1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 115 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 116 117 if (Subtarget.is64Bit()) { 118 setOperationAction(ISD::ADD, MVT::i32, Custom); 119 setOperationAction(ISD::SUB, MVT::i32, Custom); 120 setOperationAction(ISD::SHL, MVT::i32, Custom); 121 setOperationAction(ISD::SRA, MVT::i32, Custom); 122 setOperationAction(ISD::SRL, MVT::i32, Custom); 123 } 124 125 if (!Subtarget.hasStdExtM()) { 126 setOperationAction(ISD::MUL, XLenVT, Expand); 127 setOperationAction(ISD::MULHS, XLenVT, Expand); 128 setOperationAction(ISD::MULHU, XLenVT, Expand); 129 setOperationAction(ISD::SDIV, XLenVT, Expand); 130 setOperationAction(ISD::UDIV, XLenVT, Expand); 131 setOperationAction(ISD::SREM, XLenVT, Expand); 132 setOperationAction(ISD::UREM, XLenVT, Expand); 133 } 134 135 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 136 setOperationAction(ISD::MUL, MVT::i32, Custom); 137 setOperationAction(ISD::SDIV, MVT::i32, Custom); 138 setOperationAction(ISD::UDIV, MVT::i32, Custom); 139 setOperationAction(ISD::UREM, MVT::i32, Custom); 140 } 141 142 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 143 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 144 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 145 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 146 147 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 148 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 149 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 150 151 setOperationAction(ISD::ROTL, XLenVT, Expand); 152 setOperationAction(ISD::ROTR, XLenVT, Expand); 153 setOperationAction(ISD::BSWAP, XLenVT, Expand); 154 setOperationAction(ISD::CTTZ, XLenVT, Expand); 155 setOperationAction(ISD::CTLZ, XLenVT, Expand); 156 setOperationAction(ISD::CTPOP, XLenVT, Expand); 157 158 ISD::CondCode FPCCToExtend[] = { 159 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 160 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 161 ISD::SETGE, ISD::SETNE}; 162 163 ISD::NodeType FPOpToExtend[] = { 164 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 165 ISD::FP_TO_FP16}; 166 167 if (Subtarget.hasStdExtF()) { 168 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 169 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 170 for (auto CC : FPCCToExtend) 171 setCondCodeAction(CC, MVT::f32, Expand); 172 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 173 setOperationAction(ISD::SELECT, MVT::f32, Custom); 174 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 175 for (auto Op : FPOpToExtend) 176 setOperationAction(Op, MVT::f32, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 178 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 179 } 180 181 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 182 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 183 184 if (Subtarget.hasStdExtD()) { 185 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 186 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 187 for (auto CC : FPCCToExtend) 188 setCondCodeAction(CC, MVT::f64, Expand); 189 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 190 setOperationAction(ISD::SELECT, MVT::f64, Custom); 191 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 for (auto Op : FPOpToExtend) 195 setOperationAction(Op, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 197 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 198 } 199 200 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 201 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 202 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 203 204 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 205 206 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 207 // Unfortunately this can't be determined just from the ISA naming string. 208 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 209 Subtarget.is64Bit() ? Legal : Custom); 210 211 setOperationAction(ISD::TRAP, MVT::Other, Legal); 212 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 213 214 if (Subtarget.hasStdExtA()) { 215 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 216 setMinCmpXchgSizeInBits(32); 217 } else { 218 setMaxAtomicSizeInBitsSupported(0); 219 } 220 221 setBooleanContents(ZeroOrOneBooleanContent); 222 223 // Function alignments. 224 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 225 setMinFunctionAlignment(FunctionAlignment); 226 setPrefFunctionAlignment(FunctionAlignment); 227 228 // Effectively disable jump table generation. 229 setMinimumJumpTableEntries(INT_MAX); 230 } 231 232 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 233 EVT VT) const { 234 if (!VT.isVector()) 235 return getPointerTy(DL); 236 return VT.changeVectorElementTypeToInteger(); 237 } 238 239 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 240 const CallInst &I, 241 MachineFunction &MF, 242 unsigned Intrinsic) const { 243 switch (Intrinsic) { 244 default: 245 return false; 246 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 247 case Intrinsic::riscv_masked_atomicrmw_add_i32: 248 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 249 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 250 case Intrinsic::riscv_masked_atomicrmw_max_i32: 251 case Intrinsic::riscv_masked_atomicrmw_min_i32: 252 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 253 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 254 case Intrinsic::riscv_masked_cmpxchg_i32: 255 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 256 Info.opc = ISD::INTRINSIC_W_CHAIN; 257 Info.memVT = MVT::getVT(PtrTy->getElementType()); 258 Info.ptrVal = I.getArgOperand(0); 259 Info.offset = 0; 260 Info.align = Align(4); 261 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 262 MachineMemOperand::MOVolatile; 263 return true; 264 } 265 } 266 267 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 268 const AddrMode &AM, Type *Ty, 269 unsigned AS, 270 Instruction *I) const { 271 // No global is ever allowed as a base. 272 if (AM.BaseGV) 273 return false; 274 275 // Require a 12-bit signed offset. 276 if (!isInt<12>(AM.BaseOffs)) 277 return false; 278 279 switch (AM.Scale) { 280 case 0: // "r+i" or just "i", depending on HasBaseReg. 281 break; 282 case 1: 283 if (!AM.HasBaseReg) // allow "r+i". 284 break; 285 return false; // disallow "r+r" or "r+r+i". 286 default: 287 return false; 288 } 289 290 return true; 291 } 292 293 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 294 return isInt<12>(Imm); 295 } 296 297 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 298 return isInt<12>(Imm); 299 } 300 301 // On RV32, 64-bit integers are split into their high and low parts and held 302 // in two different registers, so the trunc is free since the low register can 303 // just be used. 304 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 305 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 306 return false; 307 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 308 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 309 return (SrcBits == 64 && DestBits == 32); 310 } 311 312 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 313 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 314 !SrcVT.isInteger() || !DstVT.isInteger()) 315 return false; 316 unsigned SrcBits = SrcVT.getSizeInBits(); 317 unsigned DestBits = DstVT.getSizeInBits(); 318 return (SrcBits == 64 && DestBits == 32); 319 } 320 321 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 322 // Zexts are free if they can be combined with a load. 323 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 324 EVT MemVT = LD->getMemoryVT(); 325 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 326 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 327 (LD->getExtensionType() == ISD::NON_EXTLOAD || 328 LD->getExtensionType() == ISD::ZEXTLOAD)) 329 return true; 330 } 331 332 return TargetLowering::isZExtFree(Val, VT2); 333 } 334 335 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 336 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 337 } 338 339 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 340 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 341 (VT == MVT::f64 && Subtarget.hasStdExtD()); 342 } 343 344 // Changes the condition code and swaps operands if necessary, so the SetCC 345 // operation matches one of the comparisons supported directly in the RISC-V 346 // ISA. 347 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 348 switch (CC) { 349 default: 350 break; 351 case ISD::SETGT: 352 case ISD::SETLE: 353 case ISD::SETUGT: 354 case ISD::SETULE: 355 CC = ISD::getSetCCSwappedOperands(CC); 356 std::swap(LHS, RHS); 357 break; 358 } 359 } 360 361 // Return the RISC-V branch opcode that matches the given DAG integer 362 // condition code. The CondCode must be one of those supported by the RISC-V 363 // ISA (see normaliseSetCC). 364 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 365 switch (CC) { 366 default: 367 llvm_unreachable("Unsupported CondCode"); 368 case ISD::SETEQ: 369 return RISCV::BEQ; 370 case ISD::SETNE: 371 return RISCV::BNE; 372 case ISD::SETLT: 373 return RISCV::BLT; 374 case ISD::SETGE: 375 return RISCV::BGE; 376 case ISD::SETULT: 377 return RISCV::BLTU; 378 case ISD::SETUGE: 379 return RISCV::BGEU; 380 } 381 } 382 383 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 384 SelectionDAG &DAG) const { 385 switch (Op.getOpcode()) { 386 default: 387 report_fatal_error("unimplemented operand"); 388 case ISD::GlobalAddress: 389 return lowerGlobalAddress(Op, DAG); 390 case ISD::BlockAddress: 391 return lowerBlockAddress(Op, DAG); 392 case ISD::ConstantPool: 393 return lowerConstantPool(Op, DAG); 394 case ISD::GlobalTLSAddress: 395 return lowerGlobalTLSAddress(Op, DAG); 396 case ISD::SELECT: 397 return lowerSELECT(Op, DAG); 398 case ISD::VASTART: 399 return lowerVASTART(Op, DAG); 400 case ISD::FRAMEADDR: 401 return lowerFRAMEADDR(Op, DAG); 402 case ISD::RETURNADDR: 403 return lowerRETURNADDR(Op, DAG); 404 case ISD::SHL_PARTS: 405 return lowerShiftLeftParts(Op, DAG); 406 case ISD::SRA_PARTS: 407 return lowerShiftRightParts(Op, DAG, true); 408 case ISD::SRL_PARTS: 409 return lowerShiftRightParts(Op, DAG, false); 410 case ISD::BITCAST: { 411 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 412 "Unexpected custom legalisation"); 413 SDLoc DL(Op); 414 SDValue Op0 = Op.getOperand(0); 415 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 416 return SDValue(); 417 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 418 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 419 return FPConv; 420 } 421 } 422 } 423 424 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 425 SelectionDAG &DAG, unsigned Flags) { 426 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 427 } 428 429 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 430 SelectionDAG &DAG, unsigned Flags) { 431 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 432 Flags); 433 } 434 435 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 436 SelectionDAG &DAG, unsigned Flags) { 437 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 438 N->getOffset(), Flags); 439 } 440 441 template <class NodeTy> 442 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 443 bool IsLocal) const { 444 SDLoc DL(N); 445 EVT Ty = getPointerTy(DAG.getDataLayout()); 446 447 if (isPositionIndependent()) { 448 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 449 if (IsLocal) 450 // Use PC-relative addressing to access the symbol. This generates the 451 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 452 // %pcrel_lo(auipc)). 453 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 454 455 // Use PC-relative addressing to access the GOT for this symbol, then load 456 // the address from the GOT. This generates the pattern (PseudoLA sym), 457 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 458 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 459 } 460 461 switch (getTargetMachine().getCodeModel()) { 462 default: 463 report_fatal_error("Unsupported code model for lowering"); 464 case CodeModel::Small: { 465 // Generate a sequence for accessing addresses within the first 2 GiB of 466 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 467 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 468 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 469 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 470 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 471 } 472 case CodeModel::Medium: { 473 // Generate a sequence for accessing addresses within any 2GiB range within 474 // the address space. This generates the pattern (PseudoLLA sym), which 475 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 476 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 477 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 478 } 479 } 480 } 481 482 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 483 SelectionDAG &DAG) const { 484 SDLoc DL(Op); 485 EVT Ty = Op.getValueType(); 486 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 487 int64_t Offset = N->getOffset(); 488 MVT XLenVT = Subtarget.getXLenVT(); 489 490 const GlobalValue *GV = N->getGlobal(); 491 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 492 SDValue Addr = getAddr(N, DAG, IsLocal); 493 494 // In order to maximise the opportunity for common subexpression elimination, 495 // emit a separate ADD node for the global address offset instead of folding 496 // it in the global address node. Later peephole optimisations may choose to 497 // fold it back in when profitable. 