109467b48Spatrick //===- CloneFunction.cpp - Clone a function into another function ---------===//
209467b48Spatrick //
309467b48Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
409467b48Spatrick // See https://llvm.org/LICENSE.txt for license information.
509467b48Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
609467b48Spatrick //
709467b48Spatrick //===----------------------------------------------------------------------===//
809467b48Spatrick //
909467b48Spatrick // This file implements the CloneFunctionInto interface, which is used as the
1009467b48Spatrick // low-level function cloner.  This is used by the CloneFunction and function
1109467b48Spatrick // inliner to do the dirty work of copying the body of a function around.
1209467b48Spatrick //
1309467b48Spatrick //===----------------------------------------------------------------------===//
1409467b48Spatrick 
1509467b48Spatrick #include "llvm/ADT/SetVector.h"
1609467b48Spatrick #include "llvm/ADT/SmallVector.h"
1709467b48Spatrick #include "llvm/Analysis/DomTreeUpdater.h"
1809467b48Spatrick #include "llvm/Analysis/InstructionSimplify.h"
1909467b48Spatrick #include "llvm/Analysis/LoopInfo.h"
2009467b48Spatrick #include "llvm/IR/CFG.h"
2109467b48Spatrick #include "llvm/IR/Constants.h"
2209467b48Spatrick #include "llvm/IR/DebugInfo.h"
2309467b48Spatrick #include "llvm/IR/DerivedTypes.h"
2409467b48Spatrick #include "llvm/IR/Function.h"
2509467b48Spatrick #include "llvm/IR/Instructions.h"
2609467b48Spatrick #include "llvm/IR/IntrinsicInst.h"
2709467b48Spatrick #include "llvm/IR/LLVMContext.h"
2873471bf0Spatrick #include "llvm/IR/MDBuilder.h"
2909467b48Spatrick #include "llvm/IR/Metadata.h"
3009467b48Spatrick #include "llvm/IR/Module.h"
3109467b48Spatrick #include "llvm/Transforms/Utils/BasicBlockUtils.h"
3209467b48Spatrick #include "llvm/Transforms/Utils/Cloning.h"
3309467b48Spatrick #include "llvm/Transforms/Utils/Local.h"
3409467b48Spatrick #include "llvm/Transforms/Utils/ValueMapper.h"
3509467b48Spatrick #include <map>
36*d415bd75Srobert #include <optional>
3709467b48Spatrick using namespace llvm;
3809467b48Spatrick 
3973471bf0Spatrick #define DEBUG_TYPE "clone-function"
4073471bf0Spatrick 
4109467b48Spatrick /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)4209467b48Spatrick BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
4309467b48Spatrick                                   const Twine &NameSuffix, Function *F,
4409467b48Spatrick                                   ClonedCodeInfo *CodeInfo,
4509467b48Spatrick                                   DebugInfoFinder *DIFinder) {
4609467b48Spatrick   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
4709467b48Spatrick   if (BB->hasName())
4809467b48Spatrick     NewBB->setName(BB->getName() + NameSuffix);
4909467b48Spatrick 
50*d415bd75Srobert   bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
5109467b48Spatrick   Module *TheModule = F ? F->getParent() : nullptr;
5209467b48Spatrick 
5309467b48Spatrick   // Loop over all instructions, and copy them over.
5409467b48Spatrick   for (const Instruction &I : *BB) {
5509467b48Spatrick     if (DIFinder && TheModule)
5609467b48Spatrick       DIFinder->processInstruction(*TheModule, I);
5709467b48Spatrick 
5809467b48Spatrick     Instruction *NewInst = I.clone();
5909467b48Spatrick     if (I.hasName())
6009467b48Spatrick       NewInst->setName(I.getName() + NameSuffix);
61*d415bd75Srobert     NewInst->insertInto(NewBB, NewBB->end());
6209467b48Spatrick     VMap[&I] = NewInst; // Add instruction map to value.
6309467b48Spatrick 
64*d415bd75Srobert     if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
65*d415bd75Srobert       hasCalls = true;
66*d415bd75Srobert       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
67*d415bd75Srobert     }
6809467b48Spatrick     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
69097a140dSpatrick       if (!AI->isStaticAlloca()) {
7009467b48Spatrick         hasDynamicAllocas = true;
7109467b48Spatrick       }
7209467b48Spatrick     }
73097a140dSpatrick   }
7409467b48Spatrick 
7509467b48Spatrick   if (CodeInfo) {
7609467b48Spatrick     CodeInfo->ContainsCalls |= hasCalls;
77*d415bd75Srobert     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
7809467b48Spatrick     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
7909467b48Spatrick   }
8009467b48Spatrick   return NewBB;
8109467b48Spatrick }
8209467b48Spatrick 
8309467b48Spatrick // Clone OldFunc into NewFunc, transforming the old arguments into references to
8409467b48Spatrick // VMap values.
8509467b48Spatrick //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,CloneFunctionChangeType Changes,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)8609467b48Spatrick void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
8709467b48Spatrick                              ValueToValueMapTy &VMap,
8873471bf0Spatrick                              CloneFunctionChangeType Changes,
8909467b48Spatrick                              SmallVectorImpl<ReturnInst *> &Returns,
9009467b48Spatrick                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
9109467b48Spatrick                              ValueMapTypeRemapper *TypeMapper,
9209467b48Spatrick                              ValueMaterializer *Materializer) {
9309467b48Spatrick   assert(NameSuffix && "NameSuffix cannot be null!");
9409467b48Spatrick 
9509467b48Spatrick #ifndef NDEBUG
9609467b48Spatrick   for (const Argument &I : OldFunc->args())
9709467b48Spatrick     assert(VMap.count(&I) && "No mapping from source argument specified!");
9809467b48Spatrick #endif
9909467b48Spatrick 
10073471bf0Spatrick   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
10173471bf0Spatrick 
10209467b48Spatrick   // Copy all attributes other than those stored in the AttributeList.  We need
10309467b48Spatrick   // to remap the parameter indices of the AttributeList.
10409467b48Spatrick   AttributeList NewAttrs = NewFunc->getAttributes();
10509467b48Spatrick   NewFunc->copyAttributesFrom(OldFunc);
10609467b48Spatrick   NewFunc->setAttributes(NewAttrs);
10709467b48Spatrick 
108*d415bd75Srobert   const RemapFlags FuncGlobalRefFlags =
109*d415bd75Srobert       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
110*d415bd75Srobert 
11109467b48Spatrick   // Fix up the personality function that got copied over.
11209467b48Spatrick   if (OldFunc->hasPersonalityFn())
113*d415bd75Srobert     NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
114*d415bd75Srobert                                        FuncGlobalRefFlags, TypeMapper,
115*d415bd75Srobert                                        Materializer));
116*d415bd75Srobert 
117*d415bd75Srobert   if (OldFunc->hasPrefixData()) {
118*d415bd75Srobert     NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
119*d415bd75Srobert                                     FuncGlobalRefFlags, TypeMapper,
120*d415bd75Srobert                                     Materializer));
121*d415bd75Srobert   }
122*d415bd75Srobert 
123*d415bd75Srobert   if (OldFunc->hasPrologueData()) {
124*d415bd75Srobert     NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
125*d415bd75Srobert                                       FuncGlobalRefFlags, TypeMapper,
126*d415bd75Srobert                                       Materializer));
127*d415bd75Srobert   }
12809467b48Spatrick 
12909467b48Spatrick   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
13009467b48Spatrick   AttributeList OldAttrs = OldFunc->getAttributes();
13109467b48Spatrick 
13209467b48Spatrick   // Clone any argument attributes that are present in the VMap.
13309467b48Spatrick   for (const Argument &OldArg : OldFunc->args()) {
13409467b48Spatrick     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
13509467b48Spatrick       NewArgAttrs[NewArg->getArgNo()] =
136*d415bd75Srobert           OldAttrs.getParamAttrs(OldArg.getArgNo());
13709467b48Spatrick     }
13809467b48Spatrick   }
13909467b48Spatrick 
14009467b48Spatrick   NewFunc->setAttributes(
141*d415bd75Srobert       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
142*d415bd75Srobert                          OldAttrs.getRetAttrs(), NewArgAttrs));
14309467b48Spatrick 
14473471bf0Spatrick   // Everything else beyond this point deals with function instructions,
14573471bf0Spatrick   // so if we are dealing with a function declaration, we're done.
14673471bf0Spatrick   if (OldFunc->isDeclaration())
14773471bf0Spatrick     return;
14809467b48Spatrick 
14973471bf0Spatrick   // When we remap instructions within the same module, we want to avoid
15073471bf0Spatrick   // duplicating inlined DISubprograms, so record all subprograms we find as we
15173471bf0Spatrick   // duplicate instructions and then freeze them in the MD map. We also record
15273471bf0Spatrick   // information about dbg.value and dbg.declare to avoid duplicating the
15373471bf0Spatrick   // types.
