachable("Unknown loc info!");
1764 case CCValAssign::Full:
1765 llvm_unreachable("Full value assign but types don't match?");
1766 case CCValAssign::AExt:
1767 case CCValAssign::ZExt: {
1768 const TargetRegisterClass *RC =
1769 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1770 Register TmpReg = createResultReg(RC);
1771 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1772 return false;
1773 SrcReg = TmpReg;
1774 break;
1775 }
1776 case CCValAssign::SExt: {
1777 const TargetRegisterClass *RC =
1778 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1779 Register TmpReg = createResultReg(RC);
1780 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1781 return false;
1782 SrcReg = TmpReg;
1783 break;
1784 }
1785 }
1786 }
1787
1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1789 TII.get(TargetOpcode::COPY), RetRegs[i])
1790 .addReg(SrcReg);
1791 }
1792 }
1793 }
1794
1795 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1796 TII.get(PPC::BLR8));
1797
1798 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1799 MIB.addReg(RetRegs[i], RegState::Implicit);
1800
1801 return true;
1802 }
1803
1804 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1805 // signed and zero extensions are supported. Return false if we
1806 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1807 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1808 unsigned DestReg, bool IsZExt) {
1809 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1810 return false;
1811 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1812 return false;
1813
1814 // Signed extensions use EXTSB, EXTSH, EXTSW.
1815 if (!IsZExt) {
1816 unsigned Opc;
1817 if (SrcVT == MVT::i8)
1818 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1819 else if (SrcVT == MVT::i16)
1820 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1821 else {
1822 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1823 Opc = PPC::EXTSW_32_64;
1824 }
1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
1826 .addReg(SrcReg);
1827
1828 // Unsigned 32-bit extensions use RLWINM.
1829 } else if (DestVT == MVT::i32) {
1830 unsigned MB;
1831 if (SrcVT == MVT::i8)
1832 MB = 24;
1833 else {
1834 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1835 MB = 16;
1836 }
1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLWINM),
1838 DestReg)
1839 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1840
1841 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1842 } else {
1843 unsigned MB;
1844 if (SrcVT == MVT::i8)
1845 MB = 56;
1846 else if (SrcVT == MVT::i16)
1847 MB = 48;
1848 else
1849 MB = 32;
1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1851 TII.get(PPC::RLDICL_32_64), DestReg)
1852 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1853 }
1854
1855 return true;
1856 }
1857
1858 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1859 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1860 Register AddrReg = getRegForValue(I->getOperand(0));
1861 if (AddrReg == 0)
1862 return false;
1863
1864 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::MTCTR8))
1865 .addReg(AddrReg);
1866 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCTR8));
1867
1868 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1869 for (const BasicBlock *SuccBB : IB->successors())
1870 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1871
1872 return true;
1873 }
1874
1875 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1876 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1877 Value *Src = I->getOperand(0);
1878 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1879 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1880
1881 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1882 return false;
1883
1884 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1885 return false;
1886
1887 Register SrcReg = getRegForValue(Src);
1888 if (!SrcReg)
1889 return false;
1890
1891 // The only interesting case is when we need to switch register classes.
1892 if (SrcVT == MVT::i64)
1893 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1894
1895 updateValueMap(I, SrcReg);
1896 return true;
1897 }
1898
1899 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1900 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1901 Type *DestTy = I->getType();
1902 Value *Src = I->getOperand(0);
1903 Type *SrcTy = Src->getType();
1904
1905 bool IsZExt = isa<ZExtInst>(I);
1906 Register SrcReg = getRegForValue(Src);
1907 if (!SrcReg) return false;
1908
1909 EVT SrcEVT, DestEVT;
1910 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1911 DestEVT = TLI.getValueType(DL, DestTy, true);
1912 if (!SrcEVT.isSimple())
1913 return false;
1914 if (!DestEVT.isSimple())
1915 return false;
1916
1917 MVT SrcVT = SrcEVT.getSimpleVT();
1918 MVT DestVT = DestEVT.getSimpleVT();
1919
1920 // If we know the register class needed for the result of this
1921 // instruction, use it. Otherwise pick the register class of the
1922 // correct size that does not contain X0/R0, since we don't know
1923 // whether downstream uses permit that assignment.
