1 /* MMIX-specific support for 64-bit ELF. 2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. 3 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 20 21 /* No specific ABI or "processor-specific supplement" defined. */ 22 23 /* TODO: 24 - "Traditional" linker relaxation (shrinking whole sections). 25 - Merge reloc stubs jumping to same location. 26 - GETA stub relaxation (call a stub for out of range new 27 R_MMIX_GETA_STUBBABLE). */ 28 29 #include "bfd.h" 30 #include "sysdep.h" 31 #include "libbfd.h" 32 #include "elf-bfd.h" 33 #include "elf/mmix.h" 34 #include "opcode/mmix.h" 35 36 #define MINUS_ONE (((bfd_vma) 0) - 1) 37 38 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 39 40 /* Put these everywhere in new code. */ 41 #define FATAL_DEBUG \ 42 _bfd_abort (__FILE__, __LINE__, \ 43 "Internal: Non-debugged code (test-case missing)") 44 45 #define BAD_CASE(x) \ 46 _bfd_abort (__FILE__, __LINE__, \ 47 "bad case for " #x) 48 49 struct _mmix_elf_section_data 50 { 51 struct bfd_elf_section_data elf; 52 union 53 { 54 struct bpo_reloc_section_info *reloc; 55 struct bpo_greg_section_info *greg; 56 } bpo; 57 58 struct pushj_stub_info 59 { 60 /* Maximum number of stubs needed for this section. */ 61 bfd_size_type n_pushj_relocs; 62 63 /* Size of stubs after a mmix_elf_relax_section round. */ 64 bfd_size_type stubs_size_sum; 65 66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 67 of these. Allocated in mmix_elf_check_common_relocs. */ 68 bfd_size_type *stub_size; 69 70 /* Offset of next stub during relocation. Somewhat redundant with the 71 above: error coverage is easier and we don't have to reset the 72 stubs_size_sum for relocation. */ 73 bfd_size_type stub_offset; 74 } pjs; 75 }; 76 77 #define mmix_elf_section_data(sec) \ 78 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 79 80 /* For each section containing a base-plus-offset (BPO) reloc, we attach 81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 82 NULL. */ 83 struct bpo_reloc_section_info 84 { 85 /* The base is 1; this is the first number in this section. */ 86 size_t first_base_plus_offset_reloc; 87 88 /* Number of BPO-relocs in this section. */ 89 size_t n_bpo_relocs_this_section; 90 91 /* Running index, used at relocation time. */ 92 size_t bpo_index; 93 94 /* We don't have access to the bfd_link_info struct in 95 mmix_final_link_relocate. What we really want to get at is the 96 global single struct greg_relocation, so we stash it here. */ 97 asection *bpo_greg_section; 98 }; 99 100 /* Helper struct (in global context) for the one below. 101 There's one of these created for every BPO reloc. */ 102 struct bpo_reloc_request 103 { 104 bfd_vma value; 105 106 /* Valid after relaxation. The base is 0; the first register number 107 must be added. The offset is in range 0..255. */ 108 size_t regindex; 109 size_t offset; 110 111 /* The order number for this BPO reloc, corresponding to the order in 112 which BPO relocs were found. Used to create an index after reloc 113 requests are sorted. */ 114 size_t bpo_reloc_no; 115 116 /* Set when the value is computed. Better than coding "guard values" 117 into the other members. Is FALSE only for BPO relocs in a GC:ed 118 section. */ 119 bfd_boolean valid; 120 }; 121 122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 124 which is linked into the register contents section 125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 126 linker; using the same hook as for usual with BPO relocs does not 127 collide. */ 128 struct bpo_greg_section_info 129 { 130 /* After GC, this reflects the number of remaining, non-excluded 131 BPO-relocs. */ 132 size_t n_bpo_relocs; 133 134 /* This is the number of allocated bpo_reloc_requests; the size of 135 sorted_indexes. Valid after the check.*relocs functions are called 136 for all incoming sections. It includes the number of BPO relocs in 137 sections that were GC:ed. */ 138 size_t n_max_bpo_relocs; 139 140 /* A counter used to find out when to fold the BPO gregs, since we 141 don't have a single "after-relaxation" hook. */ 142 size_t n_remaining_bpo_relocs_this_relaxation_round; 143 144 /* The number of linker-allocated GREGs resulting from BPO relocs. 145 This is an approximation after _bfd_mmix_before_linker_allocation 146 and supposedly accurate after mmix_elf_relax_section is called for 147 all incoming non-collected sections. */ 148 size_t n_allocated_bpo_gregs; 149 150 /* Index into reloc_request[], sorted on increasing "value", secondary 151 by increasing index for strict sorting order. */ 152 size_t *bpo_reloc_indexes; 153 154 /* An array of all relocations, with the "value" member filled in by 155 the relaxation function. */ 156 struct bpo_reloc_request *reloc_request; 157 }; 158 159 static bfd_boolean mmix_elf_link_output_symbol_hook 160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, 161 asection *, struct elf_link_hash_entry *)); 162 163 static bfd_reloc_status_type mmix_elf_reloc 164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 165 166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup 167 PARAMS ((bfd *, bfd_reloc_code_real_type)); 168 169 static void mmix_info_to_howto_rela 170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); 171 172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR)); 173 174 static bfd_boolean mmix_elf_new_section_hook 175 PARAMS ((bfd *, asection *)); 176 177 static bfd_boolean mmix_elf_check_relocs 178 PARAMS ((bfd *, struct bfd_link_info *, asection *, 179 const Elf_Internal_Rela *)); 180 181 static bfd_boolean mmix_elf_check_common_relocs 182 PARAMS ((bfd *, struct bfd_link_info *, asection *, 183 const Elf_Internal_Rela *)); 184 185 static bfd_boolean mmix_elf_relocate_section 186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); 188 189 static asection * mmix_elf_gc_mark_hook 190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, 191 struct elf_link_hash_entry *, Elf_Internal_Sym *)); 192 193 static bfd_boolean mmix_elf_gc_sweep_hook 194 PARAMS ((bfd *, struct bfd_link_info *, asection *, 195 const Elf_Internal_Rela *)); 196 197 static bfd_reloc_status_type mmix_final_link_relocate 198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *, 199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *)); 200 201 static bfd_reloc_status_type mmix_elf_perform_relocation 202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma)); 203 204 static bfd_boolean mmix_elf_section_from_bfd_section 205 PARAMS ((bfd *, asection *, int *)); 206 207 static bfd_boolean mmix_elf_add_symbol_hook 208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *, 209 const char **, flagword *, asection **, bfd_vma *)); 210 211 static bfd_boolean mmix_elf_is_local_label_name 212 PARAMS ((bfd *, const char *)); 213 214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR)); 215 216 static bfd_boolean mmix_elf_relax_section 217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info, 218 bfd_boolean *again)); 219 220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *)); 221 222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *)); 223 224 /* Only intended to be called from a debugger. */ 225 extern void mmix_dump_bpo_gregs 226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type)); 227 228 static void 229 mmix_set_relaxable_size 230 PARAMS ((bfd *, asection *, void *)); 231 232 233 /* Watch out: this currently needs to have elements with the same index as 234 their R_MMIX_ number. */ 235 static reloc_howto_type elf_mmix_howto_table[] = 236 { 237 /* This reloc does nothing. */ 238 HOWTO (R_MMIX_NONE, /* type */ 239 0, /* rightshift */ 240 2, /* size (0 = byte, 1 = short, 2 = long) */ 241 32, /* bitsize */ 242 FALSE, /* pc_relative */ 243 0, /* bitpos */ 244 complain_overflow_bitfield, /* complain_on_overflow */ 245 bfd_elf_generic_reloc, /* special_function */ 246 "R_MMIX_NONE", /* name */ 247 FALSE, /* partial_inplace */ 248 0, /* src_mask */ 249 0, /* dst_mask */ 250 FALSE), /* pcrel_offset */ 251 252 /* An 8 bit absolute relocation. */ 253 HOWTO (R_MMIX_8, /* type */ 254 0, /* rightshift */ 255 0, /* size (0 = byte, 1 = short, 2 = long) */ 256 8, /* bitsize */ 257 FALSE, /* pc_relative */ 258 0, /* bitpos */ 259 complain_overflow_bitfield, /* complain_on_overflow */ 260 bfd_elf_generic_reloc, /* special_function */ 261 "R_MMIX_8", /* name */ 262 FALSE, /* partial_inplace */ 263 0, /* src_mask */ 264 0xff, /* dst_mask */ 265 FALSE), /* pcrel_offset */ 266 267 /* An 16 bit absolute relocation. */ 268 HOWTO (R_MMIX_16, /* type */ 269 0, /* rightshift */ 270 1, /* size (0 = byte, 1 = short, 2 = long) */ 271 16, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield, /* complain_on_overflow */ 275 bfd_elf_generic_reloc, /* special_function */ 276 "R_MMIX_16", /* name */ 277 FALSE, /* partial_inplace */ 278 0, /* src_mask */ 279 0xffff, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 /* An 24 bit absolute relocation. */ 283 HOWTO (R_MMIX_24, /* type */ 284 0, /* rightshift */ 285 2, /* size (0 = byte, 1 = short, 2 = long) */ 286 24, /* bitsize */ 287 FALSE, /* pc_relative */ 288 0, /* bitpos */ 289 complain_overflow_bitfield, /* complain_on_overflow */ 290 bfd_elf_generic_reloc, /* special_function */ 291 "R_MMIX_24", /* name */ 292 FALSE, /* partial_inplace */ 293 ~0xffffff, /* src_mask */ 294 0xffffff, /* dst_mask */ 295 FALSE), /* pcrel_offset */ 296 297 /* A 32 bit absolute relocation. */ 298 HOWTO (R_MMIX_32, /* type */ 299 0, /* rightshift */ 300 2, /* size (0 = byte, 1 = short, 2 = long) */ 301 32, /* bitsize */ 302 FALSE, /* pc_relative */ 303 0, /* bitpos */ 304 complain_overflow_bitfield, /* complain_on_overflow */ 305 bfd_elf_generic_reloc, /* special_function */ 306 "R_MMIX_32", /* name */ 307 FALSE, /* partial_inplace */ 308 0, /* src_mask */ 309 0xffffffff, /* dst_mask */ 310 FALSE), /* pcrel_offset */ 311 312 /* 64 bit relocation. */ 313 HOWTO (R_MMIX_64, /* type */ 314 0, /* rightshift */ 315 4, /* size (0 = byte, 1 = short, 2 = long) */ 316 64, /* bitsize */ 317 FALSE, /* pc_relative */ 318 0, /* bitpos */ 319 complain_overflow_bitfield, /* complain_on_overflow */ 320 bfd_elf_generic_reloc, /* special_function */ 321 "R_MMIX_64", /* name */ 322 FALSE, /* partial_inplace */ 323 0, /* src_mask */ 324 MINUS_ONE, /* dst_mask */ 325 FALSE), /* pcrel_offset */ 326 327 /* An 8 bit PC-relative relocation. */ 328 HOWTO (R_MMIX_PC_8, /* type */ 329 0, /* rightshift */ 330 0, /* size (0 = byte, 1 = short, 2 = long) */ 331 8, /* bitsize */ 332 TRUE, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield, /* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* special_function */ 336 "R_MMIX_PC_8", /* name */ 337 FALSE, /* partial_inplace */ 338 0, /* src_mask */ 339 0xff, /* dst_mask */ 340 TRUE), /* pcrel_offset */ 341 342 /* An 16 bit PC-relative relocation. */ 343 HOWTO (R_MMIX_PC_16, /* type */ 344 0, /* rightshift */ 345 1, /* size (0 = byte, 1 = short, 2 = long) */ 346 16, /* bitsize */ 347 TRUE, /* pc_relative */ 348 0, /* bitpos */ 349 complain_overflow_bitfield, /* complain_on_overflow */ 350 bfd_elf_generic_reloc, /* special_function */ 351 "R_MMIX_PC_16", /* name */ 352 FALSE, /* partial_inplace */ 353 0, /* src_mask */ 354 0xffff, /* dst_mask */ 355 TRUE), /* pcrel_offset */ 356 357 /* An 24 bit PC-relative relocation. */ 358 HOWTO (R_MMIX_PC_24, /* type */ 359 0, /* rightshift */ 360 2, /* size (0 = byte, 1 = short, 2 = long) */ 361 24, /* bitsize */ 362 TRUE, /* pc_relative */ 363 0, /* bitpos */ 364 complain_overflow_bitfield, /* complain_on_overflow */ 365 bfd_elf_generic_reloc, /* special_function */ 366 "R_MMIX_PC_24", /* name */ 367 FALSE, /* partial_inplace */ 368 ~0xffffff, /* src_mask */ 369 0xffffff, /* dst_mask */ 370 TRUE), /* pcrel_offset */ 371 372 /* A 32 bit absolute PC-relative relocation. */ 373 HOWTO (R_MMIX_PC_32, /* type */ 374 0, /* rightshift */ 375 2, /* size (0 = byte, 1 = short, 2 = long) */ 376 32, /* bitsize */ 377 TRUE, /* pc_relative */ 378 0, /* bitpos */ 379 complain_overflow_bitfield, /* complain_on_overflow */ 380 bfd_elf_generic_reloc, /* special_function */ 381 "R_MMIX_PC_32", /* name */ 382 FALSE, /* partial_inplace */ 383 0, /* src_mask */ 384 0xffffffff, /* dst_mask */ 385 TRUE), /* pcrel_offset */ 386 387 /* 64 bit PC-relative relocation. */ 388 HOWTO (R_MMIX_PC_64, /* type */ 389 0, /* rightshift */ 390 4, /* size (0 = byte, 1 = short, 2 = long) */ 391 64, /* bitsize */ 392 TRUE, /* pc_relative */ 393 0, /* bitpos */ 394 complain_overflow_bitfield, /* complain_on_overflow */ 395 bfd_elf_generic_reloc, /* special_function */ 396 "R_MMIX_PC_64", /* name */ 397 FALSE, /* partial_inplace */ 398 0, /* src_mask */ 399 MINUS_ONE, /* dst_mask */ 400 TRUE), /* pcrel_offset */ 401 402 /* GNU extension to record C++ vtable hierarchy. */ 403 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 404 0, /* rightshift */ 405 0, /* size (0 = byte, 1 = short, 2 = long) */ 406 0, /* bitsize */ 407 FALSE, /* pc_relative */ 408 0, /* bitpos */ 409 complain_overflow_dont, /* complain_on_overflow */ 410 NULL, /* special_function */ 411 "R_MMIX_GNU_VTINHERIT", /* name */ 412 FALSE, /* partial_inplace */ 413 0, /* src_mask */ 414 0, /* dst_mask */ 415 TRUE), /* pcrel_offset */ 416 417 /* GNU extension to record C++ vtable member usage. */ 418 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 419 0, /* rightshift */ 420 0, /* size (0 = byte, 1 = short, 2 = long) */ 421 0, /* bitsize */ 422 FALSE, /* pc_relative */ 423 0, /* bitpos */ 424 complain_overflow_dont, /* complain_on_overflow */ 425 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 426 "R_MMIX_GNU_VTENTRY", /* name */ 427 FALSE, /* partial_inplace */ 428 0, /* src_mask */ 429 0, /* dst_mask */ 430 FALSE), /* pcrel_offset */ 431 432 /* The GETA relocation is supposed to get any address that could 433 possibly be reached by the GETA instruction. It can silently expand 434 to get a 64-bit operand, but will complain if any of the two least 435 significant bits are set. The howto members reflect a simple GETA. */ 436 HOWTO (R_MMIX_GETA, /* type */ 437 2, /* rightshift */ 438 2, /* size (0 = byte, 1 = short, 2 = long) */ 439 19, /* bitsize */ 440 TRUE, /* pc_relative */ 441 0, /* bitpos */ 442 complain_overflow_signed, /* complain_on_overflow */ 443 mmix_elf_reloc, /* special_function */ 444 "R_MMIX_GETA", /* name */ 445 FALSE, /* partial_inplace */ 446 ~0x0100ffff, /* src_mask */ 447 0x0100ffff, /* dst_mask */ 448 TRUE), /* pcrel_offset */ 449 450 HOWTO (R_MMIX_GETA_1, /* type */ 451 2, /* rightshift */ 452 2, /* size (0 = byte, 1 = short, 2 = long) */ 453 19, /* bitsize */ 454 TRUE, /* pc_relative */ 455 0, /* bitpos */ 456 complain_overflow_signed, /* complain_on_overflow */ 457 mmix_elf_reloc, /* special_function */ 458 "R_MMIX_GETA_1", /* name */ 459 FALSE, /* partial_inplace */ 460 ~0x0100ffff, /* src_mask */ 461 0x0100ffff, /* dst_mask */ 462 TRUE), /* pcrel_offset */ 463 464 HOWTO (R_MMIX_GETA_2, /* type */ 465 2, /* rightshift */ 466 2, /* size (0 = byte, 1 = short, 2 = long) */ 467 19, /* bitsize */ 468 TRUE, /* pc_relative */ 469 0, /* bitpos */ 470 complain_overflow_signed, /* complain_on_overflow */ 471 mmix_elf_reloc, /* special_function */ 472 "R_MMIX_GETA_2", /* name */ 473 FALSE, /* partial_inplace */ 474 ~0x0100ffff, /* src_mask */ 475 0x0100ffff, /* dst_mask */ 476 TRUE), /* pcrel_offset */ 477 478 HOWTO (R_MMIX_GETA_3, /* type */ 479 2, /* rightshift */ 480 2, /* size (0 = byte, 1 = short, 2 = long) */ 481 19, /* bitsize */ 482 TRUE, /* pc_relative */ 483 0, /* bitpos */ 484 complain_overflow_signed, /* complain_on_overflow */ 485 mmix_elf_reloc, /* special_function */ 486 "R_MMIX_GETA_3", /* name */ 487 FALSE, /* partial_inplace */ 488 ~0x0100ffff, /* src_mask */ 489 0x0100ffff, /* dst_mask */ 490 TRUE), /* pcrel_offset */ 491 492 /* The conditional branches are supposed to reach any (code) address. 493 It can silently expand to a 64-bit operand, but will emit an error if 494 any of the two least significant bits are set. The howto members 495 reflect a simple branch. */ 496 HOWTO (R_MMIX_CBRANCH, /* type */ 497 2, /* rightshift */ 498 2, /* size (0 = byte, 1 = short, 2 = long) */ 499 19, /* bitsize */ 500 TRUE, /* pc_relative */ 501 0, /* bitpos */ 502 complain_overflow_signed, /* complain_on_overflow */ 503 mmix_elf_reloc, /* special_function */ 504 "R_MMIX_CBRANCH", /* name */ 505 FALSE, /* partial_inplace */ 506 ~0x0100ffff, /* src_mask */ 507 0x0100ffff, /* dst_mask */ 508 TRUE), /* pcrel_offset */ 509 510 HOWTO (R_MMIX_CBRANCH_J, /* type */ 511 2, /* rightshift */ 512 2, /* size (0 = byte, 1 = short, 2 = long) */ 513 19, /* bitsize */ 514 TRUE, /* pc_relative */ 515 0, /* bitpos */ 516 complain_overflow_signed, /* complain_on_overflow */ 517 mmix_elf_reloc, /* special_function */ 518 "R_MMIX_CBRANCH_J", /* name */ 519 FALSE, /* partial_inplace */ 520 ~0x0100ffff, /* src_mask */ 521 0x0100ffff, /* dst_mask */ 522 TRUE), /* pcrel_offset */ 523 524 HOWTO (R_MMIX_CBRANCH_1, /* type */ 525 2, /* rightshift */ 526 2, /* size (0 = byte, 1 = short, 2 = long) */ 527 19, /* bitsize */ 528 TRUE, /* pc_relative */ 529 0, /* bitpos */ 530 complain_overflow_signed, /* complain_on_overflow */ 531 mmix_elf_reloc, /* special_function */ 532 "R_MMIX_CBRANCH_1", /* name */ 533 FALSE, /* partial_inplace */ 534 ~0x0100ffff, /* src_mask */ 535 0x0100ffff, /* dst_mask */ 536 TRUE), /* pcrel_offset */ 537 538 HOWTO (R_MMIX_CBRANCH_2, /* type */ 539 2, /* rightshift */ 540 2, /* size (0 = byte, 1 = short, 2 = long) */ 541 19, /* bitsize */ 542 TRUE, /* pc_relative */ 543 0, /* bitpos */ 544 complain_overflow_signed, /* complain_on_overflow */ 545 mmix_elf_reloc, /* special_function */ 546 "R_MMIX_CBRANCH_2", /* name */ 547 FALSE, /* partial_inplace */ 548 ~0x0100ffff, /* src_mask */ 549 0x0100ffff, /* dst_mask */ 550 TRUE), /* pcrel_offset */ 551 552 HOWTO (R_MMIX_CBRANCH_3, /* type */ 553 2, /* rightshift */ 554 2, /* size (0 = byte, 1 = short, 2 = long) */ 555 19, /* bitsize */ 556 TRUE, /* pc_relative */ 557 0, /* bitpos */ 558 complain_overflow_signed, /* complain_on_overflow */ 559 mmix_elf_reloc, /* special_function */ 560 "R_MMIX_CBRANCH_3", /* name */ 561 FALSE, /* partial_inplace */ 562 ~0x0100ffff, /* src_mask */ 563 0x0100ffff, /* dst_mask */ 564 TRUE), /* pcrel_offset */ 565 566 /* The PUSHJ instruction can reach any (code) address, as long as it's 567 the beginning of a function (no usable restriction). It can silently 568 expand to a 64-bit operand, but will emit an error if any of the two 569 least significant bits are set. It can also expand into a call to a 570 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 571 PUSHJ. */ 572 HOWTO (R_MMIX_PUSHJ, /* type */ 573 2, /* rightshift */ 574 2, /* size (0 = byte, 1 = short, 2 = long) */ 575 19, /* bitsize */ 576 TRUE, /* pc_relative */ 577 0, /* bitpos */ 578 complain_overflow_signed, /* complain_on_overflow */ 579 mmix_elf_reloc, /* special_function */ 580 "R_MMIX_PUSHJ", /* name */ 581 FALSE, /* partial_inplace */ 582 ~0x0100ffff, /* src_mask */ 583 0x0100ffff, /* dst_mask */ 584 TRUE), /* pcrel_offset */ 585 586 HOWTO (R_MMIX_PUSHJ_1, /* type */ 587 2, /* rightshift */ 588 2, /* size (0 = byte, 1 = short, 2 = long) */ 589 19, /* bitsize */ 590 TRUE, /* pc_relative */ 591 0, /* bitpos */ 592 complain_overflow_signed, /* complain_on_overflow */ 593 mmix_elf_reloc, /* special_function */ 594 "R_MMIX_PUSHJ_1", /* name */ 595 FALSE, /* partial_inplace */ 596 ~0x0100ffff, /* src_mask */ 597 0x0100ffff, /* dst_mask */ 598 TRUE), /* pcrel_offset */ 599 600 HOWTO (R_MMIX_PUSHJ_2, /* type */ 601 2, /* rightshift */ 602 2, /* size (0 = byte, 1 = short, 2 = long) */ 603 19, /* bitsize */ 604 TRUE, /* pc_relative */ 605 0, /* bitpos */ 606 complain_overflow_signed, /* complain_on_overflow */ 607 mmix_elf_reloc, /* special_function */ 608 "R_MMIX_PUSHJ_2", /* name */ 609 FALSE, /* partial_inplace */ 610 ~0x0100ffff, /* src_mask */ 611 0x0100ffff, /* dst_mask */ 612 TRUE), /* pcrel_offset */ 613 614 HOWTO (R_MMIX_PUSHJ_3, /* type */ 615 2, /* rightshift */ 616 2, /* size (0 = byte, 1 = short, 2 = long) */ 617 19, /* bitsize */ 618 TRUE, /* pc_relative */ 619 0, /* bitpos */ 620 complain_overflow_signed, /* complain_on_overflow */ 621 mmix_elf_reloc, /* special_function */ 622 "R_MMIX_PUSHJ_3", /* name */ 623 FALSE, /* partial_inplace */ 624 ~0x0100ffff, /* src_mask */ 625 0x0100ffff, /* dst_mask */ 626 TRUE), /* pcrel_offset */ 627 628 /* A JMP is supposed to reach any (code) address. By itself, it can 629 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 630 limit is soon reached if you link the program in wildly different 631 memory segments. The howto members reflect a trivial JMP. */ 632 HOWTO (R_MMIX_JMP, /* type */ 633 2, /* rightshift */ 634 2, /* size (0 = byte, 1 = short, 2 = long) */ 635 27, /* bitsize */ 636 TRUE, /* pc_relative */ 637 0, /* bitpos */ 638 complain_overflow_signed, /* complain_on_overflow */ 639 mmix_elf_reloc, /* special_function */ 640 "R_MMIX_JMP", /* name */ 641 FALSE, /* partial_inplace */ 642 ~0x1ffffff, /* src_mask */ 643 0x1ffffff, /* dst_mask */ 644 TRUE), /* pcrel_offset */ 645 646 HOWTO (R_MMIX_JMP_1, /* type */ 647 2, /* rightshift */ 648 2, /* size (0 = byte, 1 = short, 2 = long) */ 649 27, /* bitsize */ 650 TRUE, /* pc_relative */ 651 0, /* bitpos */ 652 complain_overflow_signed, /* complain_on_overflow */ 653 mmix_elf_reloc, /* special_function */ 654 "R_MMIX_JMP_1", /* name */ 655 FALSE, /* partial_inplace */ 656 ~0x1ffffff, /* src_mask */ 657 0x1ffffff, /* dst_mask */ 658 TRUE), /* pcrel_offset */ 659 660 HOWTO (R_MMIX_JMP_2, /* type */ 661 2, /* rightshift */ 662 2, /* size (0 = byte, 1 = short, 2 = long) */ 663 27, /* bitsize */ 664 TRUE, /* pc_relative */ 665 0, /* bitpos */ 666 complain_overflow_signed, /* complain_on_overflow */ 667 mmix_elf_reloc, /* special_function */ 668 "R_MMIX_JMP_2", /* name */ 669 FALSE, /* partial_inplace */ 670 ~0x1ffffff, /* src_mask */ 671 0x1ffffff, /* dst_mask */ 672 TRUE), /* pcrel_offset */ 673 674 HOWTO (R_MMIX_JMP_3, /* type */ 675 2, /* rightshift */ 676 2, /* size (0 = byte, 1 = short, 2 = long) */ 677 27, /* bitsize */ 678 TRUE, /* pc_relative */ 679 0, /* bitpos */ 680 complain_overflow_signed, /* complain_on_overflow */ 681 mmix_elf_reloc, /* special_function */ 682 "R_MMIX_JMP_3", /* name */ 683 FALSE, /* partial_inplace */ 684 ~0x1ffffff, /* src_mask */ 685 0x1ffffff, /* dst_mask */ 686 TRUE), /* pcrel_offset */ 687 688 /* When we don't emit link-time-relaxable code from the assembler, or 689 when relaxation has done all it can do, these relocs are used. For 690 GETA/PUSHJ/branches. */ 691 HOWTO (R_MMIX_ADDR19, /* type */ 692 2, /* rightshift */ 693 2, /* size (0 = byte, 1 = short, 2 = long) */ 694 19, /* bitsize */ 695 TRUE, /* pc_relative */ 696 0, /* bitpos */ 697 complain_overflow_signed, /* complain_on_overflow */ 698 mmix_elf_reloc, /* special_function */ 699 "R_MMIX_ADDR19", /* name */ 700 FALSE, /* partial_inplace */ 701 ~0x0100ffff, /* src_mask */ 702 0x0100ffff, /* dst_mask */ 703 TRUE), /* pcrel_offset */ 704 705 /* For JMP. */ 706 HOWTO (R_MMIX_ADDR27, /* type */ 707 2, /* rightshift */ 708 2, /* size (0 = byte, 1 = short, 2 = long) */ 709 27, /* bitsize */ 710 TRUE, /* pc_relative */ 711 0, /* bitpos */ 712 complain_overflow_signed, /* complain_on_overflow */ 713 mmix_elf_reloc, /* special_function */ 714 "R_MMIX_ADDR27", /* name */ 715 FALSE, /* partial_inplace */ 716 ~0x1ffffff, /* src_mask */ 717 0x1ffffff, /* dst_mask */ 718 TRUE), /* pcrel_offset */ 719 720 /* A general register or the value 0..255. If a value, then the 721 instruction (offset -3) needs adjusting. */ 722 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 723 0, /* rightshift */ 724 1, /* size (0 = byte, 1 = short, 2 = long) */ 725 8, /* bitsize */ 726 FALSE, /* pc_relative */ 727 0, /* bitpos */ 728 complain_overflow_bitfield, /* complain_on_overflow */ 729 mmix_elf_reloc, /* special_function */ 730 "R_MMIX_REG_OR_BYTE", /* name */ 731 FALSE, /* partial_inplace */ 732 0, /* src_mask */ 733 0xff, /* dst_mask */ 734 FALSE), /* pcrel_offset */ 735 736 /* A general register. */ 737 HOWTO (R_MMIX_REG, /* type */ 738 0, /* rightshift */ 739 1, /* size (0 = byte, 1 = short, 2 = long) */ 740 8, /* bitsize */ 741 FALSE, /* pc_relative */ 742 0, /* bitpos */ 743 complain_overflow_bitfield, /* complain_on_overflow */ 744 mmix_elf_reloc, /* special_function */ 745 "R_MMIX_REG", /* name */ 746 FALSE, /* partial_inplace */ 747 0, /* src_mask */ 748 0xff, /* dst_mask */ 749 FALSE), /* pcrel_offset */ 750 751 /* A register plus an index, corresponding to the relocation expression. 752 The sizes must correspond to the valid range of the expression, while 753 the bitmasks correspond to what we store in the image. */ 754 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 755 0, /* rightshift */ 756 4, /* size (0 = byte, 1 = short, 2 = long) */ 757 64, /* bitsize */ 758 FALSE, /* pc_relative */ 759 0, /* bitpos */ 760 complain_overflow_bitfield, /* complain_on_overflow */ 761 mmix_elf_reloc, /* special_function */ 762 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 763 FALSE, /* partial_inplace */ 764 0, /* src_mask */ 765 0xffff, /* dst_mask */ 766 FALSE), /* pcrel_offset */ 767 768 /* A "magic" relocation for a LOCAL expression, asserting that the 769 expression is less than the number of global registers. No actual 770 modification of the contents is done. Implementing this as a 771 relocation was less intrusive than e.g. putting such expressions in a 772 section to discard *after* relocation. */ 773 HOWTO (R_MMIX_LOCAL, /* type */ 774 0, /* rightshift */ 775 0, /* size (0 = byte, 1 = short, 2 = long) */ 776 0, /* bitsize */ 777 FALSE, /* pc_relative */ 778 0, /* bitpos */ 779 complain_overflow_dont, /* complain_on_overflow */ 780 mmix_elf_reloc, /* special_function */ 781 "R_MMIX_LOCAL", /* name */ 782 FALSE, /* partial_inplace */ 783 0, /* src_mask */ 784 0, /* dst_mask */ 785 FALSE), /* pcrel_offset */ 786 787 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 788 2, /* rightshift */ 789 2, /* size (0 = byte, 1 = short, 2 = long) */ 790 19, /* bitsize */ 791 TRUE, /* pc_relative */ 792 0, /* bitpos */ 793 complain_overflow_signed, /* complain_on_overflow */ 794 mmix_elf_reloc, /* special_function */ 795 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 796 FALSE, /* partial_inplace */ 797 ~0x0100ffff, /* src_mask */ 798 0x0100ffff, /* dst_mask */ 799 TRUE) /* pcrel_offset */ 800 }; 801 802 803 /* Map BFD reloc types to MMIX ELF reloc types. */ 804 805 struct mmix_reloc_map 806 { 807 bfd_reloc_code_real_type bfd_reloc_val; 808 enum elf_mmix_reloc_type elf_reloc_val; 809 }; 810 811 812 static const struct mmix_reloc_map mmix_reloc_map[] = 813 { 814 {BFD_RELOC_NONE, R_MMIX_NONE}, 815 {BFD_RELOC_8, R_MMIX_8}, 816 {BFD_RELOC_16, R_MMIX_16}, 817 {BFD_RELOC_24, R_MMIX_24}, 818 {BFD_RELOC_32, R_MMIX_32}, 819 {BFD_RELOC_64, R_MMIX_64}, 820 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 821 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 822 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 823 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 824 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 825 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 826 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 827 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 828 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 829 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 830 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 831 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 832 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 833 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 834 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 835 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 836 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 837 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 838 }; 839 840 static reloc_howto_type * 841 bfd_elf64_bfd_reloc_type_lookup (abfd, code) 842 bfd *abfd ATTRIBUTE_UNUSED; 843 bfd_reloc_code_real_type code; 844 { 845 unsigned int i; 846 847 for (i = 0; 848 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 849 i++) 850 { 851 if (mmix_reloc_map[i].bfd_reloc_val == code) 852 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 853 } 854 855 return NULL; 856 } 857 858 static bfd_boolean 859 mmix_elf_new_section_hook (abfd, sec) 860 bfd *abfd; 861 asection *sec; 862 { 863 struct _mmix_elf_section_data *sdata; 864 bfd_size_type amt = sizeof (*sdata); 865 866 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt); 867 if (sdata == NULL) 868 return FALSE; 869 sec->used_by_bfd = (PTR) sdata; 870 871 return _bfd_elf_new_section_hook (abfd, sec); 872 } 873 874 875 /* This function performs the actual bitfiddling and sanity check for a 876 final relocation. Each relocation gets its *worst*-case expansion 877 in size when it arrives here; any reduction in size should have been 878 caught in linker relaxation earlier. When we get here, the relocation 879 looks like the smallest instruction with SWYM:s (nop:s) appended to the 880 max size. We fill in those nop:s. 881 882 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 883 GETA $N,foo 884 -> 885 SETL $N,foo & 0xffff 886 INCML $N,(foo >> 16) & 0xffff 887 INCMH $N,(foo >> 32) & 0xffff 888 INCH $N,(foo >> 48) & 0xffff 889 890 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 891 condbranches needing relaxation might be rare enough to not be 892 worthwhile.) 