498 if (Offset != 0) 499 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 500 DAG.getConstant(Offset, DL, XLenVT)); 501 return Addr; 502 } 503 504 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 505 SelectionDAG &DAG) const { 506 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 507 508 return getAddr(N, DAG); 509 } 510 511 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 512 SelectionDAG &DAG) const { 513 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 514 515 return getAddr(N, DAG); 516 } 517 518 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 519 SelectionDAG &DAG, 520 bool UseGOT) const { 521 SDLoc DL(N); 522 EVT Ty = getPointerTy(DAG.getDataLayout()); 523 const GlobalValue *GV = N->getGlobal(); 524 MVT XLenVT = Subtarget.getXLenVT(); 525 526 if (UseGOT) { 527 // Use PC-relative addressing to access the GOT for this TLS symbol, then 528 // load the address from the GOT and add the thread pointer. This generates 529 // the pattern (PseudoLA_TLS_IE sym), which expands to 530 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 531 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 532 SDValue Load = 533 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 534 535 // Add the thread pointer. 536 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 537 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 538 } 539 540 // Generate a sequence for accessing the address relative to the thread 541 // pointer, with the appropriate adjustment for the thread pointer offset. 542 // This generates the pattern 543 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 544 SDValue AddrHi = 545 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 546 SDValue AddrAdd = 547 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 548 SDValue AddrLo = 549 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 550 551 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 552 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 553 SDValue MNAdd = SDValue( 554 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 555 0); 556 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 557 } 558 559 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 560 SelectionDAG &DAG) const { 561 SDLoc DL(N); 562 EVT Ty = getPointerTy(DAG.getDataLayout()); 563 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 564 const GlobalValue *GV = N->getGlobal(); 565 566 // Use a PC-relative addressing mode to access the global dynamic GOT address. 567 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 568 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 569 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 570 SDValue Load = 571 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 572 573 // Prepare argument list to generate call. 574 ArgListTy Args; 575 ArgListEntry Entry; 576 Entry.Node = Load; 577 Entry.Ty = CallTy; 578 Args.push_back(Entry); 579 580 // Setup call to __tls_get_addr. 581 TargetLowering::CallLoweringInfo CLI(DAG); 582 CLI.setDebugLoc(DL) 583 .setChain(DAG.getEntryNode()) 584 .setLibCallee(CallingConv::C, CallTy, 585 DAG.getExternalSymbol("__tls_get_addr", Ty), 586 std::move(Args)); 587 588 return LowerCallTo(CLI).first; 589 } 590 591 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 592 SelectionDAG &DAG) const { 593 SDLoc DL(Op); 594 EVT Ty = Op.getValueType(); 595 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 596 int64_t Offset = N->getOffset(); 597 MVT XLenVT = Subtarget.getXLenVT(); 598 599 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 600 601 SDValue Addr; 602 switch (Model) { 603 case TLSModel::LocalExec: 604 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 605 break; 606 case TLSModel::InitialExec: 607 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 608 break; 609 case TLSModel::LocalDynamic: 610 case TLSModel::GeneralDynamic: 611 Addr = getDynamicTLSAddr(N, DAG); 612 break; 613 } 614 615 // In order to maximise the opportunity for common subexpression elimination, 616 // emit a separate ADD node for the global address offset instead of folding 617 // it in the global address node. Later peephole optimisations may choose to 618 // fold it back in when profitable. 619 if (Offset != 0) 620 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 621 DAG.getConstant(Offset, DL, XLenVT)); 622 return Addr; 623 } 624 625 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 626 SDValue CondV = Op.getOperand(0); 627 SDValue TrueV = Op.getOperand(1); 628 SDValue FalseV = Op.getOperand(2); 629 SDLoc DL(Op); 630 MVT XLenVT = Subtarget.getXLenVT(); 631 632 // If the result type is XLenVT and CondV is the output of a SETCC node 633 // which also operated on XLenVT inputs, then merge the SETCC node into the 634 // lowered RISCVISD::SELECT_CC to take advantage of the integer 635 // compare+branch instructions. i.e.: 636 // (select (setcc lhs, rhs, cc), truev, falsev) 637 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 638 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 639 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 640 SDValue LHS = CondV.getOperand(0); 641 SDValue RHS = CondV.getOperand(1); 642 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 643 ISD::CondCode CCVal = CC->get(); 644 645 normaliseSetCC(LHS, RHS, CCVal); 646 647 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 648 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 649 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 650 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 651 } 652 653 // Otherwise: 654 // (select condv, truev, falsev) 655 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 656 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 657 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 658 659 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 660 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 661 662 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 663 } 664 665 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 666 MachineFunction &MF = DAG.getMachineFunction(); 667 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 668 669 SDLoc DL(Op); 670 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 671 getPointerTy(MF.getDataLayout())); 672 673 // vastart just stores the address of the VarArgsFrameIndex slot into the 674 // memory location argument. 675 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 676 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 677 MachinePointerInfo(SV)); 678 } 679 680 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 681 SelectionDAG &DAG) const { 682 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 683 MachineFunction &MF = DAG.getMachineFunction(); 684 MachineFrameInfo &MFI = MF.getFrameInfo(); 685 MFI.setFrameAddressIsTaken(true); 686 Register FrameReg = RI.getFrameRegister(MF); 687 int XLenInBytes = Subtarget.getXLen() / 8; 688 689 EVT VT = Op.getValueType(); 690 SDLoc DL(Op); 691 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 692 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 693 while (Depth--) { 694 int Offset = -(XLenInBytes * 2); 695 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 696 DAG.getIntPtrConstant(Offset, DL)); 697 FrameAddr = 698 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 699 } 700 return FrameAddr; 701 } 702 703 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 704 SelectionDAG &DAG) const { 705 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 706 MachineFunction &MF = DAG.getMachineFunction(); 707 MachineFrameInfo &MFI = MF.getFrameInfo(); 708 MFI.setReturnAddressIsTaken(true); 709 MVT XLenVT = Subtarget.getXLenVT(); 710 int XLenInBytes = Subtarget.getXLen() / 8; 711 712 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 713 return SDValue(); 714 715 EVT VT = Op.getValueType(); 716 SDLoc DL(Op); 717 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 718 if (Depth) { 719 int Off = -XLenInBytes; 720 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 721 SDValue Offset = DAG.getConstant(Off, DL, VT); 722 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 723 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 724 MachinePointerInfo()); 725 } 726 727 // Return the value of the return address register, marking it an implicit 728 // live-in. 729 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 730 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 731 } 732 733 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 734 SelectionDAG &DAG) const { 735 SDLoc DL(Op); 736 SDValue Lo = Op.getOperand(0); 737 SDValue Hi = Op.getOperand(1); 738 SDValue Shamt = Op.getOperand(2); 739 EVT VT = Lo.getValueType(); 740 741 // if Shamt-XLEN < 0: // Shamt < XLEN 742 // Lo = Lo << Shamt 743 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 744 // else: 745 // Lo = 0 746 // Hi = Lo << (Shamt-XLEN) 747 748 SDValue Zero = DAG.getConstant(0, DL, VT); 749 SDValue One = DAG.getConstant(1, DL, VT); 750 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 751 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 752 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 753 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 754 755 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 756 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 757 SDValue ShiftRightLo = 758 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 759 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 760 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 761 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 762 763 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 764 765 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 766 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 767 768 SDValue Parts[2] = {Lo, Hi}; 769 return DAG.getMergeValues(Parts, DL); 770 } 771 772 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 773 bool IsSRA) const { 774 SDLoc DL(Op); 775 SDValue Lo = Op.getOperand(0); 776 SDValue Hi = Op.getOperand(1); 777 SDValue Shamt = Op.getOperand(2); 778 EVT VT = Lo.getValueType(); 779 780 // SRA expansion: 781 // if Shamt-XLEN < 0: // Shamt < XLEN 782 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 783 // Hi = Hi >>s Shamt 784 // else: 785 // Lo = Hi >>s (Shamt-XLEN); 786 // Hi = Hi >>s (XLEN-1) 787 // 788 // SRL expansion: 789 // if Shamt-XLEN < 0: // Shamt < XLEN 790 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 791 // Hi = Hi >>u Shamt 792 // else: 793 // Lo = Hi >>u (Shamt-XLEN); 794 // Hi = 0; 795 796 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 797 798 SDValue Zero = DAG.getConstant(0, DL, VT); 799 SDValue One = DAG.getConstant(1, DL, VT); 800 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 801 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 802 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 803 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 804 805 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 806 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 807 SDValue ShiftLeftHi = 808 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 809 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 810 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 811 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 812 SDValue HiFalse = 813 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 814 815 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 816 817 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 818 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 819 820 SDValue Parts[2] = {Lo, Hi}; 821 return DAG.getMergeValues(Parts, DL); 822 } 823 824 // Returns the opcode of the target-specific SDNode that implements the 32-bit 825 // form of the given Opcode. 826 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 827 switch (Opcode) { 828 default: 829 llvm_unreachable("Unexpected opcode"); 830 case ISD::SHL: 831 return RISCVISD::SLLW; 832 case ISD::SRA: 833 return RISCVISD::SRAW; 834 case ISD::SRL: 835 return RISCVISD::SRLW; 836 case ISD::SDIV: 837 return RISCVISD::DIVW; 838 case ISD::UDIV: 839 return RISCVISD::DIVUW; 840 case ISD::UREM: 841 return RISCVISD::REMUW; 842 } 843 } 844 845 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 846 // Because i32 isn't a legal type for RV64, these operations would otherwise 847 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 848 // later one because the fact the operation was originally of type i32 is 849 // lost. 850 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 851 SDLoc DL(N); 852 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 853 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 854 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 855 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 856 // ReplaceNodeResults requires we maintain the same type for the return value. 