1924 Register AssignedReg = FuncInfo.ValueMap[I];
1925 const TargetRegisterClass *RC =
1926 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1927 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1928 &PPC::GPRC_and_GPRC_NOR0RegClass));
1929 Register ResultReg = createResultReg(RC);
1930
1931 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1932 return false;
1933
1934 updateValueMap(I, ResultReg);
1935 return true;
1936 }
1937
1938 // Attempt to fast-select an instruction that wasn't handled by
1939 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1940 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1941
1942 switch (I->getOpcode()) {
1943 case Instruction::Load:
1944 return SelectLoad(I);
1945 case Instruction::Store:
1946 return SelectStore(I);
1947 case Instruction::Br:
1948 return SelectBranch(I);
1949 case Instruction::IndirectBr:
1950 return SelectIndirectBr(I);
1951 case Instruction::FPExt:
1952 return SelectFPExt(I);
1953 case Instruction::FPTrunc:
1954 return SelectFPTrunc(I);
1955 case Instruction::SIToFP:
1956 return SelectIToFP(I, /*IsSigned*/ true);
1957 case Instruction::UIToFP:
1958 return SelectIToFP(I, /*IsSigned*/ false);
1959 case Instruction::FPToSI:
1960 return SelectFPToI(I, /*IsSigned*/ true);
1961 case Instruction::FPToUI:
1962 return SelectFPToI(I, /*IsSigned*/ false);
1963 case Instruction::Add:
1964 return SelectBinaryIntOp(I, ISD::ADD);
1965 case Instruction::Or:
1966 return SelectBinaryIntOp(I, ISD::OR);
1967 case Instruction::Sub:
1968 return SelectBinaryIntOp(I, ISD::SUB);
1969 case Instruction::Ret:
1970 return SelectRet(I);
1971 case Instruction::Trunc:
1972 return SelectTrunc(I);
1973 case Instruction::ZExt:
1974 case Instruction::SExt:
1975 return SelectIntExt(I);
1976 // Here add other flavors of Instruction::XXX that automated
1977 // cases don't catch. For example, switches are terminators
1978 // that aren't yet handled.
1979 default:
1980 break;
1981 }
1982 return false;
1983 }
1984
1985 // Materialize a floating-point constant into a register, and return
1986 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1987 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1988 // If this is a PC-Rel function, let SDISel handle constant pool.
1989 if (Subtarget->isUsingPCRelativeCalls())
1990 return false;
1991
1992 // No plans to handle long double here.
1993 if (VT != MVT::f32 && VT != MVT::f64)
1994 return 0;
1995
1996 // All FP constants are loaded from the constant pool.
1997 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
1998 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
1999 const bool HasSPE = Subtarget->hasSPE();
2000 const TargetRegisterClass *RC;
2001 if (HasSPE)
2002 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2003 else
2004 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2005
2006 Register DestReg = createResultReg(RC);
2007 CodeModel::Model CModel = TM.getCodeModel();
2008
2009 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2010 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2011 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2012
2013 unsigned Opc;
2014
2015 if (HasSPE)
2016 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2017 else
2018 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2019
2020 Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2021
2022 PPCFuncInfo->setUsesTOCBasePtr();
2023 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2024 if (CModel == CodeModel::Small) {
2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocCPT),
2026 TmpReg)
2027 .addConstantPoolIndex(Idx).addReg(PPC::X2);
2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2029 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2030 } else {
2031 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2032 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2033 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2034 // But for large code model, we must generate a LDtocL followed
2035 // by the LF[SD].
2036 if (CModel == CodeModel::Large) {
2037 Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2038 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2039 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2041 .addImm(0)
2042 .addReg(TmpReg2);
2043 } else
2044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2045 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2046 .addReg(TmpReg)
2047 .addMemOperand(MMO);
2048 }
2049
2050 return DestReg;
2051 }
2052
2053 // Materialize the address of a global value into a register, and return
2054 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)2055 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2056 // If this is a PC-Rel function, let SDISel handle GV materialization.
2057 if (Subtarget->isUsingPCRelativeCalls())
2058 return false;
2059
2060 assert(VT == MVT::i64 && "Non-address!");
2061 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2062 Register DestReg = createResultReg(RC);
2063
2064 // Global values may be plain old object addresses, TLS object
2065 // addresses, constant pool entries, or jump tables. How we generate
2066 // code for these may depend on small, medium, or large code model.