893 [P]Bcc $N,foo 894 -> 895 [~P]B~cc $N,.+20 896 SETL $255,foo & ... 897 INCML ... 898 INCMH ... 899 INCH ... 900 GO $255,$255,0 901 902 R_MMIX_PUSHJ: (FIXME: Relaxation...) 903 PUSHJ $N,foo 904 -> 905 SETL $255,foo & ... 906 INCML ... 907 INCMH ... 908 INCH ... 909 PUSHGO $N,$255,0 910 911 R_MMIX_JMP: (FIXME: Relaxation...) 912 JMP foo 913 -> 914 SETL $255,foo & ... 915 INCML ... 916 INCMH ... 917 INCH ... 918 GO $255,$255,0 919 920 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 921 922 static bfd_reloc_status_type 923 mmix_elf_perform_relocation (isec, howto, datap, addr, value) 924 asection *isec; 925 reloc_howto_type *howto; 926 PTR datap; 927 bfd_vma addr; 928 bfd_vma value; 929 { 930 bfd *abfd = isec->owner; 931 bfd_reloc_status_type flag = bfd_reloc_ok; 932 bfd_reloc_status_type r; 933 int offs = 0; 934 int reg = 255; 935 936 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 937 We handle the differences here and the common sequence later. */ 938 switch (howto->type) 939 { 940 case R_MMIX_GETA: 941 offs = 0; 942 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 943 944 /* We change to an absolute value. */ 945 value += addr; 946 break; 947 948 case R_MMIX_CBRANCH: 949 { 950 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 951 952 /* Invert the condition and prediction bit, and set the offset 953 to five instructions ahead. 954 955 We *can* do better if we want to. If the branch is found to be 956 within limits, we could leave the branch as is; there'll just 957 be a bunch of NOP:s after it. But we shouldn't see this 958 sequence often enough that it's worth doing it. */ 959 960 bfd_put_32 (abfd, 961 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 962 | (24/4)), 963 (bfd_byte *) datap); 964 965 /* Put a "GO $255,$255,0" after the common sequence. */ 966 bfd_put_32 (abfd, 967 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 968 (bfd_byte *) datap + 20); 969 970 /* Common sequence starts at offset 4. */ 971 offs = 4; 972 973 /* We change to an absolute value. */ 974 value += addr; 975 } 976 break; 977 978 case R_MMIX_PUSHJ_STUBBABLE: 979 /* If the address fits, we're fine. */ 980 if ((value & 3) == 0 981 /* Note rightshift 0; see R_MMIX_JMP case below. */ 982 && (r = bfd_check_overflow (complain_overflow_signed, 983 howto->bitsize, 984 0, 985 bfd_arch_bits_per_address (abfd), 986 value)) == bfd_reloc_ok) 987 goto pcrel_mmix_reloc_fits; 988 else 989 { 990 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 991 992 /* We have the bytes at the PUSHJ insn and need to get the 993 position for the stub. There's supposed to be room allocated 994 for the stub. */ 995 bfd_byte *stubcontents 996 = ((bfd_byte *) datap 997 - (addr - (isec->output_section->vma + isec->output_offset)) 998 + size 999 + mmix_elf_section_data (isec)->pjs.stub_offset); 1000 bfd_vma stubaddr; 1001 1002 /* The address doesn't fit, so redirect the PUSHJ to the 1003 location of the stub. */ 1004 r = mmix_elf_perform_relocation (isec, 1005 &elf_mmix_howto_table 1006 [R_MMIX_ADDR19], 1007 datap, 1008 addr, 1009 isec->output_section->vma 1010 + isec->output_offset 1011 + size 1012 + (mmix_elf_section_data (isec) 1013 ->pjs.stub_offset) 1014 - addr); 1015 if (r != bfd_reloc_ok) 1016 return r; 1017 1018 stubaddr 1019 = (isec->output_section->vma 1020 + isec->output_offset 1021 + size 1022 + mmix_elf_section_data (isec)->pjs.stub_offset); 1023 1024 /* We generate a simple JMP if that suffices, else the whole 5 1025 insn stub. */ 1026 if (bfd_check_overflow (complain_overflow_signed, 1027 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1028 0, 1029 bfd_arch_bits_per_address (abfd), 1030 addr + value - stubaddr) == bfd_reloc_ok) 1031 { 1032 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1033 r = mmix_elf_perform_relocation (isec, 1034 &elf_mmix_howto_table 1035 [R_MMIX_ADDR27], 1036 stubcontents, 1037 stubaddr, 1038 value + addr - stubaddr); 1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1040 1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1042 > isec->size) 1043 abort (); 1044 1045 return r; 1046 } 1047 else 1048 { 1049 /* Put a "GO $255,0" after the common sequence. */ 1050 bfd_put_32 (abfd, 1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1052 | 0xff00, (bfd_byte *) stubcontents + 16); 1053 1054 /* Prepare for the general code to set the first part of the 1055 linker stub, and */ 1056 value += addr; 1057 datap = stubcontents; 1058 mmix_elf_section_data (isec)->pjs.stub_offset 1059 += MAX_PUSHJ_STUB_SIZE; 1060 } 1061 } 1062 break; 1063 1064 case R_MMIX_PUSHJ: 1065 { 1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1067 1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1069 bfd_put_32 (abfd, 1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1071 | (inreg << 16) 1072 | 0xff00, 1073 (bfd_byte *) datap + 16); 1074 1075 /* We change to an absolute value. */ 1076 value += addr; 1077 } 1078 break; 1079 1080 case R_MMIX_JMP: 1081 /* This one is a little special. If we get here on a non-relaxing 1082 link, and the destination is actually in range, we don't need to 1083 execute the nops. 1084 If so, we fall through to the bit-fiddling relocs. 1085 1086 FIXME: bfd_check_overflow seems broken; the relocation is 1087 rightshifted before testing, so supply a zero rightshift. */ 1088 1089 if (! ((value & 3) == 0 1090 && (r = bfd_check_overflow (complain_overflow_signed, 1091 howto->bitsize, 1092 0, 1093 bfd_arch_bits_per_address (abfd), 1094 value)) == bfd_reloc_ok)) 1095 { 1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1097 modified below, and put a "GO $255,$255,0" after the 1098 address-loading sequence. */ 1099 bfd_put_32 (abfd, 1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1101 | 0xffff00, 1102 (bfd_byte *) datap + 16); 1103 1104 /* We change to an absolute value. */ 1105 value += addr; 1106 break; 1107 } 1108 /* FALLTHROUGH. */ 1109 case R_MMIX_ADDR19: 1110 case R_MMIX_ADDR27: 1111 pcrel_mmix_reloc_fits: 1112 /* These must be in range, or else we emit an error. */ 1113 if ((value & 3) == 0 1114 /* Note rightshift 0; see above. */ 1115 && (r = bfd_check_overflow (complain_overflow_signed, 1116 howto->bitsize, 1117 0, 1118 bfd_arch_bits_per_address (abfd), 1119 value)) == bfd_reloc_ok) 1120 { 1121 bfd_vma in1 1122 = bfd_get_32 (abfd, (bfd_byte *) datap); 1123 bfd_vma highbit; 1124 1125 if ((bfd_signed_vma) value < 0) 1126 { 1127 highbit = 1 << 24; 1128 value += (1 << (howto->bitsize - 1)); 1129 } 1130 else 1131 highbit = 0; 1132 1133 value >>= 2; 1134 1135 bfd_put_32 (abfd, 1136 (in1 & howto->src_mask) 1137 | highbit 1138 | (value & howto->dst_mask), 1139 (bfd_byte *) datap); 1140 1141 return bfd_reloc_ok; 1142 } 1143 else 1144 return bfd_reloc_overflow; 1145 1146 case R_MMIX_BASE_PLUS_OFFSET: 1147 { 1148 struct bpo_reloc_section_info *bpodata 1149 = mmix_elf_section_data (isec)->bpo.reloc; 1150 asection *bpo_greg_section 1151 = bpodata->bpo_greg_section; 1152 struct bpo_greg_section_info *gregdata 1153 = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1154 size_t bpo_index 1155 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1156 1157 /* A consistency check: The value we now have in "relocation" must 1158 be the same as the value we stored for that relocation. It 1159 doesn't cost much, so can be left in at all times. */ 1160 if (value != gregdata->reloc_request[bpo_index].value) 1161 { 1162 (*_bfd_error_handler) 1163 (_("%s: Internal inconsistency error for value for\n\ 1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1165 bfd_get_filename (isec->owner), 1166 (unsigned long) (value >> 32), (unsigned long) value, 1167 (unsigned long) (gregdata->reloc_request[bpo_index].value 1168 >> 32), 1169 (unsigned long) gregdata->reloc_request[bpo_index].value); 1170 bfd_set_error (bfd_error_bad_value); 1171 return bfd_reloc_overflow; 1172 } 1173 1174 /* Then store the register number and offset for that register 1175 into datap and datap + 1 respectively. */ 1176 bfd_put_8 (abfd, 1177 gregdata->reloc_request[bpo_index].regindex 1178 + bpo_greg_section->output_section->vma / 8, 1179 datap); 1180 bfd_put_8 (abfd, 1181 gregdata->reloc_request[bpo_index].offset, 1182 ((unsigned char *) datap) + 1); 1183 return bfd_reloc_ok; 1184 } 1185 1186 case R_MMIX_REG_OR_BYTE: 1187 case R_MMIX_REG: 1188 if (value > 255) 1189 return bfd_reloc_overflow; 1190 bfd_put_8 (abfd, value, datap); 1191 return bfd_reloc_ok; 1192 1193 default: 1194 BAD_CASE (howto->type); 1195 } 1196 1197 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1198 