857 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 858 } 859 860 // Converts the given 32-bit operation to a i64 operation with signed extension 861 // semantic to reduce the signed extension instructions. 862 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 863 SDLoc DL(N); 864 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 865 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 866 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 867 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 868 DAG.getValueType(MVT::i32)); 869 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 870 } 871 872 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 873 SmallVectorImpl<SDValue> &Results, 874 SelectionDAG &DAG) const { 875 SDLoc DL(N); 876 switch (N->getOpcode()) { 877 default: 878 llvm_unreachable("Don't know how to custom type legalize this operation!"); 879 case ISD::READCYCLECOUNTER: { 880 assert(!Subtarget.is64Bit() && 881 "READCYCLECOUNTER only has custom type legalization on riscv32"); 882 883 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 884 SDValue RCW = 885 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 886 887 Results.push_back(RCW); 888 Results.push_back(RCW.getValue(1)); 889 Results.push_back(RCW.getValue(2)); 890 break; 891 } 892 case ISD::ADD: 893 case ISD::SUB: 894 case ISD::MUL: 895 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 896 "Unexpected custom legalisation"); 897 if (N->getOperand(1).getOpcode() == ISD::Constant) 898 return; 899 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 900 break; 901 case ISD::SHL: 902 case ISD::SRA: 903 case ISD::SRL: 904 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 905 "Unexpected custom legalisation"); 906 if (N->getOperand(1).getOpcode() == ISD::Constant) 907 return; 908 Results.push_back(customLegalizeToWOp(N, DAG)); 909 break; 910 case ISD::SDIV: 911 case ISD::UDIV: 912 case ISD::UREM: 913 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 914 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 915 if (N->getOperand(0).getOpcode() == ISD::Constant || 916 N->getOperand(1).getOpcode() == ISD::Constant) 917 return; 918 Results.push_back(customLegalizeToWOp(N, DAG)); 919 break; 920 case ISD::BITCAST: { 921 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 922 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 923 SDLoc DL(N); 924 SDValue Op0 = N->getOperand(0); 925 if (Op0.getValueType() != MVT::f32) 926 return; 927 SDValue FPConv = 928 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 929 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 930 break; 931 } 932 } 933 } 934 935 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 936 DAGCombinerInfo &DCI) const { 937 SelectionDAG &DAG = DCI.DAG; 938 939 switch (N->getOpcode()) { 940 default: 941 break; 942 case RISCVISD::SplitF64: { 943 SDValue Op0 = N->getOperand(0); 944 // If the input to SplitF64 is just BuildPairF64 then the operation is 945 // redundant. Instead, use BuildPairF64's operands directly. 946 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 947 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 948 949 SDLoc DL(N); 950 951 // It's cheaper to materialise two 32-bit integers than to load a double 952 // from the constant pool and transfer it to integer registers through the 953 // stack. 954 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 955 APInt V = C->getValueAPF().bitcastToAPInt(); 956 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 957 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 958 return DCI.CombineTo(N, Lo, Hi); 959 } 960 961 // This is a target-specific version of a DAGCombine performed in 962 // DAGCombiner::visitBITCAST. It performs the equivalent of: 963 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 964 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 965 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 966 !Op0.getNode()->hasOneUse()) 967 break; 968 SDValue NewSplitF64 = 969 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 970 Op0.getOperand(0)); 971 SDValue Lo = NewSplitF64.getValue(0); 972 SDValue Hi = NewSplitF64.getValue(1); 973 APInt SignBit = APInt::getSignMask(32); 974 if (Op0.getOpcode() == ISD::FNEG) { 975 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 976 DAG.getConstant(SignBit, DL, MVT::i32)); 977 return DCI.CombineTo(N, Lo, NewHi); 978 } 979 assert(Op0.getOpcode() == ISD::FABS); 980 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 981 DAG.getConstant(~SignBit, DL, MVT::i32)); 982 return DCI.CombineTo(N, Lo, NewHi); 983 } 984 case RISCVISD::SLLW: 985 case RISCVISD::SRAW: 986 case RISCVISD::SRLW: { 987 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 988 SDValue LHS = N->getOperand(0); 989 SDValue RHS = N->getOperand(1); 990 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 991 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 992 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 993 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 994 return SDValue(); 995 break; 996 } 997 case RISCVISD::FMV_X_ANYEXTW_RV64: { 998 SDLoc DL(N); 999 SDValue Op0 = N->getOperand(0); 1000 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1001 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1002 // of the FMV_W_X_RV64 operand. 1003 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1004 SDValue AExtOp = 1005 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 1006 return DCI.CombineTo(N, AExtOp); 1007 } 1008 1009 // This is a target-specific version of a DAGCombine performed in 1010 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1011 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1012 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1013 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1014 !Op0.getNode()->hasOneUse()) 1015 break; 1016 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1017 Op0.getOperand(0)); 1018 APInt SignBit = APInt::getSignMask(32).sext(64); 1019 if (Op0.getOpcode() == ISD::FNEG) { 1020 return DCI.CombineTo(N, 1021 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1022 DAG.getConstant(SignBit, DL, MVT::i64))); 1023 } 1024 assert(Op0.getOpcode() == ISD::FABS); 1025 return DCI.CombineTo(N, 1026 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1027 DAG.getConstant(~SignBit, DL, MVT::i64))); 1028 } 1029 } 1030 1031 return SDValue(); 1032 } 1033 1034 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1035 const SDNode *N, CombineLevel Level) const { 1036 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1037 // materialised in fewer instructions than `(OP _, c1)`: 1038 // 1039 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1040 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1041 SDValue N0 = N->getOperand(0); 1042 EVT Ty = N0.getValueType(); 1043 if (Ty.isScalarInteger() && 1044 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1045 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1046 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1047 if (C1 && C2) { 1048 APInt C1Int = C1->getAPIntValue(); 1049 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1050 1051 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1052 // and the combine should happen, to potentially allow further combines 1053 // later. 1054 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1055 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1056 return true; 1057 1058 // We can materialise `c1` in an add immediate, so it's "free", and the 1059 // combine should be prevented. 1060 if (C1Int.getMinSignedBits() <= 64 && 1061 isLegalAddImmediate(C1Int.getSExtValue())) 1062 return false; 1063 1064 // Neither constant will fit into an immediate, so find materialisation 1065 // costs. 1066 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1067 Subtarget.is64Bit()); 1068 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1069 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1070 1071 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1072 // combine should be prevented. 1073 if (C1Cost < ShiftedC1Cost) 1074 return false; 1075 } 1076 } 1077 return true; 1078 } 1079 1080 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1081 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1082 unsigned Depth) const { 1083 switch (Op.getOpcode()) { 1084 default: 1085 break; 1086 case RISCVISD::SLLW: 1087 case RISCVISD::SRAW: 1088 case RISCVISD::SRLW: 1089 case RISCVISD::DIVW: 1090 case RISCVISD::DIVUW: 1091 case RISCVISD::REMUW: 1092 // TODO: As the result is sign-extended, this is conservatively correct. A 1093 // more precise answer could be calculated for SRAW depending on known 1094 // bits in the shift amount. 1095 return 33; 1096 } 1097 1098 return 1; 1099 } 1100 1101 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1102 MachineBasicBlock *BB) { 1103 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1104 1105 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1106 // Should the count have wrapped while it was being read, we need to try 1107 // again. 1108 // ... 1109 // read: 1110 // rdcycleh x3 # load high word of cycle 1111 // rdcycle x2 # load low word of cycle 1112 // rdcycleh x4 # load high word of cycle 1113 // bne x3, x4, read # check if high word reads match, otherwise try again 1114 // ... 1115 1116 MachineFunction &MF = *BB->getParent(); 1117 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1118 MachineFunction::iterator It = ++BB->getIterator(); 1119 1120 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1121 MF.insert(It, LoopMBB); 1122 1123 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1124 MF.insert(It, DoneMBB); 1125 1126 // Transfer the remainder of BB and its successor edges to DoneMBB. 1127 DoneMBB->splice(DoneMBB->begin(), BB, 1128 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1129 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1130 1131 BB->addSuccessor(LoopMBB); 1132 1133 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1134 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1135 Register LoReg = MI.getOperand(0).getReg(); 1136 Register HiReg = MI.getOperand(1).getReg(); 1137 DebugLoc DL = MI.getDebugLoc(); 1138 1139 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1140 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1141 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1142 .addReg(RISCV::X0); 1143 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1144 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1145 .addReg(RISCV::X0); 1146 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1147 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1148 .addReg(RISCV::X0); 1149 1150 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1151 .addReg(HiReg) 1152 .addReg(ReadAgainReg) 1153 .addMBB(LoopMBB); 1154 1155 LoopMBB->addSuccessor(LoopMBB); 1156 LoopMBB->addSuccessor(DoneMBB); 1157 1158 MI.eraseFromParent(); 1159 1160 return DoneMBB; 1161 } 1162 1163 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1164 MachineBasicBlock *BB) { 1165 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1166 1167 MachineFunction &MF = *BB->getParent(); 1168 DebugLoc DL = MI.getDebugLoc(); 1169 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1170 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1171 Register LoReg = MI.getOperand(0).getReg(); 1172 Register HiReg = MI.getOperand(1).getReg(); 1173 Register SrcReg = MI.getOperand(2).getReg(); 1174 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1175 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1176 1177 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1178 RI); 1179 MachineMemOperand *MMO = 1180 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1181 MachineMemOperand::MOLoad, 8, 8); 1182 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1183 .addFrameIndex(FI) 1184 .addImm(0) 1185 .addMemOperand(MMO); 1186 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1187 .addFrameIndex(FI) 1188 .addImm(4) 1189 .addMemOperand(MMO); 1190 MI.eraseFromParent(); // The pseudo instruction is gone now. 1191 return BB; 1192 } 1193 1194 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1195 MachineBasicBlock *BB) { 1196 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1197 "Unexpected instruction"); 1198 1199 MachineFunction &MF = *BB->getParent(); 1200 DebugLoc DL = MI.getDebugLoc(); 1201 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1202 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1203 Register DstReg = MI.getOperand(0).getReg(); 1204 Register LoReg = MI.getOperand(1).getReg(); 1205 Register HiReg = MI.getOperand(2).getReg(); 1206 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1207 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1208 1209 MachineMemOperand *MMO = 1210 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1211 MachineMemOperand::MOStore, 8, 8); 1212 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1213 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1214 .addFrameIndex(FI) 1215 .addImm(0) 1216 .addMemOperand(MMO); 1217 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1218 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1219 .addFrameIndex(FI) 1220 .addImm(4) 1221 .addMemOperand(MMO); 1222 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1223 MI.eraseFromParent(); // The pseudo instruction is gone now. 1224 return BB; 1225 } 1226 1227 static bool isSelectPseudo(MachineInstr &MI) { 1228 switch (MI.getOpcode()) { 1229 default: 1230 return false; 1231 case RISCV::Select_GPR_Using_CC_GPR: 1232 case RISCV::Select_FPR32_Using_CC_GPR: 1233 case RISCV::Select_FPR64_Using_CC_GPR: 1234 return true; 1235 } 1236 } 1237 1238 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1239 MachineBasicBlock *BB) { 1240 // To "insert" Select_* instructions, we actually have to insert the triangle 1241 // control-flow pattern. The incoming instructions know the destination vreg 1242 // to set, the condition code register to branch on, the true/false values to 1243 // select between, and the condcode to use to select the appropriate branch. 