2067 CodeModel::Model CModel = TM.getCodeModel();
2068
2069 // FIXME: Jump tables are not yet required because fast-isel doesn't
2070 // handle switches; if that changes, we need them as well. For now,
2071 // what follows assumes everything's a generic (or TLS) global address.
2072
2073 // FIXME: We don't yet handle the complexity of TLS.
2074 if (GV->isThreadLocal())
2075 return 0;
2076
2077 // If the global has the toc-data attribute then fallback to DAG-ISEL.
2078 if (TM.getTargetTriple().isOSAIX())
2079 if (const GlobalVariable *Var = dyn_cast_or_null<GlobalVariable>(GV))
2080 if (Var->hasAttribute("toc-data"))
2081 return false;
2082
2083 PPCFuncInfo->setUsesTOCBasePtr();
2084 // For small code model, generate a simple TOC load.
2085 if (CModel == CodeModel::Small)
2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtoc),
2087 DestReg)
2088 .addGlobalAddress(GV)
2089 .addReg(PPC::X2);
2090 else {
2091 // If the address is an externally defined symbol, a symbol with common
2092 // or externally available linkage, a non-local function address, or a
2093 // jump table address (not yet needed), or if we are generating code
2094 // for large code model, we generate:
2095 // LDtocL(GV, ADDIStocHA8(%x2, GV))
2096 // Otherwise we generate:
2097 // ADDItocL(ADDIStocHA8(%x2, GV), GV)
2098 // Either way, start with the ADDIStocHA8:
2099 Register HighPartReg = createResultReg(RC);
2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8),
2101 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2102
2103 if (Subtarget->isGVIndirectSymbol(GV)) {
2104 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL),
2105 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2106 } else {
2107 // Otherwise generate the ADDItocL.
2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDItocL),
2109 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2110 }
2111 }
2112
2113 return DestReg;
2114 }
2115
2116 // Materialize a 32-bit integer constant into a register, and return
2117 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)2118 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2119 const TargetRegisterClass *RC) {
2120 unsigned Lo = Imm & 0xFFFF;
2121 unsigned Hi = (Imm >> 16) & 0xFFFF;
2122
2123 Register ResultReg = createResultReg(RC);
2124 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2125
2126 if (isInt<16>(Imm))
2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2128 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2129 .addImm(Imm);
2130 else if (Lo) {
2131 // Both Lo and Hi have nonzero bits.
2132 Register TmpReg = createResultReg(RC);
2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2134 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2135 .addImm(Hi);
2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2137 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2138 .addReg(TmpReg).addImm(Lo);
2139 } else
2140 // Just Hi bits.
2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2142 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2143 .addImm(Hi);
2144
2145 return ResultReg;
2146 }
2147
2148 // Materialize a 64-bit integer constant into a register, and return
2149 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2150 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2151 const TargetRegisterClass *RC) {
2152 unsigned Remainder = 0;
2153 unsigned Shift = 0;
2154
2155 // If the value doesn't fit in 32 bits, see if we can shift it
2156 // so that it fits in 32 bits.
2157 if (!isInt<32>(Imm)) {
2158 Shift = countTrailingZeros<uint64_t>(Imm);
2159 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2160
2161 if (isInt<32>(ImmSh))
2162 Imm = ImmSh;
2163 else {
2164 Remainder = Imm;
2165 Shift = 32;
2166 Imm >>= 32;
2167 }
2168 }
2169
2170 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2171 // (if not shifted).
2172 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2173 if (!Shift)
2174 return TmpReg1;
2175
2176 // If upper 32 bits were not zero, we've built them and need to shift
2177 // them into place.