154*d415bd75Srobert   std::optional<DebugInfoFinder> DIFinder;
15509467b48Spatrick 
15673471bf0Spatrick   // Track the subprogram attachment that needs to be cloned to fine-tune the
15773471bf0Spatrick   // mapping within the same module.
15873471bf0Spatrick   DISubprogram *SPClonedWithinModule = nullptr;
15973471bf0Spatrick   if (Changes < CloneFunctionChangeType::DifferentModule) {
16073471bf0Spatrick     assert((NewFunc->getParent() == nullptr ||
16173471bf0Spatrick             NewFunc->getParent() == OldFunc->getParent()) &&
16273471bf0Spatrick            "Expected NewFunc to have the same parent, or no parent");
16373471bf0Spatrick 
16473471bf0Spatrick     // Need to find subprograms, types, and compile units.
16573471bf0Spatrick     DIFinder.emplace();
16673471bf0Spatrick 
16773471bf0Spatrick     SPClonedWithinModule = OldFunc->getSubprogram();
16873471bf0Spatrick     if (SPClonedWithinModule)
16973471bf0Spatrick       DIFinder->processSubprogram(SPClonedWithinModule);
17073471bf0Spatrick   } else {
17173471bf0Spatrick     assert((NewFunc->getParent() == nullptr ||
17273471bf0Spatrick             NewFunc->getParent() != OldFunc->getParent()) &&
17373471bf0Spatrick            "Expected NewFunc to have different parents, or no parent");
17473471bf0Spatrick 
17573471bf0Spatrick     if (Changes == CloneFunctionChangeType::DifferentModule) {
17673471bf0Spatrick       assert(NewFunc->getParent() &&
17773471bf0Spatrick              "Need parent of new function to maintain debug info invariants");
17873471bf0Spatrick 
17973471bf0Spatrick       // Need to find all the compile units.
18073471bf0Spatrick       DIFinder.emplace();
18173471bf0Spatrick     }
18273471bf0Spatrick   }
18309467b48Spatrick 
18409467b48Spatrick   // Loop over all of the basic blocks in the function, cloning them as
18509467b48Spatrick   // appropriate.  Note that we save BE this way in order to handle cloning of
18609467b48Spatrick   // recursive functions into themselves.
18773471bf0Spatrick   for (const BasicBlock &BB : *OldFunc) {
18809467b48Spatrick 
18909467b48Spatrick     // Create a new basic block and copy instructions into it!
19009467b48Spatrick     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
19173471bf0Spatrick                                       DIFinder ? &*DIFinder : nullptr);
19209467b48Spatrick 
19309467b48Spatrick     // Add basic block mapping.
19409467b48Spatrick     VMap[&BB] = CBB;
19509467b48Spatrick 
19609467b48Spatrick     // It is only legal to clone a function if a block address within that
19709467b48Spatrick     // function is never referenced outside of the function.  Given that, we
19809467b48Spatrick     // want to map block addresses from the old function to block addresses in
19909467b48Spatrick     // the clone. (This is different from the generic ValueMapper
20009467b48Spatrick     // implementation, which generates an invalid blockaddress when
20109467b48Spatrick     // cloning a function.)
20209467b48Spatrick     if (BB.hasAddressTaken()) {
20309467b48Spatrick       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
20409467b48Spatrick                                               const_cast<BasicBlock *>(&BB));
20509467b48Spatrick       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
20609467b48Spatrick     }
20709467b48Spatrick 
20809467b48Spatrick     // Note return instructions for the caller.
20909467b48Spatrick     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
21009467b48Spatrick       Returns.push_back(RI);
21109467b48Spatrick   }
21209467b48Spatrick 
21373471bf0Spatrick   if (Changes < CloneFunctionChangeType::DifferentModule &&
21473471bf0Spatrick       DIFinder->subprogram_count() > 0) {
21573471bf0Spatrick     // Turn on module-level changes, since we need to clone (some of) the
21673471bf0Spatrick     // debug info metadata.
21773471bf0Spatrick     //
21873471bf0Spatrick     // FIXME: Metadata effectively owned by a function should be made
21973471bf0Spatrick     // local, and only that local metadata should be cloned.
22073471bf0Spatrick     ModuleLevelChanges = true;
22109467b48Spatrick 
22273471bf0Spatrick     auto mapToSelfIfNew = [&VMap](MDNode *N) {
22373471bf0Spatrick       // Avoid clobbering an existing mapping.
22473471bf0Spatrick       (void)VMap.MD().try_emplace(N, N);
22573471bf0Spatrick     };
22609467b48Spatrick 
22773471bf0Spatrick     // Avoid cloning types, compile units, and (other) subprograms.
228*d415bd75Srobert     SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
229*d415bd75Srobert     for (DISubprogram *ISP : DIFinder->subprograms()) {
230*d415bd75Srobert       if (ISP != SPClonedWithinModule) {
23173471bf0Spatrick         mapToSelfIfNew(ISP);
232*d415bd75Srobert         MappedToSelfSPs.insert(ISP);
233*d415bd75Srobert       }
234*d415bd75Srobert     }
235*d415bd75Srobert 
236*d415bd75Srobert     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
237*d415bd75Srobert     for (DIScope *S : DIFinder->scopes()) {
238*d415bd75Srobert       auto *LScope = dyn_cast<DILocalScope>(S);
239*d415bd75Srobert       if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
240*d415bd75Srobert         mapToSelfIfNew(S);
241*d415bd75Srobert     }
24209467b48Spatrick 
24373471bf0Spatrick     for (DICompileUnit *CU : DIFinder->compile_units())
24473471bf0Spatrick       mapToSelfIfNew(CU);
24573471bf0Spatrick 
24673471bf0Spatrick     for (DIType *Type : DIFinder->types())
24773471bf0Spatrick       mapToSelfIfNew(Type);
24873471bf0Spatrick   } else {
24973471bf0Spatrick     assert(!SPClonedWithinModule &&
25073471bf0Spatrick            "Subprogram should be in DIFinder->subprogram_count()...");
25173471bf0Spatrick   }
25273471bf0Spatrick 
25373471bf0Spatrick   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
25473471bf0Spatrick   // Duplicate the metadata that is attached to the cloned function.
25573471bf0Spatrick   // Subprograms/CUs/types that were already mapped to themselves won't be
25673471bf0Spatrick   // duplicated.
25773471bf0Spatrick   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
25873471bf0Spatrick   OldFunc->getAllMetadata(MDs);
25973471bf0Spatrick   for (auto MD : MDs) {
26073471bf0Spatrick     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
26173471bf0Spatrick                                                 TypeMapper, Materializer));
26273471bf0Spatrick   }
26373471bf0Spatrick 
26473471bf0Spatrick   // Loop over all of the instructions in the new function, fixing up operand
26509467b48Spatrick   // references as we go. This uses VMap to do all the hard work.
26673471bf0Spatrick   for (Function::iterator
26773471bf0Spatrick            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
26809467b48Spatrick            BE = NewFunc->end();
26909467b48Spatrick        BB != BE; ++BB)
27009467b48Spatrick     // Loop over all instructions, fixing each one as we find it...
27109467b48Spatrick     for (Instruction &II : *BB)
27273471bf0Spatrick       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
27309467b48Spatrick 
27473471bf0Spatrick   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
27573471bf0Spatrick   // same module, the compile unit will already be listed (or not). When
27673471bf0Spatrick   // cloning a module, CloneModule() will handle creating the named metadata.
27773471bf0Spatrick   if (Changes != CloneFunctionChangeType::DifferentModule)
27873471bf0Spatrick     return;
27973471bf0Spatrick 
28073471bf0Spatrick   // Update !llvm.dbg.cu with compile units added to the new module if this
28173471bf0Spatrick   // function is being cloned in isolation.
28273471bf0Spatrick   //
28373471bf0Spatrick   // FIXME: This is making global / module-level changes, which doesn't seem
28473471bf0Spatrick   // like the right encapsulation  Consider dropping the requirement to update
28573471bf0Spatrick   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
28673471bf0Spatrick   // non-discardable compile units) instead of discovering compile units by
28773471bf0Spatrick   // visiting the metadata attached to global values, which would allow this
28873471bf0Spatrick   // code to be deleted. Alternatively, perhaps give responsibility for this
28973471bf0Spatrick   // update to CloneFunctionInto's callers.
29009467b48Spatrick   auto *NewModule = NewFunc->getParent();
29109467b48Spatrick   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
29209467b48Spatrick   // Avoid multiple insertions of the same DICompileUnit to NMD.