1244 // 1245 // We produce the following control flow: 1246 // HeadMBB 1247 // | \ 1248 // | IfFalseMBB 1249 // | / 1250 // TailMBB 1251 // 1252 // When we find a sequence of selects we attempt to optimize their emission 1253 // by sharing the control flow. Currently we only handle cases where we have 1254 // multiple selects with the exact same condition (same LHS, RHS and CC). 1255 // The selects may be interleaved with other instructions if the other 1256 // instructions meet some requirements we deem safe: 1257 // - They are debug instructions. Otherwise, 1258 // - They do not have side-effects, do not access memory and their inputs do 1259 // not depend on the results of the select pseudo-instructions. 1260 // The TrueV/FalseV operands of the selects cannot depend on the result of 1261 // previous selects in the sequence. 1262 // These conditions could be further relaxed. See the X86 target for a 1263 // related approach and more information. 1264 Register LHS = MI.getOperand(1).getReg(); 1265 Register RHS = MI.getOperand(2).getReg(); 1266 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1267 1268 SmallVector<MachineInstr *, 4> SelectDebugValues; 1269 SmallSet<Register, 4> SelectDests; 1270 SelectDests.insert(MI.getOperand(0).getReg()); 1271 1272 MachineInstr *LastSelectPseudo = &MI; 1273 1274 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1275 SequenceMBBI != E; ++SequenceMBBI) { 1276 if (SequenceMBBI->isDebugInstr()) 1277 continue; 1278 else if (isSelectPseudo(*SequenceMBBI)) { 1279 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1280 SequenceMBBI->getOperand(2).getReg() != RHS || 1281 SequenceMBBI->getOperand(3).getImm() != CC || 1282 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1283 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1284 break; 1285 LastSelectPseudo = &*SequenceMBBI; 1286 SequenceMBBI->collectDebugValues(SelectDebugValues); 1287 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1288 } else { 1289 if (SequenceMBBI->hasUnmodeledSideEffects() || 1290 SequenceMBBI->mayLoadOrStore()) 1291 break; 1292 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1293 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1294 })) 1295 break; 1296 } 1297 } 1298 1299 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1300 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1301 DebugLoc DL = MI.getDebugLoc(); 1302 MachineFunction::iterator I = ++BB->getIterator(); 1303 1304 MachineBasicBlock *HeadMBB = BB; 1305 MachineFunction *F = BB->getParent(); 1306 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1307 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1308 1309 F->insert(I, IfFalseMBB); 1310 F->insert(I, TailMBB); 1311 1312 // Transfer debug instructions associated with the selects to TailMBB. 1313 for (MachineInstr *DebugInstr : SelectDebugValues) { 1314 TailMBB->push_back(DebugInstr->removeFromParent()); 1315 } 1316 1317 // Move all instructions after the sequence to TailMBB. 1318 TailMBB->splice(TailMBB->end(), HeadMBB, 1319 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1320 // Update machine-CFG edges by transferring all successors of the current 1321 // block to the new block which will contain the Phi nodes for the selects. 1322 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1323 // Set the successors for HeadMBB. 1324 HeadMBB->addSuccessor(IfFalseMBB); 1325 HeadMBB->addSuccessor(TailMBB); 1326 1327 // Insert appropriate branch. 1328 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1329 1330 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1331 .addReg(LHS) 1332 .addReg(RHS) 1333 .addMBB(TailMBB); 1334 1335 // IfFalseMBB just falls through to TailMBB. 1336 IfFalseMBB->addSuccessor(TailMBB); 1337 1338 // Create PHIs for all of the select pseudo-instructions. 1339 auto SelectMBBI = MI.getIterator(); 1340 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1341 auto InsertionPoint = TailMBB->begin(); 1342 while (SelectMBBI != SelectEnd) { 1343 auto Next = std::next(SelectMBBI); 1344 if (isSelectPseudo(*SelectMBBI)) { 1345 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1346 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1347 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1348 .addReg(SelectMBBI->getOperand(4).getReg()) 1349 .addMBB(HeadMBB) 1350 .addReg(SelectMBBI->getOperand(5).getReg()) 1351 .addMBB(IfFalseMBB); 1352 SelectMBBI->eraseFromParent(); 1353 } 1354 SelectMBBI = Next; 1355 } 1356 1357 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1358 return TailMBB; 1359 } 1360 1361 MachineBasicBlock * 1362 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1363 MachineBasicBlock *BB) const { 1364 switch (MI.getOpcode()) { 1365 default: 1366 llvm_unreachable("Unexpected instr type to insert"); 1367 case RISCV::ReadCycleWide: 1368 assert(!Subtarget.is64Bit() && 1369 "ReadCycleWrite is only to be used on riscv32"); 1370 return emitReadCycleWidePseudo(MI, BB); 1371 case RISCV::Select_GPR_Using_CC_GPR: 1372 case RISCV::Select_FPR32_Using_CC_GPR: 1373 case RISCV::Select_FPR64_Using_CC_GPR: 1374 return emitSelectPseudo(MI, BB); 1375 case RISCV::BuildPairF64Pseudo: 1376 return emitBuildPairF64Pseudo(MI, BB); 1377 case RISCV::SplitF64Pseudo: 1378 return emitSplitF64Pseudo(MI, BB); 1379 } 1380 } 1381 1382 // Calling Convention Implementation. 1383 // The expectations for frontend ABI lowering vary from target to target. 1384 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1385 // details, but this is a longer term goal. For now, we simply try to keep the 1386 // role of the frontend as simple and well-defined as possible. The rules can 1387 // be summarised as: 1388 // * Never split up large scalar arguments. We handle them here. 1389 // * If a hardfloat calling convention is being used, and the struct may be 1390 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1391 // available, then pass as two separate arguments. If either the GPRs or FPRs 1392 // are exhausted, then pass according to the rule below. 1393 // * If a struct could never be passed in registers or directly in a stack 1394 // slot (as it is larger than 2*XLEN and the floating point rules don't 1395 // apply), then pass it using a pointer with the byval attribute. 1396 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1397 // word-sized array or a 2*XLEN scalar (depending on alignment). 1398 // * The frontend can determine whether a struct is returned by reference or 1399 // not based on its size and fields. If it will be returned by reference, the 1400 // frontend must modify the prototype so a pointer with the sret annotation is 1401 // passed as the first argument. This is not necessary for large scalar 1402 // returns. 1403 // * Struct return values and varargs should be coerced to structs containing 1404 // register-size fields in the same situations they would be for fixed 1405 // arguments. 1406 1407 static const MCPhysReg ArgGPRs[] = { 1408 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1409 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1410 }; 1411 static const MCPhysReg ArgFPR32s[] = { 1412 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1413 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1414 }; 1415 static const MCPhysReg ArgFPR64s[] = { 1416 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1417 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1418 }; 1419 1420 // Pass a 2*XLEN argument that has been split into two XLEN values through 1421 // registers or the stack as necessary. 1422 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1423 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1424 MVT ValVT2, MVT LocVT2, 1425 ISD::ArgFlagsTy ArgFlags2) { 1426 unsigned XLenInBytes = XLen / 8; 1427 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1428 // At least one half can be passed via register. 1429 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1430 VA1.getLocVT(), CCValAssign::Full)); 1431 } else { 1432 // Both halves must be passed on the stack, with proper alignment. 1433 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1434 State.addLoc( 1435 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1436 State.AllocateStack(XLenInBytes, StackAlign), 1437 VA1.getLocVT(), CCValAssign::Full)); 1438 State.addLoc(CCValAssign::getMem( 1439 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1440 CCValAssign::Full)); 1441 return false; 1442 } 1443 1444 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1445 // The second half can also be passed via register. 1446 State.addLoc( 1447 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1448 } else { 1449 // The second half is passed via the stack, without additional alignment. 1450 State.addLoc(CCValAssign::getMem( 1451 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1452 CCValAssign::Full)); 1453 } 1454 1455 return false; 1456 } 1457 1458 // Implements the RISC-V calling convention. Returns true upon failure. 1459 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1460 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1461 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1462 bool IsRet, Type *OrigTy) { 1463 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1464 assert(XLen == 32 || XLen == 64); 1465 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1466 1467 // Any return value split in to more than two values can't be returned 1468 // directly. 1469 if (IsRet && ValNo > 1) 1470 return true; 1471 1472 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1473 // variadic argument, or if no F32 argument registers are available. 1474 bool UseGPRForF32 = true; 1475 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1476 // variadic argument, or if no F64 argument registers are available. 1477 bool UseGPRForF64 = true; 1478 1479 switch (ABI) { 1480 default: 1481 llvm_unreachable("Unexpected ABI"); 1482 case RISCVABI::ABI_ILP32: 1483 case RISCVABI::ABI_LP64: 1484 break; 1485 case RISCVABI::ABI_ILP32F: 1486 case RISCVABI::ABI_LP64F: 1487 UseGPRForF32 = !IsFixed; 1488 break; 1489 case RISCVABI::ABI_ILP32D: 1490 case RISCVABI::ABI_LP64D: 1491 UseGPRForF32 = !IsFixed; 1492 UseGPRForF64 = !IsFixed; 1493 break; 1494 } 1495 1496 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1497 UseGPRForF32 = true; 1498 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1499 UseGPRForF64 = true; 1500 1501 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1502 // variables rather than directly checking against the target ABI. 1503 1504 if (UseGPRForF32 && ValVT == MVT::f32) { 1505 LocVT = XLenVT; 1506 LocInfo = CCValAssign::BCvt; 1507 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1508 LocVT = MVT::i64; 1509 LocInfo = CCValAssign::BCvt; 1510 } 1511 1512 // If this is a variadic argument, the RISC-V calling convention requires 1513 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1514 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1515 // be used regardless of whether the original argument was split during 1516 // legalisation or not. The argument will not be passed by registers if the 1517 // original type is larger than 2*XLEN, so the register alignment rule does 1518 // not apply. 