2178 unsigned TmpReg2;
2179 if (Imm) {
2180 TmpReg2 = createResultReg(RC);
2181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLDICR),
2182 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2183 } else
2184 TmpReg2 = TmpReg1;
2185
2186 unsigned TmpReg3, Hi, Lo;
2187 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2188 TmpReg3 = createResultReg(RC);
2189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORIS8),
2190 TmpReg3).addReg(TmpReg2).addImm(Hi);
2191 } else
2192 TmpReg3 = TmpReg2;
2193
2194 if ((Lo = Remainder & 0xFFFF)) {
2195 Register ResultReg = createResultReg(RC);
2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORI8),
2197 ResultReg).addReg(TmpReg3).addImm(Lo);
2198 return ResultReg;
2199 }
2200
2201 return TmpReg3;
2202 }
2203
2204 // Materialize an integer constant into a register, and return
2205 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2206 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2207 bool UseSExt) {
2208 // If we're using CR bit registers for i1 values, handle that as a special
2209 // case first.
2210 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2211 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2213 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2214 return ImmReg;
2215 }
2216
2217 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2218 VT != MVT::i1)
2219 return 0;
2220
2221 const TargetRegisterClass *RC =
2222 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2223 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2224
2225 // If the constant is in range, use a load-immediate.
2226 // Since LI will sign extend the constant we need to make sure that for
2227 // our zeroext constants that the sign extended constant fits into 16-bits -
2228 // a range of 0..0x7fff.
2229 if (isInt<16>(Imm)) {
2230 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2231 Register ImmReg = createResultReg(RC);
2232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ImmReg)
2233 .addImm(Imm);
2234 return ImmReg;
2235 }
2236
2237 // Construct the constant piecewise.
2238 if (VT == MVT::i64)
2239 return PPCMaterialize64BitInt(Imm, RC);
2240 else if (VT == MVT::i32)
2241 return PPCMaterialize32BitInt(Imm, RC);
2242
2243 return 0;
2244 }
2245
2246 // Materialize a constant into a register, and return the register
2247 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2248 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2249 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2250
2251 // Only handle simple types.
2252 if (!CEVT.isSimple()) return 0;
2253 MVT VT = CEVT.getSimpleVT();
2254
2255 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2256 return PPCMaterializeFP(CFP, VT);
2257 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2258 return PPCMaterializeGV(GV, VT);
2259 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2260 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2261 // assumes that constant PHI operands will be zero extended, and failure to
2262 // match that assumption will cause problems if we sign extend here but
2263 // some user of a PHI is in a block for which we fall back to full SDAG
2264 // instruction selection.
2265 return PPCMaterializeInt(CI, VT, false);
2266
2267 return 0;
2268 }
2269
2270 // Materialize the address created by an alloca into a register, and
2271 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2272 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2273 // Don't handle dynamic allocas.
2274 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2275
2276 MVT VT;
2277 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2278
2279 DenseMap<const AllocaInst*, int>::iterator SI =
2280 FuncInfo.StaticAllocaMap.find(AI);
2281
2282 if (SI != FuncInfo.StaticAllocaMap.end()) {
2283 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8),
2285 ResultReg).addFrameIndex(SI->second).addImm(0);
2286 return ResultReg;
2287 }
2288
2289 return 0;
2290 }
2291
2292 // Fold loads into extends when possible.
2293 // FIXME: We can have multiple redundant extend/trunc instructions
2294 // following a load. The folding only picks up one. Extend this
2295 // to check subsequent instructions for the same pattern and remove
2296 // them. Thus ResultReg should be the def reg for the last redundant
2297 // instruction in a chain, and all intervening instructions can be
2298 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2299 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2300 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2301 const LoadInst *LI) {
2302 // Verify we have a legal type before going any further.
2303 MVT VT;
2304 if (!isLoadTypeLegal(LI->getType(), VT))
2305 return false;
2306
2307 // Combine load followed by zero- or sign-extend.