29309467b48Spatrick   SmallPtrSet<const void *, 8> Visited;
29409467b48Spatrick   for (auto *Operand : NMD->operands())
29509467b48Spatrick     Visited.insert(Operand);
29673471bf0Spatrick   for (auto *Unit : DIFinder->compile_units()) {
29773471bf0Spatrick     MDNode *MappedUnit =
29873471bf0Spatrick         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
29973471bf0Spatrick     if (Visited.insert(MappedUnit).second)
30073471bf0Spatrick       NMD->addOperand(MappedUnit);
30109467b48Spatrick   }
30209467b48Spatrick }
30309467b48Spatrick 
30409467b48Spatrick /// Return a copy of the specified function and add it to that function's
30509467b48Spatrick /// module.  Also, any references specified in the VMap are changed to refer to
30609467b48Spatrick /// their mapped value instead of the original one.  If any of the arguments to
30709467b48Spatrick /// the function are in the VMap, the arguments are deleted from the resultant
30809467b48Spatrick /// function.  The VMap is updated to include mappings from all of the
30909467b48Spatrick /// instructions and basicblocks in the function from their old to new values.
31009467b48Spatrick ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)31109467b48Spatrick Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
31209467b48Spatrick                               ClonedCodeInfo *CodeInfo) {
31309467b48Spatrick   std::vector<Type *> ArgTypes;
31409467b48Spatrick 
31509467b48Spatrick   // The user might be deleting arguments to the function by specifying them in
31609467b48Spatrick   // the VMap.  If so, we need to not add the arguments to the arg ty vector
31709467b48Spatrick   //
31809467b48Spatrick   for (const Argument &I : F->args())
31909467b48Spatrick     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
32009467b48Spatrick       ArgTypes.push_back(I.getType());
32109467b48Spatrick 
32209467b48Spatrick   // Create a new function type...
32373471bf0Spatrick   FunctionType *FTy =
32473471bf0Spatrick       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
32573471bf0Spatrick                         F->getFunctionType()->isVarArg());
32609467b48Spatrick 
32709467b48Spatrick   // Create the new function...
32809467b48Spatrick   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
32909467b48Spatrick                                     F->getName(), F->getParent());
33009467b48Spatrick 
33109467b48Spatrick   // Loop over the arguments, copying the names of the mapped arguments over...
33209467b48Spatrick   Function::arg_iterator DestI = NewF->arg_begin();
33309467b48Spatrick   for (const Argument &I : F->args())
33409467b48Spatrick     if (VMap.count(&I) == 0) {     // Is this argument preserved?
33509467b48Spatrick       DestI->setName(I.getName()); // Copy the name over...
33609467b48Spatrick       VMap[&I] = &*DestI++;        // Add mapping to VMap
33709467b48Spatrick     }
33809467b48Spatrick 
33909467b48Spatrick   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
34073471bf0Spatrick   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
34173471bf0Spatrick                     Returns, "", CodeInfo);
34209467b48Spatrick 
34309467b48Spatrick   return NewF;
34409467b48Spatrick }
34509467b48Spatrick 
34609467b48Spatrick namespace {
34709467b48Spatrick /// This is a private class used to implement CloneAndPruneFunctionInto.
34809467b48Spatrick struct PruningFunctionCloner {
34909467b48Spatrick   Function *NewFunc;
35009467b48Spatrick   const Function *OldFunc;
35109467b48Spatrick   ValueToValueMapTy &VMap;
35209467b48Spatrick   bool ModuleLevelChanges;
35309467b48Spatrick   const char *NameSuffix;
35409467b48Spatrick   ClonedCodeInfo *CodeInfo;
355*d415bd75Srobert   bool HostFuncIsStrictFP;
356*d415bd75Srobert 
357*d415bd75Srobert   Instruction *cloneInstruction(BasicBlock::const_iterator II);
35809467b48Spatrick 
35909467b48Spatrick public:
PruningFunctionCloner__anon926c1d320211::PruningFunctionCloner36009467b48Spatrick   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
36109467b48Spatrick                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
36209467b48Spatrick                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
36309467b48Spatrick       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
36409467b48Spatrick         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
365*d415bd75Srobert         CodeInfo(codeInfo) {
366*d415bd75Srobert     HostFuncIsStrictFP =
367*d415bd75Srobert         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
368*d415bd75Srobert   }
36909467b48Spatrick 
37009467b48Spatrick   /// The specified block is found to be reachable, clone it and
37109467b48Spatrick   /// anything that it can reach.
37273471bf0Spatrick   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
37309467b48Spatrick                   std::vector<const BasicBlock *> &ToClone);
37409467b48Spatrick };
37573471bf0Spatrick } // namespace
37609467b48Spatrick 
hasRoundingModeOperand(Intrinsic::ID CIID)377*d415bd75Srobert static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
378*d415bd75Srobert   switch (CIID) {
379*d415bd75Srobert #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
380*d415bd75Srobert   case Intrinsic::INTRINSIC:                                                   \
381*d415bd75Srobert     return ROUND_MODE == 1;
382*d415bd75Srobert #define FUNCTION INSTRUCTION
383*d415bd75Srobert #include "llvm/IR/ConstrainedOps.def"
384*d415bd75Srobert   default:
385*d415bd75Srobert     llvm_unreachable("Unexpected constrained intrinsic id");
386*d415bd75Srobert   }
387*d415bd75Srobert }
388*d415bd75Srobert 
389*d415bd75Srobert Instruction *
cloneInstruction(BasicBlock::const_iterator II)390*d415bd75Srobert PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
391*d415bd75Srobert   const Instruction &OldInst = *II;
392*d415bd75Srobert   Instruction *NewInst = nullptr;
393*d415bd75Srobert   if (HostFuncIsStrictFP) {
394*d415bd75Srobert     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
395*d415bd75Srobert     if (CIID != Intrinsic::not_intrinsic) {
396*d415bd75Srobert       // Instead of cloning the instruction, a call to constrained intrinsic
397*d415bd75Srobert       // should be created.
398*d415bd75Srobert       // Assume the first arguments of constrained intrinsics are the same as
399*d415bd75Srobert       // the operands of original instruction.
400*d415bd75Srobert 
401*d415bd75Srobert       // Determine overloaded types of the intrinsic.
402*d415bd75Srobert       SmallVector<Type *, 2> TParams;
403*d415bd75Srobert       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
404*d415bd75Srobert       getIntrinsicInfoTableEntries(CIID, Descriptor);
405*d415bd75Srobert       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
406*d415bd75Srobert         Intrinsic::IITDescriptor Operand = Descriptor[I];
407*d415bd75Srobert         switch (Operand.Kind) {
408*d415bd75Srobert         case Intrinsic::IITDescriptor::Argument:
409*d415bd75Srobert           if (Operand.getArgumentKind() !=
410*d415bd75Srobert               Intrinsic::IITDescriptor::AK_MatchType) {
411*d415bd75Srobert             if (I == 0)
412*d415bd75Srobert               TParams.push_back(OldInst.getType());
413*d415bd75Srobert             else
414*d415bd75Srobert               TParams.push_back(OldInst.getOperand(I - 1)->getType());
415*d415bd75Srobert           }
416*d415bd75Srobert           break;
417*d415bd75Srobert         case Intrinsic::IITDescriptor::SameVecWidthArgument:
418*d415bd75Srobert           ++I;
419*d415bd75Srobert           break;
420*d415bd75Srobert         default:
421*d415bd75Srobert           break;
422*d415bd75Srobert         }
423*d415bd75Srobert       }
424*d415bd75Srobert 
425*d415bd75Srobert       // Create intrinsic call.
426*d415bd75Srobert       LLVMContext &Ctx = NewFunc->getContext();
427*d415bd75Srobert       Function *IFn =
428*d415bd75Srobert           Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
429*d415bd75Srobert       SmallVector<Value *, 4> Args;
430*d415bd75Srobert       unsigned NumOperands = OldInst.getNumOperands();
431*d415bd75Srobert       if (isa<CallInst>(OldInst))
432*d415bd75Srobert         --NumOperands;
433*d415bd75Srobert       for (unsigned I = 0; I < NumOperands; ++I) {
434*d415bd75Srobert         Value *Op = OldInst.getOperand(I);
435*d415bd75Srobert         Args.push_back(Op);
436*d415bd75Srobert       }
437*d415bd75Srobert       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
438*d415bd75Srobert         FCmpInst::Predicate Pred = CmpI->getPredicate();
439*d415bd75Srobert         StringRef PredName = FCmpInst::getPredicateName(Pred);
440*d415bd75Srobert         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
441*d415bd75Srobert       }
442*d415bd75Srobert 
443*d415bd75Srobert       // The last arguments of a constrained intrinsic are metadata that
444*d415bd75Srobert       // represent rounding mode (absents in some intrinsics) and exception
445*d415bd75Srobert       // behavior. The inlined function uses default settings.