1519 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1520 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1521 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1522 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1523 // Skip 'odd' register if necessary. 1524 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1525 State.AllocateReg(ArgGPRs); 1526 } 1527 1528 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1529 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1530 State.getPendingArgFlags(); 1531 1532 assert(PendingLocs.size() == PendingArgFlags.size() && 1533 "PendingLocs and PendingArgFlags out of sync"); 1534 1535 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1536 // registers are exhausted. 1537 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1538 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1539 "Can't lower f64 if it is split"); 1540 // Depending on available argument GPRS, f64 may be passed in a pair of 1541 // GPRs, split between a GPR and the stack, or passed completely on the 1542 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1543 // cases. 1544 Register Reg = State.AllocateReg(ArgGPRs); 1545 LocVT = MVT::i32; 1546 if (!Reg) { 1547 unsigned StackOffset = State.AllocateStack(8, 8); 1548 State.addLoc( 1549 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1550 return false; 1551 } 1552 if (!State.AllocateReg(ArgGPRs)) 1553 State.AllocateStack(4, 4); 1554 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1555 return false; 1556 } 1557 1558 // Split arguments might be passed indirectly, so keep track of the pending 1559 // values. 1560 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1561 LocVT = XLenVT; 1562 LocInfo = CCValAssign::Indirect; 1563 PendingLocs.push_back( 1564 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1565 PendingArgFlags.push_back(ArgFlags); 1566 if (!ArgFlags.isSplitEnd()) { 1567 return false; 1568 } 1569 } 1570 1571 // If the split argument only had two elements, it should be passed directly 1572 // in registers or on the stack. 1573 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1574 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1575 // Apply the normal calling convention rules to the first half of the 1576 // split argument. 1577 CCValAssign VA = PendingLocs[0]; 1578 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1579 PendingLocs.clear(); 1580 PendingArgFlags.clear(); 1581 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1582 ArgFlags); 1583 } 1584 1585 // Allocate to a register if possible, or else a stack slot. 1586 Register Reg; 1587 if (ValVT == MVT::f32 && !UseGPRForF32) 1588 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1589 else if (ValVT == MVT::f64 && !UseGPRForF64) 1590 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1591 else 1592 Reg = State.AllocateReg(ArgGPRs); 1593 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1594 1595 // If we reach this point and PendingLocs is non-empty, we must be at the 1596 // end of a split argument that must be passed indirectly. 1597 if (!PendingLocs.empty()) { 1598 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1599 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1600 1601 for (auto &It : PendingLocs) { 1602 if (Reg) 1603 It.convertToReg(Reg); 1604 else 1605 It.convertToMem(StackOffset); 1606 State.addLoc(It); 1607 } 1608 PendingLocs.clear(); 1609 PendingArgFlags.clear(); 1610 return false; 1611 } 1612 1613 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1614 "Expected an XLenVT at this stage"); 1615 1616 if (Reg) { 1617 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1618 return false; 1619 } 1620 1621 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1622 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1623 LocVT = ValVT; 1624 LocInfo = CCValAssign::Full; 1625 } 1626 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1627 return false; 1628 } 1629 1630 void RISCVTargetLowering::analyzeInputArgs( 1631 MachineFunction &MF, CCState &CCInfo, 1632 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1633 unsigned NumArgs = Ins.size(); 1634 FunctionType *FType = MF.getFunction().getFunctionType(); 1635 1636 for (unsigned i = 0; i != NumArgs; ++i) { 1637 MVT ArgVT = Ins[i].VT; 1638 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1639 1640 Type *ArgTy = nullptr; 1641 if (IsRet) 1642 ArgTy = FType->getReturnType(); 1643 else if (Ins[i].isOrigArg()) 1644 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1645 1646 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1647 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1648 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1649 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1650 << EVT(ArgVT).getEVTString() << '\n'); 1651 llvm_unreachable(nullptr); 1652 } 1653 } 1654 } 1655 1656 void RISCVTargetLowering::analyzeOutputArgs( 1657 MachineFunction &MF, CCState &CCInfo, 1658 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1659 CallLoweringInfo *CLI) const { 1660 unsigned NumArgs = Outs.size(); 1661 1662 for (unsigned i = 0; i != NumArgs; i++) { 1663 MVT ArgVT = Outs[i].VT; 1664 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1665 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1666 1667 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1668 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1669 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1670 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1671 << EVT(ArgVT).getEVTString() << "\n"); 1672 llvm_unreachable(nullptr); 1673 } 1674 } 1675 } 1676 1677 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1678 // values. 1679 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1680 const CCValAssign &VA, const SDLoc &DL) { 1681 switch (VA.getLocInfo()) { 1682 default: 1683 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1684 case CCValAssign::Full: 1685 break; 1686 case CCValAssign::BCvt: 1687 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1688 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1689 break; 1690 } 1691 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1692 break; 1693 } 1694 return Val; 1695 } 1696 1697 // The caller is responsible for loading the full value if the argument is 1698 // passed with CCValAssign::Indirect. 1699 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1700 const CCValAssign &VA, const SDLoc &DL) { 1701 MachineFunction &MF = DAG.getMachineFunction(); 1702 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1703 EVT LocVT = VA.getLocVT(); 1704 SDValue Val; 1705 const TargetRegisterClass *RC; 1706 1707 switch (LocVT.getSimpleVT().SimpleTy) { 1708 default: 1709 llvm_unreachable("Unexpected register type"); 1710 case MVT::i32: 1711 case MVT::i64: 1712 RC = &RISCV::GPRRegClass; 1713 break; 1714 case MVT::f32: 1715 RC = &RISCV::FPR32RegClass; 1716 break; 1717 case MVT::f64: 1718 RC = &RISCV::FPR64RegClass; 1719 break; 1720 } 1721 1722 Register VReg = RegInfo.createVirtualRegister(RC); 1723 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1724 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1725 1726 if (VA.getLocInfo() == CCValAssign::Indirect) 1727 return Val; 1728 1729 return convertLocVTToValVT(DAG, Val, VA, DL); 1730 } 1731 1732 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1733 const CCValAssign &VA, const SDLoc &DL) { 1734 EVT LocVT = VA.getLocVT(); 1735 1736 switch (VA.getLocInfo()) { 1737 default: 1738 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1739 case CCValAssign::Full: 1740 break; 1741 case CCValAssign::BCvt: 1742 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1743 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1744 break; 1745 } 1746 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1747 break; 1748 } 1749 return Val; 1750 } 1751 1752 // The caller is responsible for loading the full value if the argument is 1753 // passed with CCValAssign::Indirect. 1754 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1755 const CCValAssign &VA, const SDLoc &DL) { 1756 MachineFunction &MF = DAG.getMachineFunction(); 1757 MachineFrameInfo &MFI = MF.getFrameInfo(); 1758 EVT LocVT = VA.getLocVT(); 1759 EVT ValVT = VA.getValVT(); 1760 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1761 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1762 VA.getLocMemOffset(), /*Immutable=*/true); 1763 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1764 SDValue Val; 1765 1766 ISD::LoadExtType ExtType; 1767 switch (VA.getLocInfo()) { 1768 default: 1769 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1770 case CCValAssign::Full: 1771 case CCValAssign::Indirect: 1772 case CCValAssign::BCvt: 1773 ExtType = ISD::NON_EXTLOAD; 1774 break; 1775 } 1776 Val = DAG.getExtLoad( 1777 ExtType, DL, LocVT, Chain, FIN, 1778 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1779 return Val; 1780 } 1781 1782 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1783 const CCValAssign &VA, const SDLoc &DL) { 1784 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1785 "Unexpected VA"); 1786 MachineFunction &MF = DAG.getMachineFunction(); 1787 MachineFrameInfo &MFI = MF.getFrameInfo(); 1788 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1789 1790 if (VA.isMemLoc()) { 1791 // f64 is passed on the stack. 1792 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1793 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1794 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1795 MachinePointerInfo::getFixedStack(MF, FI)); 1796 } 1797 1798 assert(VA.isRegLoc() && "Expected register VA assignment"); 1799 1800 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1801 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1802 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1803 SDValue Hi; 1804 if (VA.getLocReg() == RISCV::X17) { 1805 // Second half of f64 is passed on the stack. 1806 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1807 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1808 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1809 MachinePointerInfo::getFixedStack(MF, FI)); 1810 } else { 1811 // Second half of f64 is passed in another GPR. 1812 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1813 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1814 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1815 } 1816 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1817 } 1818 1819 // FastCC has less than 1% performance improvement for some particular 1820 // benchmark. But theoretically, it may has benenfit for some cases. 1821 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 1822 CCValAssign::LocInfo LocInfo, 1823 ISD::ArgFlagsTy ArgFlags, CCState &State) { 1824 1825 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 1826 // X5 and X6 might be used for save-restore libcall. 1827 static const MCPhysReg GPRList[] = { 1828 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 1829 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 1830 RISCV::X29, RISCV::X30, RISCV::X31}; 1831 if (unsigned Reg = State.AllocateReg(GPRList)) { 1832 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1833 return false; 1834 } 1835 } 1836 1837 if (LocVT == MVT::f32) { 1838 static const MCPhysReg FPR32List[] = { 1839 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 1840 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 1841 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 1842 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 1843 if (unsigned Reg = State.AllocateReg(FPR32List)) { 1844 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1845 return false; 1846 } 1847 } 1848 1849 if (LocVT == MVT::f64) { 1850 static const MCPhysReg FPR64List[] = { 1851 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 1852 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 1853 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 1854 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 1855 if (unsigned Reg = State.AllocateReg(FPR64List)) { 1856 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1857 return false; 1858 } 1859 } 1860 1861 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 1862 unsigned Offset4 = State.AllocateStack(4, 4); 1863 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 1864 return false; 1865 } 1866 1867 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 1868 unsigned Offset5 = State.AllocateStack(8, 8); 1869 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 1870 return false; 1871 } 1872 1873 return true; // CC didn't match. 1874 } 1875 1876 // Transform physical registers into virtual registers. 