2308 bool IsZExt = false;
2309 switch(MI->getOpcode()) {
2310 default:
2311 return false;
2312
2313 case PPC::RLDICL:
2314 case PPC::RLDICL_32_64: {
2315 IsZExt = true;
2316 unsigned MB = MI->getOperand(3).getImm();
2317 if ((VT == MVT::i8 && MB <= 56) ||
2318 (VT == MVT::i16 && MB <= 48) ||
2319 (VT == MVT::i32 && MB <= 32))
2320 break;
2321 return false;
2322 }
2323
2324 case PPC::RLWINM:
2325 case PPC::RLWINM8: {
2326 IsZExt = true;
2327 unsigned MB = MI->getOperand(3).getImm();
2328 if ((VT == MVT::i8 && MB <= 24) ||
2329 (VT == MVT::i16 && MB <= 16))
2330 break;
2331 return false;
2332 }
2333
2334 case PPC::EXTSB:
2335 case PPC::EXTSB8:
2336 case PPC::EXTSB8_32_64:
2337 /* There is no sign-extending load-byte instruction. */
2338 return false;
2339
2340 case PPC::EXTSH:
2341 case PPC::EXTSH8:
2342 case PPC::EXTSH8_32_64: {
2343 if (VT != MVT::i16 && VT != MVT::i8)
2344 return false;
2345 break;
2346 }
2347
2348 case PPC::EXTSW:
2349 case PPC::EXTSW_32:
2350 case PPC::EXTSW_32_64: {
2351 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2352 return false;
2353 break;
2354 }
2355 }
2356
2357 // See if we can handle this address.
2358 Address Addr;
2359 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2360 return false;
2361
2362 Register ResultReg = MI->getOperand(0).getReg();
2363
2364 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2365 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2366 return false;
2367
2368 MachineBasicBlock::iterator I(MI);
2369 removeDeadCode(I, std::next(I));
2370 return true;
2371 }
2372
2373 // Attempt to lower call arguments in a faster way than done by
2374 // the selection DAG code.
fastLowerArguments()2375 bool PPCFastISel::fastLowerArguments() {
2376 // Defer to normal argument lowering for now. It's reasonably
2377 // efficient. Consider doing something like ARM to handle the
2378 // case where all args fit in registers, no varargs, no float
2379 // or vector args.
2380 return false;
2381 }
2382
2383 // Handle materializing integer constants into a register. This is not
2384 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2385 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2386
2387 if (Opc != ISD::Constant)
2388 return 0;
2389
2390 // If we're using CR bit registers for i1 values, handle that as a special
2391 // case first.
2392 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2393 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2395 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2396 return ImmReg;
2397 }
2398
2399 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2400 VT != MVT::i1)
2401 return 0;
2402
2403 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2404 &PPC::GPRCRegClass);
2405 if (VT == MVT::i64)
2406 return PPCMaterialize64BitInt(Imm, RC);
2407 else
2408 return PPCMaterialize32BitInt(Imm, RC);
2409 }
2410
2411 // Override for ADDI and ADDI8 to set the correct register class
2412 // on RHS operand 0. The automatic infrastructure naively assumes
2413 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2414 // for these cases. At the moment, none of the other automatically
2415 // generated RI instructions require special treatment. However, once
2416 // SelectSelect is implemented, "isel" requires similar handling.
2417 //
2418 // Also be conservative about the output register class. Avoid
2419 // assigning R0 or X0 to the output register for GPRC and G8RC
2420 // register classes, as any such result could be used in ADDI, etc.,
2421 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm)2422 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2423 const TargetRegisterClass *RC,
2424 unsigned Op0,
2425 uint64_t Imm) {
2426 if (MachineInstOpcode == PPC::ADDI)
2427 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2428 else if (MachineInstOpcode == PPC::ADDI8)
2429 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2430
2431 const TargetRegisterClass *UseRC =
2432 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2433 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2434
2435 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2436 }
2437
2438 // Override for instructions with one register operand to avoid use of
2439 // R0/X0. The automatic infrastructure isn't aware of the context so
2440 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0)2441 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2442 const TargetRegisterClass* RC,
2443 unsigned Op0) {
2444 const TargetRegisterClass *UseRC =
2445 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2446 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2447
2448 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2449 }
2450
2451 // Override for instructions with two register operands to avoid use
2452 // of R0/X0. The automatic infrastructure isn't aware of the context
2453 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)2454 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2455 const TargetRegisterClass* RC,
2456 unsigned Op0, unsigned Op1) {
2457 const TargetRegisterClass *UseRC =
2458 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2459 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2460
2461 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2462 }
2463
2464 namespace llvm {
2465 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2466 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2467 const TargetLibraryInfo *LibInfo) {
2468 // Only available on 64-bit for now.
2469 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2470 if (Subtarget.isPPC64())
2471 return new PPCFastISel(FuncInfo, LibInfo);
2472 return nullptr;
2473 }
2474 }
2475