446*d415bd75Srobert       if (hasRoundingModeOperand(CIID))
447*d415bd75Srobert         Args.push_back(
448*d415bd75Srobert             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
449*d415bd75Srobert       Args.push_back(
450*d415bd75Srobert           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
451*d415bd75Srobert 
452*d415bd75Srobert       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
453*d415bd75Srobert     }
454*d415bd75Srobert   }
455*d415bd75Srobert   if (!NewInst)
456*d415bd75Srobert     NewInst = II->clone();
457*d415bd75Srobert   return NewInst;
458*d415bd75Srobert }
459*d415bd75Srobert 
46009467b48Spatrick /// The specified block is found to be reachable, clone it and
46109467b48Spatrick /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)46273471bf0Spatrick void PruningFunctionCloner::CloneBlock(
46373471bf0Spatrick     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
46409467b48Spatrick     std::vector<const BasicBlock *> &ToClone) {
46509467b48Spatrick   WeakTrackingVH &BBEntry = VMap[BB];
46609467b48Spatrick 
46709467b48Spatrick   // Have we already cloned this block?
46873471bf0Spatrick   if (BBEntry)
46973471bf0Spatrick     return;
47009467b48Spatrick 
47109467b48Spatrick   // Nope, clone it now.
47209467b48Spatrick   BasicBlock *NewBB;
47309467b48Spatrick   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
47473471bf0Spatrick   if (BB->hasName())
47573471bf0Spatrick     NewBB->setName(BB->getName() + NameSuffix);
47609467b48Spatrick 
47709467b48Spatrick   // It is only legal to clone a function if a block address within that
47809467b48Spatrick   // function is never referenced outside of the function.  Given that, we
47909467b48Spatrick   // want to map block addresses from the old function to block addresses in
48009467b48Spatrick   // the clone. (This is different from the generic ValueMapper
48109467b48Spatrick   // implementation, which generates an invalid blockaddress when
48209467b48Spatrick   // cloning a function.)
48309467b48Spatrick   //
48409467b48Spatrick   // Note that we don't need to fix the mapping for unreachable blocks;
48509467b48Spatrick   // the default mapping there is safe.
48609467b48Spatrick   if (BB->hasAddressTaken()) {
48709467b48Spatrick     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
48809467b48Spatrick                                             const_cast<BasicBlock *>(BB));
48909467b48Spatrick     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
49009467b48Spatrick   }
49109467b48Spatrick 
49209467b48Spatrick   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
493*d415bd75Srobert   bool hasMemProfMetadata = false;
49409467b48Spatrick 
49509467b48Spatrick   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
49609467b48Spatrick   // loop doesn't include the terminator.
49773471bf0Spatrick   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
49873471bf0Spatrick        ++II) {
49909467b48Spatrick 
500*d415bd75Srobert     Instruction *NewInst = cloneInstruction(II);
501*d415bd75Srobert 
502*d415bd75Srobert     if (HostFuncIsStrictFP) {
503*d415bd75Srobert       // All function calls in the inlined function must get 'strictfp'
504*d415bd75Srobert       // attribute to prevent undesirable optimizations.
505*d415bd75Srobert       if (auto *Call = dyn_cast<CallInst>(NewInst))
506*d415bd75Srobert         Call->addFnAttr(Attribute::StrictFP);
507*d415bd75Srobert     }
50809467b48Spatrick 
50909467b48Spatrick     // Eagerly remap operands to the newly cloned instruction, except for PHI
510*d415bd75Srobert     // nodes for which we defer processing until we update the CFG. Also defer
511*d415bd75Srobert     // debug intrinsic processing because they may contain use-before-defs.
512*d415bd75Srobert     if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
51309467b48Spatrick       RemapInstruction(NewInst, VMap,
51409467b48Spatrick                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
51509467b48Spatrick 
51609467b48Spatrick       // If we can simplify this instruction to some other value, simply add
51709467b48Spatrick       // a mapping to that value rather than inserting a new instruction into
51809467b48Spatrick       // the basic block.
51909467b48Spatrick       if (Value *V =
520*d415bd75Srobert               simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
52109467b48Spatrick         // On the off-chance that this simplifies to an instruction in the old
52209467b48Spatrick         // function, map it back into the new function.
52309467b48Spatrick         if (NewFunc != OldFunc)
52409467b48Spatrick           if (Value *MappedV = VMap.lookup(V))
52509467b48Spatrick             V = MappedV;
52609467b48Spatrick 
52709467b48Spatrick         if (!NewInst->mayHaveSideEffects()) {
52809467b48Spatrick           VMap[&*II] = V;
52909467b48Spatrick           NewInst->deleteValue();
53009467b48Spatrick           continue;
53109467b48Spatrick         }
53209467b48Spatrick       }
53309467b48Spatrick     }
53409467b48Spatrick 
53509467b48Spatrick     if (II->hasName())
53609467b48Spatrick       NewInst->setName(II->getName() + NameSuffix);
53709467b48Spatrick     VMap[&*II] = NewInst; // Add instruction map to value.
538*d415bd75Srobert     NewInst->insertInto(NewBB, NewBB->end());
539*d415bd75Srobert     if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
540*d415bd75Srobert       hasCalls = true;
541*d415bd75Srobert       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
542*d415bd75Srobert     }
54309467b48Spatrick 
54473471bf0Spatrick     if (CodeInfo) {
54573471bf0Spatrick       CodeInfo->OrigVMap[&*II] = NewInst;
546097a140dSpatrick       if (auto *CB = dyn_cast<CallBase>(&*II))
547097a140dSpatrick         if (CB->hasOperandBundles())
54809467b48Spatrick           CodeInfo->OperandBundleCallSites.push_back(NewInst);
54973471bf0Spatrick     }
55009467b48Spatrick 
55109467b48Spatrick     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
55209467b48Spatrick       if (isa<ConstantInt>(AI->getArraySize()))
55309467b48Spatrick         hasStaticAllocas = true;
55409467b48Spatrick       else
55509467b48Spatrick         hasDynamicAllocas = true;
55609467b48Spatrick     }
55709467b48Spatrick   }
55809467b48Spatrick 
55909467b48Spatrick   // Finally, clone over the terminator.
56009467b48Spatrick   const Instruction *OldTI = BB->getTerminator();
56109467b48Spatrick   bool TerminatorDone = false;
56209467b48Spatrick   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
56309467b48Spatrick     if (BI->isConditional()) {
56409467b48Spatrick       // If the condition was a known constant in the callee...
56509467b48Spatrick       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
56609467b48Spatrick       // Or is a known constant in the caller...
56709467b48Spatrick       if (!Cond) {
56809467b48Spatrick         Value *V = VMap.lookup(BI->getCondition());
56909467b48Spatrick         Cond = dyn_cast_or_null<ConstantInt>(V);
57009467b48Spatrick       }
57109467b48Spatrick 
57209467b48Spatrick       // Constant fold to uncond branch!
57309467b48Spatrick       if (Cond) {
57409467b48Spatrick         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
57509467b48Spatrick         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
57609467b48Spatrick         ToClone.push_back(Dest);
57709467b48Spatrick         TerminatorDone = true;
57809467b48Spatrick       }
57909467b48Spatrick     }
58009467b48Spatrick   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
58109467b48Spatrick     // If switching on a value known constant in the caller.
58209467b48Spatrick     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
58309467b48Spatrick     if (!Cond) { // Or known constant after constant prop in the callee...
58409467b48Spatrick       Value *V = VMap.lookup(SI->getCondition());
58509467b48Spatrick       Cond = dyn_cast_or_null<ConstantInt>(V);
58609467b48Spatrick     }
58709467b48Spatrick     if (Cond) { // Constant fold to uncond branch!
58809467b48Spatrick       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
58909467b48Spatrick       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
59009467b48Spatrick       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
59109467b48Spatrick       ToClone.push_back(Dest);
59209467b48Spatrick       TerminatorDone = true;
59309467b48Spatrick     }
59409467b48Spatrick   }
59509467b48Spatrick 
59609467b48Spatrick   if (!TerminatorDone) {
59709467b48Spatrick     Instruction *NewInst = OldTI->clone();
59809467b48Spatrick     if (OldTI->hasName())
59909467b48Spatrick       NewInst->setName(OldTI->getName() + NameSuffix);
600*d415bd75Srobert     NewInst->insertInto(NewBB, NewBB->end());
60109467b48Spatrick     VMap[OldTI] = NewInst; // Add instruction map to value.