sequence. */ 1199 1200 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1201 everything that looks strange. */ 1202 if (value & 3) 1203 flag = bfd_reloc_overflow; 1204 1205 bfd_put_32 (abfd, 1206 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1207 (bfd_byte *) datap + offs); 1208 bfd_put_32 (abfd, 1209 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1210 (bfd_byte *) datap + offs + 4); 1211 bfd_put_32 (abfd, 1212 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1213 (bfd_byte *) datap + offs + 8); 1214 bfd_put_32 (abfd, 1215 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1216 (bfd_byte *) datap + offs + 12); 1217 1218 return flag; 1219 } 1220 1221 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1222 1223 static void 1224 mmix_info_to_howto_rela (abfd, cache_ptr, dst) 1225 bfd *abfd ATTRIBUTE_UNUSED; 1226 arelent *cache_ptr; 1227 Elf_Internal_Rela *dst; 1228 { 1229 unsigned int r_type; 1230 1231 r_type = ELF64_R_TYPE (dst->r_info); 1232 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1233 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1234 } 1235 1236 /* Any MMIX-specific relocation gets here at assembly time or when linking 1237 to other formats (such as mmo); this is the relocation function from 1238 the reloc_table. We don't get here for final pure ELF linking. */ 1239 1240 static bfd_reloc_status_type 1241 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section, 1242 output_bfd, error_message) 1243 bfd *abfd; 1244 arelent *reloc_entry; 1245 asymbol *symbol; 1246 PTR data; 1247 asection *input_section; 1248 bfd *output_bfd; 1249 char **error_message ATTRIBUTE_UNUSED; 1250 { 1251 bfd_vma relocation; 1252 bfd_reloc_status_type r; 1253 asection *reloc_target_output_section; 1254 bfd_reloc_status_type flag = bfd_reloc_ok; 1255 bfd_vma output_base = 0; 1256 bfd_vma addr; 1257 1258 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1259 input_section, output_bfd, error_message); 1260 1261 /* If that was all that was needed (i.e. this isn't a final link, only 1262 some segment adjustments), we're done. */ 1263 if (r != bfd_reloc_continue) 1264 return r; 1265 1266 if (bfd_is_und_section (symbol->section) 1267 && (symbol->flags & BSF_WEAK) == 0 1268 && output_bfd == (bfd *) NULL) 1269 return bfd_reloc_undefined; 1270 1271 /* Is the address of the relocation really within the section? */ 1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1273 return bfd_reloc_outofrange; 1274 1275 /* Work out which section the relocation is targeted at and the 1276 initial relocation command value. */ 1277 1278 /* Get symbol value. (Common symbols are special.) */ 1279 if (bfd_is_com_section (symbol->section)) 1280 relocation = 0; 1281 else 1282 relocation = symbol->value; 1283 1284 reloc_target_output_section = bfd_get_output_section (symbol); 1285 1286 /* Here the variable relocation holds the final address of the symbol we 1287 are relocating against, plus any addend. */ 1288 if (output_bfd) 1289 output_base = 0; 1290 else 1291 output_base = reloc_target_output_section->vma; 1292 1293 relocation += output_base + symbol->section->output_offset; 1294 1295 /* Get position of relocation. */ 1296 addr = (reloc_entry->address + input_section->output_section->vma 1297 + input_section->output_offset); 1298 if (output_bfd != (bfd *) NULL) 1299 { 1300 /* Add in supplied addend. */ 1301 relocation += reloc_entry->addend; 1302 1303 /* This is a partial relocation, and we want to apply the 1304 relocation to the reloc entry rather than the raw data. 1305 Modify the reloc inplace to reflect what we now know. */ 1306 reloc_entry->addend = relocation; 1307 reloc_entry->address += input_section->output_offset; 1308 return flag; 1309 } 1310 1311 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1312 data, reloc_entry->address, 1313 reloc_entry->addend, relocation, 1314 bfd_asymbol_name (symbol), 1315 reloc_target_output_section); 1316 } 1317 1318 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1319 for guidance if you're thinking of copying this. */ 1320 1321 static bfd_boolean 1322 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section, 1323 contents, relocs, local_syms, local_sections) 1324 bfd *output_bfd ATTRIBUTE_UNUSED; 1325 struct bfd_link_info *info; 1326 bfd *input_bfd; 1327 asection *input_section; 1328 bfd_byte *contents; 1329 Elf_Internal_Rela *relocs; 1330 Elf_Internal_Sym *local_syms; 1331 asection **local_sections; 1332 { 1333 Elf_Internal_Shdr *symtab_hdr; 1334 struct elf_link_hash_entry **sym_hashes; 1335 Elf_Internal_Rela *rel; 1336 Elf_Internal_Rela *relend; 1337 bfd_size_type size; 1338 size_t pjsno = 0; 1339 1340 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1341 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1342 sym_hashes = elf_sym_hashes (input_bfd); 1343 relend = relocs + input_section->reloc_count; 1344 1345 /* Zero the stub area before we start. */ 1346 if (input_section->rawsize != 0 1347 && input_section->size > input_section->rawsize) 1348 memset (contents + input_section->rawsize, 0, 1349 input_section->size - input_section->rawsize); 1350 1351 for (rel = relocs; rel < relend; rel ++) 1352 { 1353 reloc_howto_type *howto; 1354 unsigned long r_symndx; 1355 Elf_Internal_Sym *sym; 1356 asection *sec; 1357 struct elf_link_hash_entry *h; 1358 bfd_vma relocation; 1359 bfd_reloc_status_type r; 1360 const char *name = NULL; 1361 int r_type; 1362 bfd_boolean undefined_signalled = FALSE; 1363 1364 r_type = ELF64_R_TYPE (rel->r_info); 1365 1366 if (r_type == R_MMIX_GNU_VTINHERIT 1367 || r_type == R_MMIX_GNU_VTENTRY) 1368 continue; 1369 1370 r_symndx = ELF64_R_SYM (rel->r_info); 1371 1372 if (info->relocatable) 1373 { 1374 /* This is a relocatable link. For most relocs we don't have to 1375 change anything, unless the reloc is against a section 1376 symbol, in which case we have to adjust according to where 1377 the section symbol winds up in the output section. */ 1378 if (r_symndx < symtab_hdr->sh_info) 1379 { 1380 sym = local_syms + r_symndx; 1381 1382 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1383 { 1384 sec = local_sections [r_symndx]; 1385 rel->r_addend += sec->output_offset + sym->st_value; 1386 } 1387 } 1388 1389 /* For PUSHJ stub relocs however, we may need to change the 1390 reloc and the section contents, if the reloc doesn't reach 1391 beyond the end of the output section and previous stubs. 1392 Then we change the section contents to be a PUSHJ to the end 1393 of the input section plus stubs (we can do that without using 1394 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1395 at the stub location. */ 1396 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1397 { 1398 /* We've already checked whether we need a stub; use that 1399 knowledge. */ 1400 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1401 != 0) 1402 { 1403 Elf_Internal_Rela relcpy; 1404 1405 if (mmix_elf_section_data (input_section) 1406 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1407 abort (); 1408 1409 /* There's already a PUSHJ insn there, so just fill in 1410 the offset bits to the stub. */ 1411 if (mmix_final_link_relocate (elf_mmix_howto_table 1412 + R_MMIX_ADDR19, 1413 input_section, 1414 contents, 1415 rel->r_offset, 1416 0, 1417 input_section 1418 ->output_section->vma 1419 + input_section->output_offset 1420 + size 1421 + mmix_elf_section_data (input_section) 1422 ->pjs.stub_offset, 1423 NULL, NULL) != bfd_reloc_ok) 1424 return FALSE; 1425 1426 /* Put a JMP insn at the stub; it goes with the 1427 R_MMIX_JMP reloc. */ 1428 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1429 contents 1430 + size 1431 + mmix_elf_section_data (input_section) 1432 ->pjs.stub_offset); 1433 1434 /* Change the reloc to be at the stub, and to a full 1435 R_MMIX_JMP reloc. */ 1436 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1437 rel->r_offset 1438 = (size 1439 + mmix_elf_section_data (input_section) 1440 ->pjs.stub_offset); 1441 1442 mmix_elf_section_data (input_section)->pjs.stub_offset 1443 += MAX_PUSHJ_STUB_SIZE; 1444 1445 /* Shift this reloc to the end of the relocs to maintain 1446 the r_offset sorted reloc order. */ 1447 relcpy = *rel; 1448 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1449 relend[-1] = relcpy; 1450 1451 /* Back up one reloc, or else we'd skip the next reloc 1452 in turn. */ 1453 rel--; 1454 } 1455 1456 pjsno++; 1457 } 1458 continue; 1459 } 1460 1461 /* This is a final link. */ 1462 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1463 h = NULL; 1464 sym = NULL; 1465 sec = NULL; 1466 1467 if (r_symndx < symtab_hdr->sh_info) 1468 { 1469 sym = local_syms + r_symndx; 1470 sec = local_sections [r_symndx]; 1471 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1472 1473 name = bfd_elf_string_from_elf_section (input_bfd, 1474 symtab_hdr->sh_link, 1475 sym->st_name); 1476 if (name == NULL) 1477 name = bfd_section_name (input_bfd, sec); 1478 } 1479 else 1480 { 1481 bfd_boolean unresolved_reloc; 1482 1483 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1484 r_symndx, symtab_hdr, sym_hashes, 1485 h, sec, relocation, 1486 unresolved_reloc, undefined_signalled); 1487 name = h->root.root.string; 1488 } 1489 1490 r = mmix_final_link_relocate (howto, input_section, 1491 contents, rel->r_offset, 1492 rel->r_addend, relocation, name, sec); 1493 1494 if (r != bfd_reloc_ok) 1495 { 1496 bfd_boolean check_ok = TRUE; 1497 const char * msg = (const char *) NULL; 1498 1499 switch (r) 1500 { 1501 case bfd_reloc_overflow: 