1877 SDValue RISCVTargetLowering::LowerFormalArguments( 1878 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1879 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1880 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1881 1882 switch (CallConv) { 1883 default: 1884 report_fatal_error("Unsupported calling convention"); 1885 case CallingConv::C: 1886 case CallingConv::Fast: 1887 break; 1888 } 1889 1890 MachineFunction &MF = DAG.getMachineFunction(); 1891 1892 const Function &Func = MF.getFunction(); 1893 if (Func.hasFnAttribute("interrupt")) { 1894 if (!Func.arg_empty()) 1895 report_fatal_error( 1896 "Functions with the interrupt attribute cannot have arguments!"); 1897 1898 StringRef Kind = 1899 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1900 1901 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1902 report_fatal_error( 1903 "Function interrupt attribute argument not supported!"); 1904 } 1905 1906 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1907 MVT XLenVT = Subtarget.getXLenVT(); 1908 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1909 // Used with vargs to acumulate store chains. 1910 std::vector<SDValue> OutChains; 1911 1912 // Assign locations to all of the incoming arguments. 1913 SmallVector<CCValAssign, 16> ArgLocs; 1914 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1915 1916 if (CallConv == CallingConv::Fast) 1917 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 1918 else 1919 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1920 1921 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1922 CCValAssign &VA = ArgLocs[i]; 1923 SDValue ArgValue; 1924 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1925 // case. 1926 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1927 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1928 else if (VA.isRegLoc()) 1929 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1930 else 1931 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1932 1933 if (VA.getLocInfo() == CCValAssign::Indirect) { 1934 // If the original argument was split and passed by reference (e.g. i128 1935 // on RV32), we need to load all parts of it here (using the same 1936 // address). 1937 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1938 MachinePointerInfo())); 1939 unsigned ArgIndex = Ins[i].OrigArgIndex; 1940 assert(Ins[i].PartOffset == 0); 1941 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1942 CCValAssign &PartVA = ArgLocs[i + 1]; 1943 unsigned PartOffset = Ins[i + 1].PartOffset; 1944 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1945 DAG.getIntPtrConstant(PartOffset, DL)); 1946 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1947 MachinePointerInfo())); 1948 ++i; 1949 } 1950 continue; 1951 } 1952 InVals.push_back(ArgValue); 1953 } 1954 1955 if (IsVarArg) { 1956 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1957 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1958 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1959 MachineFrameInfo &MFI = MF.getFrameInfo(); 1960 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1961 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1962 1963 // Offset of the first variable argument from stack pointer, and size of 1964 // the vararg save area. For now, the varargs save area is either zero or 1965 // large enough to hold a0-a7. 1966 int VaArgOffset, VarArgsSaveSize; 1967 1968 // If all registers are allocated, then all varargs must be passed on the 1969 // stack and we don't need to save any argregs. 1970 if (ArgRegs.size() == Idx) { 1971 VaArgOffset = CCInfo.getNextStackOffset(); 1972 VarArgsSaveSize = 0; 1973 } else { 1974 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1975 VaArgOffset = -VarArgsSaveSize; 1976 } 1977 1978 // Record the frame index of the first variable argument 1979 // which is a value necessary to VASTART. 1980 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1981 RVFI->setVarArgsFrameIndex(FI); 1982 1983 // If saving an odd number of registers then create an extra stack slot to 1984 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1985 // offsets to even-numbered registered remain 2*XLEN-aligned. 1986 if (Idx % 2) { 1987 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 1988 VarArgsSaveSize += XLenInBytes; 1989 } 1990 1991 // Copy the integer registers that may have been used for passing varargs 1992 // to the vararg save area. 1993 for (unsigned I = Idx; I < ArgRegs.size(); 1994 ++I, VaArgOffset += XLenInBytes) { 1995 const Register Reg = RegInfo.createVirtualRegister(RC); 1996 RegInfo.addLiveIn(ArgRegs[I], Reg); 1997 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1998 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1999 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2000 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2001 MachinePointerInfo::getFixedStack(MF, FI)); 2002 cast<StoreSDNode>(Store.getNode()) 2003 ->getMemOperand() 2004 ->setValue((Value *)nullptr); 2005 OutChains.push_back(Store); 2006 } 2007 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2008 } 2009 2010 // All stores are grouped in one node to allow the matching between 2011 // the size of Ins and InVals. This only happens for vararg functions. 2012 if (!OutChains.empty()) { 2013 OutChains.push_back(Chain); 2014 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2015 } 2016 2017 return Chain; 2018 } 2019 2020 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2021 /// for tail call optimization. 2022 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2023 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2024 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2025 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2026 2027 auto &Callee = CLI.Callee; 2028 auto CalleeCC = CLI.CallConv; 2029 auto &Outs = CLI.Outs; 2030 auto &Caller = MF.getFunction(); 2031 auto CallerCC = Caller.getCallingConv(); 2032 2033 // Exception-handling functions need a special set of instructions to 2034 // indicate a return to the hardware. Tail-calling another function would 2035 // probably break this. 2036 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2037 // should be expanded as new function attributes are introduced. 2038 if (Caller.hasFnAttribute("interrupt")) 2039 return false; 2040 2041 // Do not tail call opt if the stack is used to pass parameters. 2042 if (CCInfo.getNextStackOffset() != 0) 2043 return false; 2044 2045 // Do not tail call opt if any parameters need to be passed indirectly. 2046 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2047 // passed indirectly. So the address of the value will be passed in a 2048 // register, or if not available, then the address is put on the stack. In 2049 // order to pass indirectly, space on the stack often needs to be allocated 2050 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2051 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2052 // are passed CCValAssign::Indirect. 2053 for (auto &VA : ArgLocs) 2054 if (VA.getLocInfo() == CCValAssign::Indirect) 2055 return false; 2056 2057 // Do not tail call opt if either caller or callee uses struct return 2058 // semantics. 2059 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2060 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2061 if (IsCallerStructRet || IsCalleeStructRet) 2062 return false; 2063 2064 // Externally-defined functions with weak linkage should not be 2065 // tail-called. The behaviour of branch instructions in this situation (as 2066 // used for tail calls) is implementation-defined, so we cannot rely on the 2067 // linker replacing the tail call with a return. 2068 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2069 const GlobalValue *GV = G->getGlobal(); 2070 if (GV->hasExternalWeakLinkage()) 2071 return false; 2072 } 2073 2074 // The callee has to preserve all registers the caller needs to preserve. 2075 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2076 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2077 if (CalleeCC != CallerCC) { 2078 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2079 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2080 return false; 2081 } 2082 2083 // Byval parameters hand the function a pointer directly into the stack area 2084 // we want to reuse during a tail call. Working around this *is* possible 2085 // but less efficient and uglier in LowerCall. 2086 for (auto &Arg : Outs) 2087 if (Arg.Flags.isByVal()) 2088 return false; 2089 2090 return true; 2091 } 2092 2093 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2094 // and output parameter nodes. 2095 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2096 SmallVectorImpl<SDValue> &InVals) const { 2097 SelectionDAG &DAG = CLI.DAG; 2098 SDLoc &DL = CLI.DL; 2099 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2100 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2101 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2102 SDValue Chain = CLI.Chain; 2103 SDValue Callee = CLI.Callee; 2104 bool &IsTailCall = CLI.IsTailCall; 2105 CallingConv::ID CallConv = CLI.CallConv; 2106 bool IsVarArg = CLI.IsVarArg; 2107 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2108 MVT XLenVT = Subtarget.getXLenVT(); 2109 2110 MachineFunction &MF = DAG.getMachineFunction(); 2111 2112 // Analyze the operands of the call, assigning locations to each operand. 2113 SmallVector<CCValAssign, 16> ArgLocs; 2114 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2115 2116 if (CallConv == CallingConv::Fast) 2117 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2118 else 2119 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2120 2121 // Check if it's really possible to do a tail call. 2122 if (IsTailCall) 2123 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2124 2125 if (IsTailCall) 2126 ++NumTailCalls; 2127 else if (CLI.CS && CLI.CS.isMustTailCall()) 2128 report_fatal_error("failed to perform tail call elimination on a call " 2129 "site marked musttail"); 2130 2131 // Get a count of how many bytes are to be pushed on the stack. 2132 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2133 2134 // Create local copies for byval args 2135 SmallVector<SDValue, 8> ByValArgs; 2136 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2137 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2138 if (!Flags.isByVal()) 2139 continue; 2140 2141 SDValue Arg = OutVals[i]; 2142 unsigned Size = Flags.getByValSize(); 2143 unsigned Align = Flags.getByValAlign(); 2144 2145 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 2146 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2147 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2148 2149 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 2150 /*IsVolatile=*/false, 2151 /*AlwaysInline=*/false, 2152 IsTailCall, MachinePointerInfo(), 2153 MachinePointerInfo()); 2154 ByValArgs.push_back(FIPtr); 2155 } 2156 2157 if (!IsTailCall) 2158 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2159 2160 // Copy argument values to their designated locations. 2161 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2162 SmallVector<SDValue, 8> MemOpChains; 2163 SDValue StackPtr; 2164 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2165 CCValAssign &VA = ArgLocs[i]; 2166 SDValue ArgValue = OutVals[i]; 2167 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2168 2169 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2170 bool IsF64OnRV32DSoftABI = 2171 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2172 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2173 SDValue SplitF64 = DAG.getNode( 2174 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2175 SDValue Lo = SplitF64.getValue(0); 2176 SDValue Hi = SplitF64.getValue(1); 2177 2178 Register RegLo = VA.getLocReg(); 2179 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2180 2181 if (RegLo == RISCV::X17) { 2182 // Second half of f64 is passed on the stack. 2183 // Work out the address of the stack slot. 2184 if (!StackPtr.getNode()) 2185 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2186 // Emit the store. 2187 MemOpChains.push_back( 2188 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2189 } else { 2190 // Second half of f64 is passed in another GPR. 2191 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2192 Register RegHigh = RegLo + 1; 2193 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2194 } 2195 continue; 2196 } 2197 2198 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2199 // as any other MemLoc. 2200 2201 // Promote the value if needed. 2202 // For now, only handle fully promoted and indirect arguments. 2203 if (VA.getLocInfo() == CCValAssign::Indirect) { 2204 // Store the argument in a stack slot and pass its address. 2205 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2206 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2207 MemOpChains.push_back( 2208 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2209 MachinePointerInfo::getFixedStack(MF, FI))); 2210 // If the original argument was split (e.g. i128), we need 2211 // to store all parts of it here (and pass just one address). 