60209467b48Spatrick 
60373471bf0Spatrick     if (CodeInfo) {
60473471bf0Spatrick       CodeInfo->OrigVMap[OldTI] = NewInst;
605097a140dSpatrick       if (auto *CB = dyn_cast<CallBase>(OldTI))
606097a140dSpatrick         if (CB->hasOperandBundles())
60709467b48Spatrick           CodeInfo->OperandBundleCallSites.push_back(NewInst);
60873471bf0Spatrick     }
60909467b48Spatrick 
61009467b48Spatrick     // Recursively clone any reachable successor blocks.
61173471bf0Spatrick     append_range(ToClone, successors(BB->getTerminator()));
61209467b48Spatrick   }
61309467b48Spatrick 
61409467b48Spatrick   if (CodeInfo) {
61509467b48Spatrick     CodeInfo->ContainsCalls |= hasCalls;
616*d415bd75Srobert     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
61709467b48Spatrick     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
61873471bf0Spatrick     CodeInfo->ContainsDynamicAllocas |=
61973471bf0Spatrick         hasStaticAllocas && BB != &BB->getParent()->front();
62009467b48Spatrick   }
62109467b48Spatrick }
62209467b48Spatrick 
62309467b48Spatrick /// This works like CloneAndPruneFunctionInto, except that it does not clone the
62409467b48Spatrick /// entire function. Instead it starts at an instruction provided by the caller
62509467b48Spatrick /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)62609467b48Spatrick void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
62709467b48Spatrick                                      const Instruction *StartingInst,
62809467b48Spatrick                                      ValueToValueMapTy &VMap,
62909467b48Spatrick                                      bool ModuleLevelChanges,
63009467b48Spatrick                                      SmallVectorImpl<ReturnInst *> &Returns,
63109467b48Spatrick                                      const char *NameSuffix,
63209467b48Spatrick                                      ClonedCodeInfo *CodeInfo) {
63309467b48Spatrick   assert(NameSuffix && "NameSuffix cannot be null!");
63409467b48Spatrick 
63509467b48Spatrick   ValueMapTypeRemapper *TypeMapper = nullptr;
63609467b48Spatrick   ValueMaterializer *Materializer = nullptr;
63709467b48Spatrick 
63809467b48Spatrick #ifndef NDEBUG
63909467b48Spatrick   // If the cloning starts at the beginning of the function, verify that
64009467b48Spatrick   // the function arguments are mapped.
64109467b48Spatrick   if (!StartingInst)
64209467b48Spatrick     for (const Argument &II : OldFunc->args())
64309467b48Spatrick       assert(VMap.count(&II) && "No mapping from source argument specified!");
64409467b48Spatrick #endif
64509467b48Spatrick 
64609467b48Spatrick   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
64709467b48Spatrick                             NameSuffix, CodeInfo);
64809467b48Spatrick   const BasicBlock *StartingBB;
64909467b48Spatrick   if (StartingInst)
65009467b48Spatrick     StartingBB = StartingInst->getParent();
65109467b48Spatrick   else {
65209467b48Spatrick     StartingBB = &OldFunc->getEntryBlock();
65309467b48Spatrick     StartingInst = &StartingBB->front();
65409467b48Spatrick   }
65509467b48Spatrick 
656*d415bd75Srobert   // Collect debug intrinsics for remapping later.
657*d415bd75Srobert   SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
658*d415bd75Srobert   for (const auto &BB : *OldFunc) {
659*d415bd75Srobert     for (const auto &I : BB) {
660*d415bd75Srobert       if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
661*d415bd75Srobert         DbgIntrinsics.push_back(DVI);
662*d415bd75Srobert     }
663*d415bd75Srobert   }
664*d415bd75Srobert 
66509467b48Spatrick   // Clone the entry block, and anything recursively reachable from it.
66609467b48Spatrick   std::vector<const BasicBlock *> CloneWorklist;
66709467b48Spatrick   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
66809467b48Spatrick   while (!CloneWorklist.empty()) {
66909467b48Spatrick     const BasicBlock *BB = CloneWorklist.back();
67009467b48Spatrick     CloneWorklist.pop_back();
67109467b48Spatrick     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
67209467b48Spatrick   }
67309467b48Spatrick 
67409467b48Spatrick   // Loop over all of the basic blocks in the old function.  If the block was
67509467b48Spatrick   // reachable, we have cloned it and the old block is now in the value map:
67609467b48Spatrick   // insert it into the new function in the right order.  If not, ignore it.
67709467b48Spatrick   //
67809467b48Spatrick   // Defer PHI resolution until rest of function is resolved.
67909467b48Spatrick   SmallVector<const PHINode *, 16> PHIToResolve;
68009467b48Spatrick   for (const BasicBlock &BI : *OldFunc) {
68109467b48Spatrick     Value *V = VMap.lookup(&BI);
68209467b48Spatrick     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
68373471bf0Spatrick     if (!NewBB)
68473471bf0Spatrick       continue; // Dead block.
68509467b48Spatrick 
68609467b48Spatrick     // Add the new block to the new function.
687*d415bd75Srobert     NewFunc->insert(NewFunc->end(), NewBB);
68809467b48Spatrick 
68909467b48Spatrick     // Handle PHI nodes specially, as we have to remove references to dead
69009467b48Spatrick     // blocks.
69109467b48Spatrick     for (const PHINode &PN : BI.phis()) {
69209467b48Spatrick       // PHI nodes may have been remapped to non-PHI nodes by the caller or
69309467b48Spatrick       // during the cloning process.
69409467b48Spatrick       if (isa<PHINode>(VMap[&PN]))
69509467b48Spatrick         PHIToResolve.push_back(&PN);
69609467b48Spatrick       else
69709467b48Spatrick         break;
69809467b48Spatrick     }
69909467b48Spatrick 
70009467b48Spatrick     // Finally, remap the terminator instructions, as those can't be remapped
70109467b48Spatrick     // until all BBs are mapped.
70209467b48Spatrick     RemapInstruction(NewBB->getTerminator(), VMap,
70309467b48Spatrick                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
70409467b48Spatrick                      TypeMapper, Materializer);
70509467b48Spatrick   }
70609467b48Spatrick 
70709467b48Spatrick   // Defer PHI resolution until rest of function is resolved, PHI resolution
70809467b48Spatrick   // requires the CFG to be up-to-date.
70909467b48Spatrick   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
71009467b48Spatrick     const PHINode *OPN = PHIToResolve[phino];
71109467b48Spatrick     unsigned NumPreds = OPN->getNumIncomingValues();
71209467b48Spatrick     const BasicBlock *OldBB = OPN->getParent();
71309467b48Spatrick     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
71409467b48Spatrick 
71509467b48Spatrick     // Map operands for blocks that are live and remove operands for blocks
71609467b48Spatrick     // that are dead.
71709467b48Spatrick     for (; phino != PHIToResolve.size() &&
71873471bf0Spatrick            PHIToResolve[phino]->getParent() == OldBB;
71973471bf0Spatrick          ++phino) {
72009467b48Spatrick       OPN = PHIToResolve[phino];
72109467b48Spatrick       PHINode *PN = cast<PHINode>(VMap[OPN]);
72209467b48Spatrick       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
72309467b48Spatrick         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
72409467b48Spatrick         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
72573471bf0Spatrick           Value *InVal =
72673471bf0Spatrick               MapValue(PN->getIncomingValue(pred), VMap,
72709467b48Spatrick                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
72809467b48Spatrick           assert(InVal && "Unknown input value?");
72909467b48Spatrick           PN->setIncomingValue(pred, InVal);
73009467b48Spatrick           PN->setIncomingBlock(pred, MappedBlock);
73109467b48Spatrick         } else {
73209467b48Spatrick           PN->removeIncomingValue(pred, false);
73309467b48Spatrick           --pred; // Revisit the next entry.
73409467b48Spatrick           --e;
73509467b48Spatrick         }
73609467b48Spatrick       }
73709467b48Spatrick     }
73809467b48Spatrick 
73909467b48Spatrick     // The loop above has removed PHI entries for those blocks that are dead
74009467b48Spatrick     // and has updated others.  However, if a block is live (i.e. copied over)
74109467b48Spatrick     // but its terminator has been changed to not go to this block, then our
74209467b48Spatrick     // phi nodes will have invalid entries.  Update the PHI nodes in this
74309467b48Spatrick     // case.
74409467b48Spatrick     PHINode *PN = cast<PHINode>(NewBB->begin());
74509467b48Spatrick     NumPreds = pred_size(NewBB);
74609467b48Spatrick     if (NumPreds != PN->getNumIncomingValues()) {
74709467b48Spatrick       assert(NumPreds < PN->getNumIncomingValues());
74809467b48Spatrick       // Count how many times each predecessor comes to this block.