1502 check_ok = info->callbacks->reloc_overflow 1503 (info, (h ? &h->root : NULL), name, howto->name, 1504 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1505 break; 1506 1507 case bfd_reloc_undefined: 1508 /* We may have sent this message above. */ 1509 if (! undefined_signalled) 1510 check_ok = info->callbacks->undefined_symbol 1511 (info, name, input_bfd, input_section, rel->r_offset, 1512 TRUE); 1513 undefined_signalled = TRUE; 1514 break; 1515 1516 case bfd_reloc_outofrange: 1517 msg = _("internal error: out of range error"); 1518 break; 1519 1520 case bfd_reloc_notsupported: 1521 msg = _("internal error: unsupported relocation error"); 1522 break; 1523 1524 case bfd_reloc_dangerous: 1525 msg = _("internal error: dangerous relocation"); 1526 break; 1527 1528 default: 1529 msg = _("internal error: unknown error"); 1530 break; 1531 } 1532 1533 if (msg) 1534 check_ok = info->callbacks->warning 1535 (info, msg, name, input_bfd, input_section, rel->r_offset); 1536 1537 if (! check_ok) 1538 return FALSE; 1539 } 1540 } 1541 1542 return TRUE; 1543 } 1544 1545 /* Perform a single relocation. By default we use the standard BFD 1546 routines. A few relocs we have to do ourselves. */ 1547 1548 static bfd_reloc_status_type 1549 mmix_final_link_relocate (howto, input_section, contents, 1550 r_offset, r_addend, relocation, symname, symsec) 1551 reloc_howto_type *howto; 1552 asection *input_section; 1553 bfd_byte *contents; 1554 bfd_vma r_offset; 1555 bfd_signed_vma r_addend; 1556 bfd_vma relocation; 1557 const char *symname; 1558 asection *symsec; 1559 { 1560 bfd_reloc_status_type r = bfd_reloc_ok; 1561 bfd_vma addr 1562 = (input_section->output_section->vma 1563 + input_section->output_offset 1564 + r_offset); 1565 bfd_signed_vma srel 1566 = (bfd_signed_vma) relocation + r_addend; 1567 1568 switch (howto->type) 1569 { 1570 /* All these are PC-relative. */ 1571 case R_MMIX_PUSHJ_STUBBABLE: 1572 case R_MMIX_PUSHJ: 1573 case R_MMIX_CBRANCH: 1574 case R_MMIX_ADDR19: 1575 case R_MMIX_GETA: 1576 case R_MMIX_ADDR27: 1577 case R_MMIX_JMP: 1578 contents += r_offset; 1579 1580 srel -= (input_section->output_section->vma 1581 + input_section->output_offset 1582 + r_offset); 1583 1584 r = mmix_elf_perform_relocation (input_section, howto, contents, 1585 addr, srel); 1586 break; 1587 1588 case R_MMIX_BASE_PLUS_OFFSET: 1589 if (symsec == NULL) 1590 return bfd_reloc_undefined; 1591 1592 /* Check that we're not relocating against a register symbol. */ 1593 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1594 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1595 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1596 MMIX_REG_SECTION_NAME) == 0) 1597 { 1598 /* Note: This is separated out into two messages in order 1599 to ease the translation into other languages. */ 1600 if (symname == NULL || *symname == 0) 1601 (*_bfd_error_handler) 1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1603 bfd_get_filename (input_section->owner), 1604 bfd_get_section_name (symsec->owner, symsec)); 1605 else 1606 (*_bfd_error_handler) 1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1608 bfd_get_filename (input_section->owner), symname, 1609 bfd_get_section_name (symsec->owner, symsec)); 1610 return bfd_reloc_overflow; 1611 } 1612 goto do_mmix_reloc; 1613 1614 case R_MMIX_REG_OR_BYTE: 1615 case R_MMIX_REG: 1616 /* For now, we handle these alike. They must refer to an register 1617 symbol, which is either relative to the register section and in 1618 the range 0..255, or is in the register contents section with vma 1619 regno * 8. */ 1620 1621 /* FIXME: A better way to check for reg contents section? 1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1623 if (symsec == NULL) 1624 return bfd_reloc_undefined; 1625 1626 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1627 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1628 { 1629 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1630 { 1631 /* The bfd_reloc_outofrange return value, though intuitively 1632 a better value, will not get us an error. */ 1633 return bfd_reloc_overflow; 1634 } 1635 srel /= 8; 1636 } 1637 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1638 MMIX_REG_SECTION_NAME) == 0) 1639 { 1640 if (srel < 0 || srel > 255) 1641 /* The bfd_reloc_outofrange return value, though intuitively a 1642 better value, will not get us an error. */ 1643 return bfd_reloc_overflow; 1644 } 1645 else 1646 { 1647 /* Note: This is separated out into two messages in order 1648 to ease the translation into other languages. */ 1649 if (symname == NULL || *symname == 0) 1650 (*_bfd_error_handler) 1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1652 bfd_get_filename (input_section->owner), 1653 bfd_get_section_name (symsec->owner, symsec)); 1654 else 1655 (*_bfd_error_handler) 1656 (_("%s: register relocation against non-register symbol: %s in %s"), 1657 bfd_get_filename (input_section->owner), symname, 1658 bfd_get_section_name (symsec->owner, symsec)); 1659 1660 /* The bfd_reloc_outofrange return value, though intuitively a 1661 better value, will not get us an error. */ 1662 return bfd_reloc_overflow; 1663 } 1664 do_mmix_reloc: 1665 contents += r_offset; 1666 r = mmix_elf_perform_relocation (input_section, howto, contents, 1667 addr, srel); 1668 break; 1669 1670 case R_MMIX_LOCAL: 1671 /* This isn't a real relocation, it's just an assertion that the 1672 final relocation value corresponds to a local register. We 1673 ignore the actual relocation; nothing is changed. */ 1674 { 1675 asection *regsec 1676 = bfd_get_section_by_name (input_section->output_section->owner, 1677 MMIX_REG_CONTENTS_SECTION_NAME); 1678 bfd_vma first_global; 1679 1680 /* Check that this is an absolute value, or a reference to the 1681 register contents section or the register (symbol) section. 1682 Absolute numbers can get here as undefined section. Undefined 1683 symbols are signalled elsewhere, so there's no conflict in us 1684 accidentally handling it. */ 1685 if (!bfd_is_abs_section (symsec) 1686 && !bfd_is_und_section (symsec) 1687 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1688 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1689 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1690 MMIX_REG_SECTION_NAME) != 0) 1691 { 1692 (*_bfd_error_handler) 1693 (_("%s: directive LOCAL valid only with a register or absolute value"), 1694 bfd_get_filename (input_section->owner)); 1695 1696 return bfd_reloc_overflow; 1697 } 1698 1699 /* If we don't have a register contents section, then $255 is the 1700 first global register. */ 1701 if (regsec == NULL) 1702 first_global = 255; 1703 else 1704 { 1705 first_global = bfd_get_section_vma (abfd, regsec) / 8; 1706 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1707 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1708 { 1709 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1710 /* The bfd_reloc_outofrange return value, though 1711 intuitively a better value, will not get us an error. */ 1712 return bfd_reloc_overflow; 1713 srel /= 8; 1714 } 1715 } 1716 1717 if ((bfd_vma) srel >= first_global) 1718 { 1719 /* FIXME: Better error message. */ 1720 (*_bfd_error_handler) 1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1722 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1723 1724 return bfd_reloc_overflow; 1725 } 1726 } 1727 r = bfd_reloc_ok; 1728 break; 1729 1730 default: 1731 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1732 contents, r_offset, 1733 relocation, r_addend); 1734 } 1735 1736 return r; 1737 } 1738 1739 /* Return the section that should be marked against GC for a given 1740 relocation. */ 1741 1742 static asection * 1743 mmix_elf_gc_mark_hook (sec, info, rel, h, sym) 1744 asection *sec; 1745 struct bfd_link_info *info ATTRIBUTE_UNUSED; 1746 Elf_Internal_Rela *rel; 1747 struct elf_link_hash_entry *h; 1748 Elf_Internal_Sym *sym; 1749 { 1750 if (h != NULL) 1751 { 1752 switch (ELF64_R_TYPE (rel->r_info)) 1753 { 1754 case R_MMIX_GNU_VTINHERIT: 1755 case R_MMIX_GNU_VTENTRY: 1756 break; 1757 1758 default: 1759 switch (h->root.type) 1760 { 1761 case bfd_link_hash_defined: 1762 case bfd_link_hash_defweak: 1763 return h->root.u.def.section; 1764 1765 case bfd_link_hash_common: 1766 return h->root.u.c.p->section; 1767 1768 default: 1769 break; 1770 } 1771 } 1772 } 1773 else 1774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 1775 1776 return NULL; 1777 } 1778 1779 /* Update relocation info for a GC-excluded section. We could supposedly 1780 perform the allocation after GC, but there's no suitable hook between 1781 GC (or section merge) and the point when all input sections must be 1782 present. Better to waste some memory and (perhaps) a little time. */ 1783 1784 static bfd_boolean 1785 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs) 1786 bfd *abfd ATTRIBUTE_UNUSED; 1787 struct bfd_link_info *info ATTRIBUTE_UNUSED; 1788 asection *sec ATTRIBUTE_UNUSED; 1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; 1790 { 1791 struct bpo_reloc_section_info *bpodata 1792 = mmix_elf_section_data (sec)->bpo.reloc; 1793 asection *allocated_gregs_section; 1794 1795 /* If no bpodata here, we have nothing to do. */ 1796 if (bpodata == NULL) 1797 return TRUE; 1798 1799 allocated_gregs_section = bpodata->bpo_greg_section; 1800 1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1802 -= bpodata->n_bpo_relocs_this_section; 1803 1804 return TRUE; 1805 } 1806 1807 /* Sort register relocs to come before expanding relocs. */ 