2212 unsigned ArgIndex = Outs[i].OrigArgIndex; 2213 assert(Outs[i].PartOffset == 0); 2214 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2215 SDValue PartValue = OutVals[i + 1]; 2216 unsigned PartOffset = Outs[i + 1].PartOffset; 2217 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2218 DAG.getIntPtrConstant(PartOffset, DL)); 2219 MemOpChains.push_back( 2220 DAG.getStore(Chain, DL, PartValue, Address, 2221 MachinePointerInfo::getFixedStack(MF, FI))); 2222 ++i; 2223 } 2224 ArgValue = SpillSlot; 2225 } else { 2226 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2227 } 2228 2229 // Use local copy if it is a byval arg. 2230 if (Flags.isByVal()) 2231 ArgValue = ByValArgs[j++]; 2232 2233 if (VA.isRegLoc()) { 2234 // Queue up the argument copies and emit them at the end. 2235 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2236 } else { 2237 assert(VA.isMemLoc() && "Argument not register or memory"); 2238 assert(!IsTailCall && "Tail call not allowed if stack is used " 2239 "for passing parameters"); 2240 2241 // Work out the address of the stack slot. 2242 if (!StackPtr.getNode()) 2243 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2244 SDValue Address = 2245 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2246 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2247 2248 // Emit the store. 2249 MemOpChains.push_back( 2250 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2251 } 2252 } 2253 2254 // Join the stores, which are independent of one another. 2255 if (!MemOpChains.empty()) 2256 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2257 2258 SDValue Glue; 2259 2260 // Build a sequence of copy-to-reg nodes, chained and glued together. 2261 for (auto &Reg : RegsToPass) { 2262 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2263 Glue = Chain.getValue(1); 2264 } 2265 2266 // Validate that none of the argument registers have been marked as 2267 // reserved, if so report an error. Do the same for the return address if this 2268 // is not a tailcall. 2269 validateCCReservedRegs(RegsToPass, MF); 2270 if (!IsTailCall && 2271 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2272 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2273 MF.getFunction(), 2274 "Return address register required, but has been reserved."}); 2275 2276 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2277 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2278 // split it and then direct call can be matched by PseudoCALL. 2279 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2280 const GlobalValue *GV = S->getGlobal(); 2281 2282 unsigned OpFlags = RISCVII::MO_CALL; 2283 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2284 OpFlags = RISCVII::MO_PLT; 2285 2286 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2287 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2288 unsigned OpFlags = RISCVII::MO_CALL; 2289 2290 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2291 nullptr)) 2292 OpFlags = RISCVII::MO_PLT; 2293 2294 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2295 } 2296 2297 // The first call operand is the chain and the second is the target address. 2298 SmallVector<SDValue, 8> Ops; 2299 Ops.push_back(Chain); 2300 Ops.push_back(Callee); 2301 2302 // Add argument registers to the end of the list so that they are 2303 // known live into the call. 2304 for (auto &Reg : RegsToPass) 2305 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2306 2307 if (!IsTailCall) { 2308 // Add a register mask operand representing the call-preserved registers. 2309 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2310 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2311 assert(Mask && "Missing call preserved mask for calling convention"); 2312 Ops.push_back(DAG.getRegisterMask(Mask)); 2313 } 2314 2315 // Glue the call to the argument copies, if any. 2316 if (Glue.getNode()) 2317 Ops.push_back(Glue); 2318 2319 // Emit the call. 2320 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2321 2322 if (IsTailCall) { 2323 MF.getFrameInfo().setHasTailCall(); 2324 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2325 } 2326 2327 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2328 Glue = Chain.getValue(1); 2329 2330 // Mark the end of the call, which is glued to the call itself. 2331 Chain = DAG.getCALLSEQ_END(Chain, 2332 DAG.getConstant(NumBytes, DL, PtrVT, true), 2333 DAG.getConstant(0, DL, PtrVT, true), 2334 Glue, DL); 2335 Glue = Chain.getValue(1); 2336 2337 // Assign locations to each value returned by this call. 2338 SmallVector<CCValAssign, 16> RVLocs; 2339 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2340 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2341 2342 // Copy all of the result registers out of their specified physreg. 2343 for (auto &VA : RVLocs) { 2344 // Copy the value out 2345 SDValue RetValue = 2346 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2347 // Glue the RetValue to the end of the call sequence 2348 Chain = RetValue.getValue(1); 2349 Glue = RetValue.getValue(2); 2350 2351 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2352 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2353 SDValue RetValue2 = 2354 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2355 Chain = RetValue2.getValue(1); 2356 Glue = RetValue2.getValue(2); 2357 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2358 RetValue2); 2359 } 2360 2361 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2362 2363 InVals.push_back(RetValue); 2364 } 2365 2366 return Chain; 2367 } 2368 2369 bool RISCVTargetLowering::CanLowerReturn( 2370 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2371 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2372 SmallVector<CCValAssign, 16> RVLocs; 2373 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2374 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2375 MVT VT = Outs[i].VT; 2376 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2377 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2378 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2379 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2380 return false; 2381 } 2382 return true; 2383 } 2384 2385 SDValue 2386 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2387 bool IsVarArg, 2388 const SmallVectorImpl<ISD::OutputArg> &Outs, 2389 const SmallVectorImpl<SDValue> &OutVals, 2390 const SDLoc &DL, SelectionDAG &DAG) const { 2391 const MachineFunction &MF = DAG.getMachineFunction(); 2392 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2393 2394 // Stores the assignment of the return value to a location. 2395 SmallVector<CCValAssign, 16> RVLocs; 2396 2397 // Info about the registers and stack slot. 2398 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2399 *DAG.getContext()); 2400 2401 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2402 nullptr); 2403 2404 SDValue Glue; 2405 SmallVector<SDValue, 4> RetOps(1, Chain); 2406 2407 // Copy the result values into the output registers. 2408 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2409 SDValue Val = OutVals[i]; 2410 CCValAssign &VA = RVLocs[i]; 2411 assert(VA.isRegLoc() && "Can only return in registers!"); 2412 2413 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2414 // Handle returning f64 on RV32D with a soft float ABI. 2415 assert(VA.isRegLoc() && "Expected return via registers"); 2416 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2417 DAG.getVTList(MVT::i32, MVT::i32), Val); 2418 SDValue Lo = SplitF64.getValue(0); 2419 SDValue Hi = SplitF64.getValue(1); 2420 Register RegLo = VA.getLocReg(); 2421 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2422 Register RegHi = RegLo + 1; 2423 2424 if (STI.isRegisterReservedByUser(RegLo) || 2425 STI.isRegisterReservedByUser(RegHi)) 2426 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2427 MF.getFunction(), 2428 "Return value register required, but has been reserved."}); 2429 2430 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2431 Glue = Chain.getValue(1); 2432 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2433 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2434 Glue = Chain.getValue(1); 2435 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2436 } else { 2437 // Handle a 'normal' return. 2438 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2439 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2440 2441 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2442 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2443 MF.getFunction(), 2444 "Return value register required, but has been reserved."}); 2445 2446 // Guarantee that all emitted copies are stuck together. 2447 Glue = Chain.getValue(1); 2448 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2449 } 2450 } 2451 2452 RetOps[0] = Chain; // Update chain. 2453 2454 // Add the glue node if we have it. 2455 if (Glue.getNode()) { 2456 RetOps.push_back(Glue); 2457 } 2458 2459 // Interrupt service routines use different return instructions. 2460 const Function &Func = DAG.getMachineFunction().getFunction(); 2461 if (Func.hasFnAttribute("interrupt")) { 2462 if (!Func.getReturnType()->isVoidTy()) 2463 report_fatal_error( 2464 "Functions with the interrupt attribute must have void return type!"); 2465 2466 MachineFunction &MF = DAG.getMachineFunction(); 2467 StringRef Kind = 2468 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2469 2470 unsigned RetOpc; 2471 if (Kind == "user") 2472 RetOpc = RISCVISD::URET_FLAG; 2473 else if (Kind == "supervisor") 2474 RetOpc = RISCVISD::SRET_FLAG; 2475 else 2476 RetOpc = RISCVISD::MRET_FLAG; 2477 2478 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2479 } 2480 2481 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2482 } 2483 2484 void RISCVTargetLowering::validateCCReservedRegs( 2485 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2486 MachineFunction &MF) const { 2487 const Function &F = MF.getFunction(); 2488 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2489 2490 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 2491 return STI.isRegisterReservedByUser(Reg.first); 2492 })) 2493 F.getContext().diagnose(DiagnosticInfoUnsupported{ 2494 F, "Argument register required, but has been reserved."}); 2495 } 2496 2497 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2498 switch ((RISCVISD::NodeType)Opcode) { 2499 case RISCVISD::FIRST_NUMBER: 2500 break; 2501 case RISCVISD::RET_FLAG: 2502 return "RISCVISD::RET_FLAG"; 2503 case RISCVISD::URET_FLAG: 2504 return "RISCVISD::URET_FLAG"; 2505 case RISCVISD::SRET_FLAG: 2506 return "RISCVISD::SRET_FLAG"; 2507 case RISCVISD::MRET_FLAG: 2508 return "RISCVISD::MRET_FLAG"; 2509 case RISCVISD::CALL: 2510 return "RISCVISD::CALL"; 2511 case RISCVISD::SELECT_CC: 2512 return "RISCVISD::SELECT_CC"; 2513 case RISCVISD::BuildPairF64: 2514 return "RISCVISD::BuildPairF64"; 2515 case RISCVISD::SplitF64: 2516 return "RISCVISD::SplitF64"; 2517 case RISCVISD::TAIL: 2518 return "RISCVISD::TAIL"; 2519 case RISCVISD::SLLW: 2520 return "RISCVISD::SLLW"; 2521 case RISCVISD::SRAW: 2522 return "RISCVISD::SRAW"; 2523 case RISCVISD::SRLW: 2524 return "RISCVISD::SRLW"; 2525 case RISCVISD::DIVW: 2526 return "RISCVISD::DIVW"; 2527 case RISCVISD::DIVUW: 2528 return "RISCVISD::DIVUW"; 2529 case RISCVISD::REMUW: 2530 return "RISCVISD::REMUW"; 2531 case RISCVISD::FMV_W_X_RV64: 2532 return "RISCVISD::FMV_W_X_RV64"; 2533 case RISCVISD::FMV_X_ANYEXTW_RV64: 2534 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2535 case RISCVISD::READ_CYCLE_WIDE: 2536 return "RISCVISD::READ_CYCLE_WIDE"; 2537 } 2538 return nullptr; 2539 } 2540 2541 /// getConstraintType - Given a constraint letter, return the type of 2542 /// constraint it is for this target. 2543 RISCVTargetLowering::ConstraintType 2544 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2545 if (Constraint.size() == 1) { 2546 switch (Constraint[0]) { 2547 default: 2548 break; 2549 case 'f': 2550 return C_RegisterClass; 2551 case 'I': 2552 case 'J': 2553 case 'K': 2554 return C_Immediate; 2555 case 'A': 2556 return C_Memory; 2557 } 2558 } 2559 return TargetLowering::getConstraintType(Constraint); 2560 } 2561 2562 std::pair<unsigned, const TargetRegisterClass *> 2563 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2564 StringRef Constraint, 2565 MVT VT) const { 2566 // First, see if this is a constraint that directly corresponds to a 2567 // RISCV register class. 2568 if (Constraint.size() == 1) { 2569 switch (Constraint[0]) { 2570 case 'r': 2571 return std::make_pair(0U, &RISCV::GPRRegClass); 2572 case 'f': 2573 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2574 return std::make_pair(0U, &RISCV::FPR32RegClass); 2575 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2576 return std::make_pair(0U, &RISCV::FPR64RegClass); 2577 break; 2578 default: 2579 break; 2580 } 2581 } 2582 2583 // Clang will correctly decode the usage of register name aliases into their 2584 // official names. However, other frontends like `rustc` do not. This allows 2585 // users of these frontends to use the ABI names for registers in LLVM-style 2586 // register constraints. 