74909467b48Spatrick       std::map<BasicBlock *, unsigned> PredCount;
75073471bf0Spatrick       for (BasicBlock *Pred : predecessors(NewBB))
75173471bf0Spatrick         --PredCount[Pred];
75209467b48Spatrick 
75309467b48Spatrick       // Figure out how many entries to remove from each PHI.
75409467b48Spatrick       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
75509467b48Spatrick         ++PredCount[PN->getIncomingBlock(i)];
75609467b48Spatrick 
75709467b48Spatrick       // At this point, the excess predecessor entries are positive in the
75809467b48Spatrick       // map.  Loop over all of the PHIs and remove excess predecessor
75909467b48Spatrick       // entries.
76009467b48Spatrick       BasicBlock::iterator I = NewBB->begin();
76109467b48Spatrick       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
76209467b48Spatrick         for (const auto &PCI : PredCount) {
76309467b48Spatrick           BasicBlock *Pred = PCI.first;
76409467b48Spatrick           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
76509467b48Spatrick             PN->removeIncomingValue(Pred, false);
76609467b48Spatrick         }
76709467b48Spatrick       }
76809467b48Spatrick     }
76909467b48Spatrick 
77009467b48Spatrick     // If the loops above have made these phi nodes have 0 or 1 operand,
771*d415bd75Srobert     // replace them with poison or the input value.  We must do this for
77209467b48Spatrick     // correctness, because 0-operand phis are not valid.
77309467b48Spatrick     PN = cast<PHINode>(NewBB->begin());
77409467b48Spatrick     if (PN->getNumIncomingValues() == 0) {
77509467b48Spatrick       BasicBlock::iterator I = NewBB->begin();
77609467b48Spatrick       BasicBlock::const_iterator OldI = OldBB->begin();
77709467b48Spatrick       while ((PN = dyn_cast<PHINode>(I++))) {
778*d415bd75Srobert         Value *NV = PoisonValue::get(PN->getType());
77909467b48Spatrick         PN->replaceAllUsesWith(NV);
78009467b48Spatrick         assert(VMap[&*OldI] == PN && "VMap mismatch");
78109467b48Spatrick         VMap[&*OldI] = NV;
78209467b48Spatrick         PN->eraseFromParent();
78309467b48Spatrick         ++OldI;
78409467b48Spatrick       }
78509467b48Spatrick     }
78609467b48Spatrick   }
78709467b48Spatrick 
78809467b48Spatrick   // Make a second pass over the PHINodes now that all of them have been
78909467b48Spatrick   // remapped into the new function, simplifying the PHINode and performing any
79009467b48Spatrick   // recursive simplifications exposed. This will transparently update the
79109467b48Spatrick   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
79209467b48Spatrick   // two PHINodes, the iteration over the old PHIs remains valid, and the
79309467b48Spatrick   // mapping will just map us to the new node (which may not even be a PHI
79409467b48Spatrick   // node).
79509467b48Spatrick   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
79609467b48Spatrick   SmallSetVector<const Value *, 8> Worklist;
79709467b48Spatrick   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
79809467b48Spatrick     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
79909467b48Spatrick       Worklist.insert(PHIToResolve[Idx]);
80009467b48Spatrick 
80109467b48Spatrick   // Note that we must test the size on each iteration, the worklist can grow.
80209467b48Spatrick   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
80309467b48Spatrick     const Value *OrigV = Worklist[Idx];
80409467b48Spatrick     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
80509467b48Spatrick     if (!I)
80609467b48Spatrick       continue;
80709467b48Spatrick 
80809467b48Spatrick     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
80909467b48Spatrick     // the CGSCC.
810097a140dSpatrick     CallBase *CB = dyn_cast<CallBase>(I);
811097a140dSpatrick     if (CB && CB->getCalledFunction() &&
812097a140dSpatrick         !CB->getCalledFunction()->isIntrinsic())
81309467b48Spatrick       continue;
81409467b48Spatrick 
81509467b48Spatrick     // See if this instruction simplifies.
816*d415bd75Srobert     Value *SimpleV = simplifyInstruction(I, DL);
81709467b48Spatrick     if (!SimpleV)
81809467b48Spatrick       continue;
81909467b48Spatrick 
82009467b48Spatrick     // Stash away all the uses of the old instruction so we can check them for
82109467b48Spatrick     // recursive simplifications after a RAUW. This is cheaper than checking all
82209467b48Spatrick     // uses of To on the recursive step in most cases.
82309467b48Spatrick     for (const User *U : OrigV->users())
82409467b48Spatrick       Worklist.insert(cast<Instruction>(U));
82509467b48Spatrick 
82609467b48Spatrick     // Replace the instruction with its simplified value.
82709467b48Spatrick     I->replaceAllUsesWith(SimpleV);
82809467b48Spatrick 
82909467b48Spatrick     // If the original instruction had no side effects, remove it.
83009467b48Spatrick     if (isInstructionTriviallyDead(I))
83109467b48Spatrick       I->eraseFromParent();
83209467b48Spatrick     else
83309467b48Spatrick       VMap[OrigV] = I;
83409467b48Spatrick   }
83509467b48Spatrick 
836*d415bd75Srobert   // Remap debug intrinsic operands now that all values have been mapped.
837*d415bd75Srobert   // Doing this now (late) preserves use-before-defs in debug intrinsics. If
838*d415bd75Srobert   // we didn't do this, ValueAsMetadata(use-before-def) operands would be
839*d415bd75Srobert   // replaced by empty metadata. This would signal later cleanup passes to
840*d415bd75Srobert   // remove the debug intrinsics, potentially causing incorrect locations.
841*d415bd75Srobert   for (const auto *DVI : DbgIntrinsics) {
842*d415bd75Srobert     if (DbgVariableIntrinsic *NewDVI =
843*d415bd75Srobert             cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
844*d415bd75Srobert       RemapInstruction(NewDVI, VMap,
845*d415bd75Srobert                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
846*d415bd75Srobert                        TypeMapper, Materializer);
847*d415bd75Srobert   }
848*d415bd75Srobert 
849*d415bd75Srobert   // Simplify conditional branches and switches with a constant operand. We try
850*d415bd75Srobert   // to prune these out when cloning, but if the simplification required
851*d415bd75Srobert   // looking through PHI nodes, those are only available after forming the full
852*d415bd75Srobert   // basic block. That may leave some here, and we still want to prune the dead
853*d415bd75Srobert   // code as early as possible.
854*d415bd75Srobert   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
855*d415bd75Srobert   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
856*d415bd75Srobert     ConstantFoldTerminator(&BB);
857*d415bd75Srobert 
858*d415bd75Srobert   // Some blocks may have become unreachable as a result. Find and delete them.
859*d415bd75Srobert   {
860*d415bd75Srobert     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
861*d415bd75Srobert     SmallVector<BasicBlock *, 16> Worklist;
862*d415bd75Srobert     Worklist.push_back(&*Begin);
863*d415bd75Srobert     while (!Worklist.empty()) {
864*d415bd75Srobert       BasicBlock *BB = Worklist.pop_back_val();
865*d415bd75Srobert       if (ReachableBlocks.insert(BB).second)
866*d415bd75Srobert         append_range(Worklist, successors(BB));
867*d415bd75Srobert     }
868*d415bd75Srobert 
869*d415bd75Srobert     SmallVector<BasicBlock *, 16> UnreachableBlocks;
870*d415bd75Srobert     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
871*d415bd75Srobert       if (!ReachableBlocks.contains(&BB))
872*d415bd75Srobert         UnreachableBlocks.push_back(&BB);
873*d415bd75Srobert     DeleteDeadBlocks(UnreachableBlocks);
874*d415bd75Srobert   }
875*d415bd75Srobert 
87609467b48Spatrick   // Now that the inlined function body has been fully constructed, go through
87709467b48Spatrick   // and zap unconditional fall-through branches. This happens all the time when
87809467b48Spatrick   // specializing code: code specialization turns conditional branches into
87909467b48Spatrick   // uncond branches, and this code folds them.
88009467b48Spatrick   Function::iterator I = Begin;
88109467b48Spatrick   while (I != NewFunc->end()) {
88209467b48Spatrick     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
88373471bf0Spatrick     if (!BI || BI->isConditional()) {
88473471bf0Spatrick       ++I;
88573471bf0Spatrick       continue;
88673471bf0Spatrick     }
88709467b48Spatrick 
88809467b48Spatrick     BasicBlock *Dest = BI->getSuccessor(0);
88909467b48Spatrick     if (!Dest->getSinglePredecessor()) {
89073471bf0Spatrick       ++I;
89173471bf0Spatrick       continue;
89209467b48Spatrick     }
89309467b48Spatrick 
89409467b48Spatrick     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
89509467b48Spatrick     // above should have zapped all of them..