1808 1809 static int 1810 mmix_elf_sort_relocs (p1, p2) 1811 const PTR p1; 1812 const PTR p2; 1813 { 1814 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1815 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1816 int r1_is_reg, r2_is_reg; 1817 1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1819 insns. */ 1820 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1821 return 1; 1822 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1823 return -1; 1824 1825 r1_is_reg 1826 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1827 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1828 r2_is_reg 1829 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1830 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1831 if (r1_is_reg != r2_is_reg) 1832 return r2_is_reg - r1_is_reg; 1833 1834 /* Neither or both are register relocs. Then sort on full offset. */ 1835 if (r1->r_offset > r2->r_offset) 1836 return 1; 1837 else if (r1->r_offset < r2->r_offset) 1838 return -1; 1839 return 0; 1840 } 1841 1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1843 1844 static bfd_boolean 1845 mmix_elf_check_common_relocs (abfd, info, sec, relocs) 1846 bfd *abfd; 1847 struct bfd_link_info *info; 1848 asection *sec; 1849 const Elf_Internal_Rela *relocs; 1850 { 1851 bfd *bpo_greg_owner = NULL; 1852 asection *allocated_gregs_section = NULL; 1853 struct bpo_greg_section_info *gregdata = NULL; 1854 struct bpo_reloc_section_info *bpodata = NULL; 1855 const Elf_Internal_Rela *rel; 1856 const Elf_Internal_Rela *rel_end; 1857 1858 /* We currently have to abuse this COFF-specific member, since there's 1859 no target-machine-dedicated member. There's no alternative outside 1860 the bfd_link_info struct; we can't specialize a hash-table since 1861 they're different between ELF and mmo. */ 1862 bpo_greg_owner = (bfd *) info->base_file; 1863 1864 rel_end = relocs + sec->reloc_count; 1865 for (rel = relocs; rel < rel_end; rel++) 1866 { 1867 switch (ELF64_R_TYPE (rel->r_info)) 1868 { 1869 /* This relocation causes a GREG allocation. We need to count 1870 them, and we need to create a section for them, so we need an 1871 object to fake as the owner of that section. We can't use 1872 the ELF dynobj for this, since the ELF bits assume lots of 1873 DSO-related stuff if that member is non-NULL. */ 1874 case R_MMIX_BASE_PLUS_OFFSET: 1875 /* We don't do anything with this reloc for a relocatable link. */ 1876 if (info->relocatable) 1877 break; 1878 1879 if (bpo_greg_owner == NULL) 1880 { 1881 bpo_greg_owner = abfd; 1882 info->base_file = (PTR) bpo_greg_owner; 1883 } 1884 1885 if (allocated_gregs_section == NULL) 1886 allocated_gregs_section 1887 = bfd_get_section_by_name (bpo_greg_owner, 1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1889 1890 if (allocated_gregs_section == NULL) 1891 { 1892 allocated_gregs_section 1893 = bfd_make_section_with_flags (bpo_greg_owner, 1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1895 (SEC_HAS_CONTENTS 1896 | SEC_IN_MEMORY 1897 | SEC_LINKER_CREATED)); 1898 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1899 treated like any other section, and we'd get errors for 1900 address overlap with the text section. Let's set none of 1901 those flags, as that is what currently happens for usual 1902 GREG allocations, and that works. */ 1903 if (allocated_gregs_section == NULL 1904 || !bfd_set_section_alignment (bpo_greg_owner, 1905 allocated_gregs_section, 1906 3)) 1907 return FALSE; 1908 1909 gregdata = (struct bpo_greg_section_info *) 1910 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1911 if (gregdata == NULL) 1912 return FALSE; 1913 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1914 = gregdata; 1915 } 1916 else if (gregdata == NULL) 1917 gregdata 1918 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1919 1920 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1921 if (bpodata == NULL) 1922 { 1923 /* No use doing a separate iteration pass to find the upper 1924 limit - just use the number of relocs. */ 1925 bpodata = (struct bpo_reloc_section_info *) 1926 bfd_alloc (bpo_greg_owner, 1927 sizeof (struct bpo_reloc_section_info) 1928 * (sec->reloc_count + 1)); 1929 if (bpodata == NULL) 1930 return FALSE; 1931 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1932 bpodata->first_base_plus_offset_reloc 1933 = bpodata->bpo_index 1934 = gregdata->n_max_bpo_relocs; 1935 bpodata->bpo_greg_section 1936 = allocated_gregs_section; 1937 bpodata->n_bpo_relocs_this_section = 0; 1938 } 1939 1940 bpodata->n_bpo_relocs_this_section++; 1941 gregdata->n_max_bpo_relocs++; 1942 1943 /* We don't get another chance to set this before GC; we've not 1944 set up any hook that runs before GC. */ 1945 gregdata->n_bpo_relocs 1946 = gregdata->n_max_bpo_relocs; 1947 break; 1948 1949 case R_MMIX_PUSHJ_STUBBABLE: 1950 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1951 break; 1952 } 1953 } 1954 1955 /* Allocate per-reloc stub storage and initialize it to the max stub 1956 size. */ 1957 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1958 { 1959 size_t i; 1960 1961 mmix_elf_section_data (sec)->pjs.stub_size 1962 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1963 * sizeof (mmix_elf_section_data (sec) 1964 ->pjs.stub_size[0])); 1965 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1966 return FALSE; 1967 1968 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1969 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1970 } 1971 1972 return TRUE; 1973 } 1974 1975 /* Look through the relocs for a section during the first phase. */ 1976 1977 static bfd_boolean 1978 mmix_elf_check_relocs (abfd, info, sec, relocs) 1979 bfd *abfd; 1980 struct bfd_link_info *info; 1981 asection *sec; 1982 const Elf_Internal_Rela *relocs; 1983 { 1984 Elf_Internal_Shdr *symtab_hdr; 1985 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 1986 const Elf_Internal_Rela *rel; 1987 const Elf_Internal_Rela *rel_end; 1988 1989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1990 sym_hashes = elf_sym_hashes (abfd); 1991 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym); 1992 if (!elf_bad_symtab (abfd)) 1993 sym_hashes_end -= symtab_hdr->sh_info; 1994 1995 /* First we sort the relocs so that any register relocs come before 1996 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1997 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1998 mmix_elf_sort_relocs); 1999 2000 /* Do the common part. */ 2001 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 2002 return FALSE; 2003 2004 if (info->relocatable) 2005 return TRUE; 2006 2007 rel_end = relocs + sec->reloc_count; 2008 for (rel = relocs; rel < rel_end; rel++) 2009 { 2010 struct elf_link_hash_entry *h; 2011 unsigned long r_symndx; 2012 2013 r_symndx = ELF64_R_SYM (rel->r_info); 2014 if (r_symndx < symtab_hdr->sh_info) 2015 h = NULL; 2016 else 2017 { 2018 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2019 while (h->root.type == bfd_link_hash_indirect 2020 || h->root.type == bfd_link_hash_warning) 2021 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2022 } 2023 2024 switch (ELF64_R_TYPE (rel->r_info)) 2025 { 2026 /* This relocation describes the C++ object vtable hierarchy. 2027 Reconstruct it for later use during GC. */ 2028 case R_MMIX_GNU_VTINHERIT: 2029 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2030 return FALSE; 2031 break; 2032 2033 /* This relocation describes which C++ vtable entries are actually 2034 used. Record for later use during GC. */ 2035 case R_MMIX_GNU_VTENTRY: 2036 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2037 return FALSE; 2038 break; 2039 } 2040 } 2041 2042 return TRUE; 2043 } 2044 2045 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2046 Copied from elf_link_add_object_symbols. */ 2047 2048 bfd_boolean 2049 _bfd_mmix_check_all_relocs (abfd, info) 2050 bfd *abfd; 2051 struct bfd_link_info *info; 2052 { 2053 asection *o; 2054 2055 for (o = abfd->sections; o != NULL; o = o->next) 2056 { 2057 Elf_Internal_Rela *internal_relocs; 2058 bfd_boolean ok; 2059 2060 if ((o->flags & SEC_RELOC) == 0 2061 || o->reloc_count == 0 2062 || ((info->strip == strip_all || info->strip == strip_debugger) 2063 && (o->flags & SEC_DEBUGGING) != 0) 2064 || bfd_is_abs_section (o->output_section)) 2065 continue; 2066 2067 internal_relocs 2068 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, 2069 (Elf_Internal_Rela *) NULL, 2070 info->keep_memory); 2071 if (internal_relocs == NULL) 2072 return FALSE; 2073 2074 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2075 2076 if (! info->keep_memory) 2077 free (internal_relocs); 2078 2079 if (! ok) 2080 return FALSE; 2081 } 2082 2083 return TRUE; 2084 } 2085 2086 /* Change symbols relative to the reg contents section to instead be to 2087 the register section, and scale them down to correspond to the register 2088 number. */ 2089 2090 static bfd_boolean 2091 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h) 2092 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2093 const char *name ATTRIBUTE_UNUSED; 2094 Elf_Internal_Sym *sym; 2095 asection *input_sec; 2096 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED; 2097 { 2098 if (input_sec != NULL 2099 && input_sec->name != NULL 2100 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2101 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2102 { 2103 sym->st_value /= 8; 2104 sym->st_shndx = SHN_REGISTER; 2105 } 2106 2107 return TRUE; 2108 } 2109 2110 /* We fake a register section that holds values that are register numbers. 