2587 Register XRegFromAlias = StringSwitch<Register>(Constraint.lower()) 2588 .Case("{zero}", RISCV::X0) 2589 .Case("{ra}", RISCV::X1) 2590 .Case("{sp}", RISCV::X2) 2591 .Case("{gp}", RISCV::X3) 2592 .Case("{tp}", RISCV::X4) 2593 .Case("{t0}", RISCV::X5) 2594 .Case("{t1}", RISCV::X6) 2595 .Case("{t2}", RISCV::X7) 2596 .Cases("{s0}", "{fp}", RISCV::X8) 2597 .Case("{s1}", RISCV::X9) 2598 .Case("{a0}", RISCV::X10) 2599 .Case("{a1}", RISCV::X11) 2600 .Case("{a2}", RISCV::X12) 2601 .Case("{a3}", RISCV::X13) 2602 .Case("{a4}", RISCV::X14) 2603 .Case("{a5}", RISCV::X15) 2604 .Case("{a6}", RISCV::X16) 2605 .Case("{a7}", RISCV::X17) 2606 .Case("{s2}", RISCV::X18) 2607 .Case("{s3}", RISCV::X19) 2608 .Case("{s4}", RISCV::X20) 2609 .Case("{s5}", RISCV::X21) 2610 .Case("{s6}", RISCV::X22) 2611 .Case("{s7}", RISCV::X23) 2612 .Case("{s8}", RISCV::X24) 2613 .Case("{s9}", RISCV::X25) 2614 .Case("{s10}", RISCV::X26) 2615 .Case("{s11}", RISCV::X27) 2616 .Case("{t3}", RISCV::X28) 2617 .Case("{t4}", RISCV::X29) 2618 .Case("{t5}", RISCV::X30) 2619 .Case("{t6}", RISCV::X31) 2620 .Default(RISCV::NoRegister); 2621 if (XRegFromAlias != RISCV::NoRegister) 2622 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2623 2624 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2625 // TableGen record rather than the AsmName to choose registers for InlineAsm 2626 // constraints, plus we want to match those names to the widest floating point 2627 // register type available, manually select floating point registers here. 2628 // 2629 // The second case is the ABI name of the register, so that frontends can also 2630 // use the ABI names in register constraint lists. 2631 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2632 std::pair<Register, Register> FReg = 2633 StringSwitch<std::pair<Register, Register>>(Constraint.lower()) 2634 .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D}) 2635 .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D}) 2636 .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D}) 2637 .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D}) 2638 .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D}) 2639 .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D}) 2640 .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D}) 2641 .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D}) 2642 .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D}) 2643 .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D}) 2644 .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D}) 2645 .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D}) 2646 .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D}) 2647 .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D}) 2648 .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D}) 2649 .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D}) 2650 .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D}) 2651 .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D}) 2652 .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D}) 2653 .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D}) 2654 .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D}) 2655 .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D}) 2656 .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D}) 2657 .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D}) 2658 .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D}) 2659 .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D}) 2660 .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D}) 2661 .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D}) 2662 .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D}) 2663 .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D}) 2664 .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D}) 2665 .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D}) 2666 .Default({RISCV::NoRegister, RISCV::NoRegister}); 2667 if (FReg.first != RISCV::NoRegister) 2668 return Subtarget.hasStdExtD() 2669 ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) 2670 : std::make_pair(FReg.first, &RISCV::FPR32RegClass); 2671 } 2672 2673 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2674 } 2675 2676 unsigned 2677 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2678 // Currently only support length 1 constraints. 2679 if (ConstraintCode.size() == 1) { 2680 switch (ConstraintCode[0]) { 2681 case 'A': 2682 return InlineAsm::Constraint_A; 2683 default: 2684 break; 2685 } 2686 } 2687 2688 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2689 } 2690 2691 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2692 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2693 SelectionDAG &DAG) const { 2694 // Currently only support length 1 constraints. 2695 if (Constraint.length() == 1) { 2696 switch (Constraint[0]) { 2697 case 'I': 2698 // Validate & create a 12-bit signed immediate operand. 2699 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2700 uint64_t CVal = C->getSExtValue(); 2701 if (isInt<12>(CVal)) 2702 Ops.push_back( 2703 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2704 } 2705 return; 2706 case 'J': 2707 // Validate & create an integer zero operand. 2708 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2709 if (C->getZExtValue() == 0) 2710 Ops.push_back( 2711 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2712 return; 2713 case 'K': 2714 // Validate & create a 5-bit unsigned immediate operand. 2715 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2716 uint64_t CVal = C->getZExtValue(); 2717 if (isUInt<5>(CVal)) 2718 Ops.push_back( 2719 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2720 } 2721 return; 2722 default: 2723 break; 2724 } 2725 } 2726 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2727 } 2728 2729 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2730 Instruction *Inst, 2731 AtomicOrdering Ord) const { 2732 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2733 return Builder.CreateFence(Ord); 2734 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2735 return Builder.CreateFence(AtomicOrdering::Release); 2736 return nullptr; 2737 } 2738 2739 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2740 Instruction *Inst, 2741 AtomicOrdering Ord) const { 2742 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2743 return Builder.CreateFence(AtomicOrdering::Acquire); 2744 return nullptr; 2745 } 2746 2747 TargetLowering::AtomicExpansionKind 2748 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2749 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2750 // point operations can't be used in an lr/sc sequence without breaking the 2751 // forward-progress guarantee. 2752 if (AI->isFloatingPointOperation()) 2753 return AtomicExpansionKind::CmpXChg; 2754 2755 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2756 if (Size == 8 || Size == 16) 2757 return AtomicExpansionKind::MaskedIntrinsic; 2758 return AtomicExpansionKind::None; 2759 } 2760 2761 static Intrinsic::ID 2762 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2763 if (XLen == 32) { 2764 switch (BinOp) { 2765 default: 2766 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2767 case AtomicRMWInst::Xchg: 2768 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2769 case AtomicRMWInst::Add: 2770 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2771 case AtomicRMWInst::Sub: 2772 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2773 case AtomicRMWInst::Nand: 2774 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2775 case AtomicRMWInst::Max: 2776 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2777 case AtomicRMWInst::Min: 2778 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2779 case AtomicRMWInst::UMax: 2780 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2781 case AtomicRMWInst::UMin: 2782 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2783 } 2784 } 2785 2786 if (XLen == 64) { 2787 switch (BinOp) { 2788 default: 2789 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2790 case AtomicRMWInst::Xchg: 2791 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2792 case AtomicRMWInst::Add: 2793 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2794 case AtomicRMWInst::Sub: 2795 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2796 case AtomicRMWInst::Nand: 2797 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2798 case AtomicRMWInst::Max: 2799 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2800 case AtomicRMWInst::Min: 2801 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2802 case AtomicRMWInst::UMax: 2803 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2804 case AtomicRMWInst::UMin: 2805 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2806 } 2807 } 2808 2809 llvm_unreachable("Unexpected XLen\n"); 2810 } 2811 2812 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2813 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2814 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2815 unsigned XLen = Subtarget.getXLen(); 2816 Value *Ordering = 2817 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2818 Type *Tys[] = {AlignedAddr->getType()}; 2819 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2820 AI->getModule(), 2821 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2822 2823 if (XLen == 64) { 2824 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2825 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2826 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2827 } 2828 2829 Value *Result; 2830 2831 // Must pass the shift amount needed to sign extend the loaded value prior 2832 // to performing a signed comparison for min/max. ShiftAmt is the number of 2833 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2834 // is the number of bits to left+right shift the value in order to 2835 // sign-extend. 2836 if (AI->getOperation() == AtomicRMWInst::Min || 2837 AI->getOperation() == AtomicRMWInst::Max) { 2838 const DataLayout &DL = AI->getModule()->getDataLayout(); 2839 unsigned ValWidth = 2840 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2841 Value *SextShamt = 2842 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2843 Result = Builder.CreateCall(LrwOpScwLoop, 2844 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2845 } else { 2846 Result = 2847 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2848 } 2849 2850 if (XLen == 64) 2851 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2852 return Result; 2853 } 2854 2855 TargetLowering::AtomicExpansionKind 2856 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2857 AtomicCmpXchgInst *CI) const { 2858 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2859 if (Size == 8 || Size == 16) 2860 return AtomicExpansionKind::MaskedIntrinsic; 2861 return AtomicExpansionKind::None; 2862 } 2863 2864 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2865 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2866 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2867 unsigned XLen = Subtarget.getXLen(); 2868 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2869 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2870 if (XLen == 64) { 2871 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2872 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2873 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2874 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2875 } 2876 Type *Tys[] = {AlignedAddr->getType()}; 2877 Function *MaskedCmpXchg = 2878 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2879 Value *Result = Builder.CreateCall( 2880 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2881 if (XLen == 64) 2882 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2883 return Result; 2884 } 2885 2886 unsigned RISCVTargetLowering::getExceptionPointerRegister( 2887 const Constant *PersonalityFn) const { 2888 return RISCV::X10; 2889 } 2890 2891 unsigned RISCVTargetLowering::getExceptionSelectorRegister( 2892 const Constant *PersonalityFn) const { 2893 return RISCV::X11; 2894 } 2895 2896 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 2897 // Return false to suppress the unnecessary extensions if the LibCall 2898 // arguments or return value is f32 type for LP64 ABI. 2899 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 2900 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 2901 return false; 2902 2903 return true; 2904 } 2905 2906 #define GET_REGISTER_MATCHER 2907 #include "RISCVGenAsmMatcher.inc" 2908 2909 Register 2910 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 2911 const MachineFunction &MF) const { 2912 Register Reg = MatchRegisterAltName(RegName); 2913 if (Reg == RISCV::NoRegister) 2914 Reg = MatchRegisterName(RegName); 2915 if (Reg == RISCV::NoRegister) 2916 report_fatal_error( 2917 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 2918 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 2919 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 2920 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 2921 StringRef(RegName) + "\".")); 2922 return Reg; 2923 } 2924