89609467b48Spatrick     assert(!isa<PHINode>(Dest->begin()));
89709467b48Spatrick 
89809467b48Spatrick     // We know all single-entry PHI nodes in the inlined function have been
89909467b48Spatrick     // removed, so we just need to splice the blocks.
90009467b48Spatrick     BI->eraseFromParent();
90109467b48Spatrick 
90209467b48Spatrick     // Make all PHI nodes that referred to Dest now refer to I as their source.
90309467b48Spatrick     Dest->replaceAllUsesWith(&*I);
90409467b48Spatrick 
90509467b48Spatrick     // Move all the instructions in the succ to the pred.
906*d415bd75Srobert     I->splice(I->end(), Dest);
90709467b48Spatrick 
90809467b48Spatrick     // Remove the dest block.
90909467b48Spatrick     Dest->eraseFromParent();
91009467b48Spatrick 
91109467b48Spatrick     // Do not increment I, iteratively merge all things this block branches to.
91209467b48Spatrick   }
91309467b48Spatrick 
91409467b48Spatrick   // Make a final pass over the basic blocks from the old function to gather
91509467b48Spatrick   // any return instructions which survived folding. We have to do this here
91609467b48Spatrick   // because we can iteratively remove and merge returns above.
91709467b48Spatrick   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
91809467b48Spatrick                           E = NewFunc->end();
91909467b48Spatrick        I != E; ++I)
92009467b48Spatrick     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
92109467b48Spatrick       Returns.push_back(RI);
92209467b48Spatrick }
92309467b48Spatrick 
92409467b48Spatrick /// This works exactly like CloneFunctionInto,
92509467b48Spatrick /// except that it does some simple constant prop and DCE on the fly.  The
92609467b48Spatrick /// effect of this is to copy significantly less code in cases where (for
92709467b48Spatrick /// example) a function call with constant arguments is inlined, and those
92809467b48Spatrick /// constant arguments cause a significant amount of code in the callee to be
92909467b48Spatrick /// dead.  Since this doesn't produce an exact copy of the input, it can't be
93009467b48Spatrick /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)93173471bf0Spatrick void llvm::CloneAndPruneFunctionInto(
93273471bf0Spatrick     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
93373471bf0Spatrick     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
93473471bf0Spatrick     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
93509467b48Spatrick   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
93609467b48Spatrick                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
93709467b48Spatrick }
93809467b48Spatrick 
93909467b48Spatrick /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)94009467b48Spatrick void llvm::remapInstructionsInBlocks(
94109467b48Spatrick     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
94209467b48Spatrick   // Rewrite the code to refer to itself.
94309467b48Spatrick   for (auto *BB : Blocks)
94409467b48Spatrick     for (auto &Inst : *BB)
94509467b48Spatrick       RemapInstruction(&Inst, VMap,
94609467b48Spatrick                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
94709467b48Spatrick }
94809467b48Spatrick 
94909467b48Spatrick /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
95009467b48Spatrick /// Blocks.
95109467b48Spatrick ///
95209467b48Spatrick /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
95309467b48Spatrick /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)95409467b48Spatrick Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
95509467b48Spatrick                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
95609467b48Spatrick                                    const Twine &NameSuffix, LoopInfo *LI,
95709467b48Spatrick                                    DominatorTree *DT,
95809467b48Spatrick                                    SmallVectorImpl<BasicBlock *> &Blocks) {
95909467b48Spatrick   Function *F = OrigLoop->getHeader()->getParent();
96009467b48Spatrick   Loop *ParentLoop = OrigLoop->getParentLoop();
96109467b48Spatrick   DenseMap<Loop *, Loop *> LMap;
96209467b48Spatrick 
96309467b48Spatrick   Loop *NewLoop = LI->AllocateLoop();
96409467b48Spatrick   LMap[OrigLoop] = NewLoop;
96509467b48Spatrick   if (ParentLoop)
96609467b48Spatrick     ParentLoop->addChildLoop(NewLoop);
96709467b48Spatrick   else
96809467b48Spatrick     LI->addTopLevelLoop(NewLoop);
96909467b48Spatrick 
97009467b48Spatrick   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
97109467b48Spatrick   assert(OrigPH && "No preheader");
97209467b48Spatrick   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
97309467b48Spatrick   // To rename the loop PHIs.
97409467b48Spatrick   VMap[OrigPH] = NewPH;
97509467b48Spatrick   Blocks.push_back(NewPH);
97609467b48Spatrick 
97709467b48Spatrick   // Update LoopInfo.
97809467b48Spatrick   if (ParentLoop)
97909467b48Spatrick     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
98009467b48Spatrick 
98109467b48Spatrick   // Update DominatorTree.
98209467b48Spatrick   DT->addNewBlock(NewPH, LoopDomBB);
98309467b48Spatrick 
98409467b48Spatrick   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
98509467b48Spatrick     Loop *&NewLoop = LMap[CurLoop];
98609467b48Spatrick     if (!NewLoop) {
98709467b48Spatrick       NewLoop = LI->AllocateLoop();
98809467b48Spatrick 
98909467b48Spatrick       // Establish the parent/child relationship.
99009467b48Spatrick       Loop *OrigParent = CurLoop->getParentLoop();
99109467b48Spatrick       assert(OrigParent && "Could not find the original parent loop");
99209467b48Spatrick       Loop *NewParentLoop = LMap[OrigParent];
99309467b48Spatrick       assert(NewParentLoop && "Could not find the new parent loop");
99409467b48Spatrick 
99509467b48Spatrick       NewParentLoop->addChildLoop(NewLoop);
99609467b48Spatrick     }
99709467b48Spatrick   }
99809467b48Spatrick 
99909467b48Spatrick   for (BasicBlock *BB : OrigLoop->getBlocks()) {
100009467b48Spatrick     Loop *CurLoop = LI->getLoopFor(BB);
100109467b48Spatrick     Loop *&NewLoop = LMap[CurLoop];
100209467b48Spatrick     assert(NewLoop && "Expecting new loop to be allocated");
100309467b48Spatrick 
100409467b48Spatrick     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
100509467b48Spatrick     VMap[BB] = NewBB;
100609467b48Spatrick 
100709467b48Spatrick     // Update LoopInfo.
100809467b48Spatrick     NewLoop->addBasicBlockToLoop(NewBB, *LI);
100909467b48Spatrick 
101009467b48Spatrick     // Add DominatorTree node. After seeing all blocks, update to correct
101109467b48Spatrick     // IDom.
101209467b48Spatrick     DT->addNewBlock(NewBB, NewPH);
101309467b48Spatrick 
101409467b48Spatrick     Blocks.push_back(NewBB);
101509467b48Spatrick   }
101609467b48Spatrick 
101709467b48Spatrick   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1018097a140dSpatrick     // Update loop headers.
1019097a140dSpatrick     Loop *CurLoop = LI->getLoopFor(BB);
1020097a140dSpatrick     if (BB == CurLoop->getHeader())
1021097a140dSpatrick       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1022097a140dSpatrick 
102309467b48Spatrick     // Update DominatorTree.
102409467b48Spatrick     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
102509467b48Spatrick     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
102609467b48Spatrick                                  cast<BasicBlock>(VMap[IDomBB]));
102709467b48Spatrick   }
102809467b48Spatrick 
102909467b48Spatrick   // Move them physically from the end of the block list.
1030*d415bd75Srobert   F->splice(Before->getIterator(), F, NewPH->getIterator());
1031*d415bd75Srobert   F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1032*d415bd75Srobert             F->end());
103309467b48Spatrick 
103409467b48Spatrick   return NewLoop;
103509467b48Spatrick }
103609467b48Spatrick 
103709467b48Spatrick /// Duplicate non-Phi instructions from the beginning of block up to
103809467b48Spatrick /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)103909467b48Spatrick BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
104009467b48Spatrick     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
104109467b48Spatrick     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
104209467b48Spatrick 
104309467b48Spatrick   assert(count(successors(PredBB), BB) == 1 &&
104409467b48Spatrick          "There must be a single edge between PredBB and BB!");
104509467b48Spatrick   // We are going to have to map operands from the original BB block to the new
104609467b48Spatrick   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
104709467b48Spatrick   // account for entry from PredBB.
104809467b48Spatrick   BasicBlock::iterator BI = BB->begin();
104909467b48Spatrick   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
105009467b48Spatrick     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
105109467b48Spatrick 
105209467b48Spatrick   BasicBlock *NewBB = SplitEdge(PredBB, BB);
105309467b48Spatrick   NewBB->setName(PredBB->getName() + ".split");
105409467b48Spatrick   Instruction *NewTerm = NewBB->getTerminator();
105509467b48Spatrick 
105609467b48Spatrick   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
105709467b48Spatrick   //        in the update set here.
105809467b48Spatrick   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
105909467b48Spatrick                     {DominatorTree::Insert, PredBB, NewBB},
106009467b48Spatrick                     {DominatorTree::Insert, NewBB, BB}});
106109467b48Spatrick 
106209467b48Spatrick   // Clone the non-phi instructions of BB into NewBB, keeping track of the
106309467b48Spatrick   // mapping and using it to remap operands in the cloned instructions.
106409467b48Spatrick   // Stop once we see the terminator too. This covers the case where BB's
106509467b48Spatrick   // terminator gets replaced and StopAt == BB's terminator.
106609467b48Spatrick   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
106709467b48Spatrick     Instruction *New = BI->clone();
106809467b48Spatrick     New->setName(BI->getName());
106909467b48Spatrick     New->insertBefore(NewTerm);
107009467b48Spatrick     ValueMapping[&*BI] = New;
107109467b48Spatrick 
107209467b48Spatrick     // Remap operands to patch up intra-block references.
107309467b48Spatrick     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
107409467b48Spatrick       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
107509467b48Spatrick         auto I = ValueMapping.find(Inst);
107609467b48Spatrick         if (I != ValueMapping.end())
107709467b48Spatrick           New->setOperand(i, I->second);
107809467b48Spatrick       }
107909467b48Spatrick   }
108009467b48Spatrick 
108109467b48Spatrick   return NewBB;
108209467b48Spatrick }
108373471bf0Spatrick 
cloneNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,DenseMap<MDNode *,MDNode * > & ClonedScopes,StringRef Ext,LLVMContext & Context)108473471bf0Spatrick void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
108573471bf0Spatrick                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
108673471bf0Spatrick                               StringRef Ext, LLVMContext &Context) {
108773471bf0Spatrick   MDBuilder MDB(Context);
108873471bf0Spatrick 
108973471bf0Spatrick   for (auto *ScopeList : NoAliasDeclScopes) {
1090*d415bd75Srobert     for (const auto &MDOperand : ScopeList->operands()) {
109173471bf0Spatrick       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
109273471bf0Spatrick         AliasScopeNode SNANode(MD);
109373471bf0Spatrick 
109473471bf0Spatrick         std::string Name;
109573471bf0Spatrick         auto ScopeName = SNANode.getName();
109673471bf0Spatrick         if (!ScopeName.empty())
109773471bf0Spatrick           Name = (Twine(ScopeName) + ":" + Ext).str();
109873471bf0Spatrick         else
109973471bf0Spatrick           Name = std::string(Ext);
110073471bf0Spatrick 
110173471bf0Spatrick         MDNode *NewScope = MDB.createAnonymousAliasScope(
110273471bf0Spatrick             const_cast<MDNode *>(SNANode.getDomain()), Name);
110373471bf0Spatrick         ClonedScopes.insert(std::make_pair(MD, NewScope));
110473471bf0Spatrick       }
110573471bf0Spatrick     }
110673471bf0Spatrick   }
110773471bf0Spatrick }
110873471bf0Spatrick 
adaptNoAliasScopes(Instruction * I,const DenseMap<MDNode *,MDNode * > & ClonedScopes,LLVMContext & Context)110973471bf0Spatrick void llvm::adaptNoAliasScopes(Instruction *I,
111073471bf0Spatrick                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
111173471bf0Spatrick                               LLVMContext &Context) {
111273471bf0Spatrick   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
111373471bf0Spatrick     bool NeedsReplacement = false;
111473471bf0Spatrick     SmallVector<Metadata *, 8> NewScopeList;
1115*d415bd75Srobert     for (const auto &MDOp : ScopeList->operands()) {
111673471bf0Spatrick       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
111773471bf0Spatrick         if (auto *NewMD = ClonedScopes.lookup(MD)) {
111873471bf0Spatrick           NewScopeList.push_back(NewMD);
111973471bf0Spatrick           NeedsReplacement = true;
112073471bf0Spatrick           continue;
112173471bf0Spatrick         }
112273471bf0Spatrick         NewScopeList.push_back(MD);
112373471bf0Spatrick       }
112473471bf0Spatrick     }
112573471bf0Spatrick     if (NeedsReplacement)
112673471bf0Spatrick       return MDNode::get(Context, NewScopeList);
112773471bf0Spatrick     return nullptr;
112873471bf0Spatrick   };
112973471bf0Spatrick 
113073471bf0Spatrick   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
113173471bf0Spatrick     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
113273471bf0Spatrick       Decl->setScopeList(NewScopeList);
113373471bf0Spatrick 
113473471bf0Spatrick   auto replaceWhenNeeded = [&](unsigned MD_ID) {
113573471bf0Spatrick     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
113673471bf0Spatrick       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
113773471bf0Spatrick         I->setMetadata(MD_ID, NewScopeList);
113873471bf0Spatrick   };
113973471bf0Spatrick   replaceWhenNeeded(LLVMContext::MD_noalias);
114073471bf0Spatrick   replaceWhenNeeded(LLVMContext::MD_alias_scope);
114173471bf0Spatrick }
114273471bf0Spatrick 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,ArrayRef<BasicBlock * > NewBlocks,LLVMContext & Context,StringRef Ext)114373471bf0Spatrick void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
114473471bf0Spatrick                                       ArrayRef<BasicBlock *> NewBlocks,
114573471bf0Spatrick                                       LLVMContext &Context, StringRef Ext) {
114673471bf0Spatrick   if (NoAliasDeclScopes.empty())
114773471bf0Spatrick     return;
114873471bf0Spatrick 
114973471bf0Spatrick   DenseMap<MDNode *, MDNode *> ClonedScopes;
115073471bf0Spatrick   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
115173471bf0Spatrick                     << NoAliasDeclScopes.size() << " node(s)\n");
115273471bf0Spatrick 
115373471bf0Spatrick   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
115473471bf0Spatrick   // Identify instructions using metadata that needs adaptation
115573471bf0Spatrick   for (BasicBlock *NewBlock : NewBlocks)
115673471bf0Spatrick     for (Instruction &I : *NewBlock)
115773471bf0Spatrick       adaptNoAliasScopes(&I, ClonedScopes, Context);
115873471bf0Spatrick }
115973471bf0Spatrick 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,Instruction * IStart,Instruction * IEnd,LLVMContext & Context,StringRef Ext)116073471bf0Spatrick void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
116173471bf0Spatrick                                       Instruction *IStart, Instruction *IEnd,
116273471bf0Spatrick                                       LLVMContext &Context, StringRef Ext) {
116373471bf0Spatrick   if (NoAliasDeclScopes.empty())
116473471bf0Spatrick     return;
116573471bf0Spatrick 
116673471bf0Spatrick   DenseMap<MDNode *, MDNode *> ClonedScopes;
116773471bf0Spatrick   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
116873471bf0Spatrick                     << NoAliasDeclScopes.size() << " node(s)\n");
116973471bf0Spatrick 
117073471bf0Spatrick   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
117173471bf0Spatrick   // Identify instructions using metadata that needs adaptation
117273471bf0Spatrick   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
117373471bf0Spatrick   auto ItStart = IStart->getIterator();
117473471bf0Spatrick   auto ItEnd = IEnd->getIterator();
117573471bf0Spatrick   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
117673471bf0Spatrick   for (auto &I : llvm::make_range(ItStart, ItEnd))
117773471bf0Spatrick     adaptNoAliasScopes(&I, ClonedScopes, Context);
117873471bf0Spatrick }
117973471bf0Spatrick 
identifyNoAliasScopesToClone(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)118073471bf0Spatrick void llvm::identifyNoAliasScopesToClone(
118173471bf0Spatrick     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
118273471bf0Spatrick   for (BasicBlock *BB : BBs)
118373471bf0Spatrick     for (Instruction &I : *BB)
118473471bf0Spatrick       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
118573471bf0Spatrick         NoAliasDeclScopes.push_back(Decl->getScopeList());
118673471bf0Spatrick }
118773471bf0Spatrick 
identifyNoAliasScopesToClone(BasicBlock::iterator Start,BasicBlock::iterator End,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)118873471bf0Spatrick void llvm::identifyNoAliasScopesToClone(
118973471bf0Spatrick     BasicBlock::iterator Start, BasicBlock::iterator End,
119073471bf0Spatrick     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
119173471bf0Spatrick   for (Instruction &I : make_range(Start, End))
119273471bf0Spatrick     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
119373471bf0Spatrick       NoAliasDeclScopes.push_back(Decl->getScopeList());
119473471bf0Spatrick }
1195