2111 Having a SHN_REGISTER and register section translates better to other 2112 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2113 This section faking is based on a construct in elf32-mips.c. */ 2114 static asection mmix_elf_reg_section; 2115 static asymbol mmix_elf_reg_section_symbol; 2116 static asymbol *mmix_elf_reg_section_symbol_ptr; 2117 2118 /* Handle the special section numbers that a symbol may use. */ 2119 2120 void 2121 mmix_elf_symbol_processing (abfd, asym) 2122 bfd *abfd ATTRIBUTE_UNUSED; 2123 asymbol *asym; 2124 { 2125 elf_symbol_type *elfsym; 2126 2127 elfsym = (elf_symbol_type *) asym; 2128 switch (elfsym->internal_elf_sym.st_shndx) 2129 { 2130 case SHN_REGISTER: 2131 if (mmix_elf_reg_section.name == NULL) 2132 { 2133 /* Initialize the register section. */ 2134 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2135 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2136 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2137 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2138 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2139 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2140 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2141 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2142 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2143 } 2144 asym->section = &mmix_elf_reg_section; 2145 break; 2146 2147 default: 2148 break; 2149 } 2150 } 2151 2152 /* Given a BFD section, try to locate the corresponding ELF section 2153 index. */ 2154 2155 static bfd_boolean 2156 mmix_elf_section_from_bfd_section (abfd, sec, retval) 2157 bfd * abfd ATTRIBUTE_UNUSED; 2158 asection * sec; 2159 int * retval; 2160 { 2161 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2162 *retval = SHN_REGISTER; 2163 else 2164 return FALSE; 2165 2166 return TRUE; 2167 } 2168 2169 /* Hook called by the linker routine which adds symbols from an object 2170 file. We must handle the special SHN_REGISTER section number here. 2171 2172 We also check that we only have *one* each of the section-start 2173 symbols, since otherwise having two with the same value would cause 2174 them to be "merged", but with the contents serialized. */ 2175 2176 bfd_boolean 2177 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) 2178 bfd *abfd; 2179 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2180 Elf_Internal_Sym *sym; 2181 const char **namep ATTRIBUTE_UNUSED; 2182 flagword *flagsp ATTRIBUTE_UNUSED; 2183 asection **secp; 2184 bfd_vma *valp ATTRIBUTE_UNUSED; 2185 { 2186 if (sym->st_shndx == SHN_REGISTER) 2187 { 2188 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2189 (*secp)->flags |= SEC_LINKER_CREATED; 2190 } 2191 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2192 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX, 2193 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0) 2194 { 2195 /* See if we have another one. */ 2196 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2197 *namep, 2198 FALSE, 2199 FALSE, 2200 FALSE); 2201 2202 if (h != NULL && h->type != bfd_link_hash_undefined) 2203 { 2204 /* How do we get the asymbol (or really: the filename) from h? 2205 h->u.def.section->owner is NULL. */ 2206 ((*_bfd_error_handler) 2207 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2208 bfd_get_filename (abfd), *namep, 2209 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2210 bfd_set_error (bfd_error_bad_value); 2211 return FALSE; 2212 } 2213 } 2214 2215 return TRUE; 2216 } 2217 2218 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2219 2220 bfd_boolean 2221 mmix_elf_is_local_label_name (abfd, name) 2222 bfd *abfd; 2223 const char *name; 2224 { 2225 const char *colpos; 2226 int digits; 2227 2228 /* Also include the default local-label definition. */ 2229 if (_bfd_elf_is_local_label_name (abfd, name)) 2230 return TRUE; 2231 2232 if (*name != 'L') 2233 return FALSE; 2234 2235 /* If there's no ":", or more than one, it's not a local symbol. */ 2236 colpos = strchr (name, ':'); 2237 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2238 return FALSE; 2239 2240 /* Check that there are remaining characters and that they are digits. */ 2241 if (colpos[1] == 0) 2242 return FALSE; 2243 2244 digits = strspn (colpos + 1, "0123456789"); 2245 return digits != 0 && colpos[1 + digits] == 0; 2246 } 2247 2248 /* We get rid of the register section here. */ 2249 2250 bfd_boolean 2251 mmix_elf_final_link (abfd, info) 2252 bfd *abfd; 2253 struct bfd_link_info *info; 2254 { 2255 /* We never output a register section, though we create one for 2256 temporary measures. Check that nobody entered contents into it. */ 2257 asection *reg_section; 2258 2259 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2260 2261 if (reg_section != NULL) 2262 { 2263 /* FIXME: Pass error state gracefully. */ 2264 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2265 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2266 2267 /* Really remove the section, if it hasn't already been done. */ 2268 if (!bfd_section_removed_from_list (abfd, reg_section)) 2269 { 2270 bfd_section_list_remove (abfd, reg_section); 2271 --abfd->section_count; 2272 } 2273 } 2274 2275 if (! bfd_elf_final_link (abfd, info)) 2276 return FALSE; 2277 2278 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2279 the regular linker machinery. We do it here, like other targets with 2280 special sections. */ 2281 if (info->base_file != NULL) 2282 { 2283 asection *greg_section 2284 = bfd_get_section_by_name ((bfd *) info->base_file, 2285 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2286 if (!bfd_set_section_contents (abfd, 2287 greg_section->output_section, 2288 greg_section->contents, 2289 (file_ptr) greg_section->output_offset, 2290 greg_section->size)) 2291 return FALSE; 2292 } 2293 return TRUE; 2294 } 2295 2296 /* We need to include the maximum size of PUSHJ-stubs in the initial 2297 section size. This is expected to shrink during linker relaxation. */ 2298 2299 static void 2300 mmix_set_relaxable_size (abfd, sec, ptr) 2301 bfd *abfd ATTRIBUTE_UNUSED; 2302 asection *sec; 2303 void *ptr; 2304 { 2305 struct bfd_link_info *info = ptr; 2306 2307 /* Make sure we only do this for section where we know we want this, 2308 otherwise we might end up resetting the size of COMMONs. */ 2309 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2310 return; 2311 2312 sec->rawsize = sec->size; 2313 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2314 * MAX_PUSHJ_STUB_SIZE); 2315 2316 /* For use in relocatable link, we start with a max stubs size. See 2317 mmix_elf_relax_section. */ 2318 if (info->relocatable && sec->output_section) 2319 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2320 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2321 * MAX_PUSHJ_STUB_SIZE); 2322 } 2323 2324 /* Initialize stuff for the linker-generated GREGs to match 2325 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2326 2327 bfd_boolean 2328 _bfd_mmix_before_linker_allocation (abfd, info) 2329 bfd *abfd ATTRIBUTE_UNUSED; 2330 struct bfd_link_info *info; 2331 { 2332 asection *bpo_gregs_section; 2333 bfd *bpo_greg_owner; 2334 struct bpo_greg_section_info *gregdata; 2335 size_t n_gregs; 2336 bfd_vma gregs_size; 2337 size_t i; 2338 size_t *bpo_reloc_indexes; 2339 bfd *ibfd; 2340 2341 /* Set the initial size of sections. */ 2342 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2343 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2344 2345 /* The bpo_greg_owner bfd is supposed to have been set by 2346 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2347 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2348 bpo_greg_owner = (bfd *) info->base_file; 2349 if (bpo_greg_owner == NULL) 2350 return TRUE; 2351 2352 bpo_gregs_section 2353 = bfd_get_section_by_name (bpo_greg_owner, 2354 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2355 2356 if (bpo_gregs_section == NULL) 2357 return TRUE; 2358 2359 /* We use the target-data handle in the ELF section data. */ 2360 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2361 if (gregdata == NULL) 2362 return FALSE; 2363 2364 n_gregs = gregdata->n_bpo_relocs; 2365 gregdata->n_allocated_bpo_gregs = n_gregs; 2366 2367 /* When this reaches zero during relaxation, all entries have been 2368 filled in and the size of the linker gregs can be calculated. */ 2369 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2370 2371 /* Set the zeroth-order estimate for the GREGs size. */ 2372 gregs_size = n_gregs * 8; 2373 2374 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2375 return FALSE; 2376 2377 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2378 time. Note that we must use the max number ever noted for the array, 2379 since the index numbers were created before GC. */ 2380 gregdata->reloc_request 2381 = bfd_zalloc (bpo_greg_owner, 2382 sizeof (struct bpo_reloc_request) 2383 * gregdata->n_max_bpo_relocs); 2384 2385 gregdata->bpo_reloc_indexes 2386 = bpo_reloc_indexes 2387 = bfd_alloc (bpo_greg_owner, 2388 gregdata->n_max_bpo_relocs 2389 * sizeof (size_t)); 2390 if (bpo_reloc_indexes == NULL) 2391 return FALSE; 2392 2393 /* The default order is an identity mapping. */ 2394 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2395 { 2396 bpo_reloc_indexes[i] = i; 2397 gregdata->reloc_request[i].bpo_reloc_no = i; 2398 } 2399 2400 return TRUE; 2401 } 2402 2403 /* Fill in contents in the linker allocated gregs. Everything is 2404 calculated at this point; we just move the contents into place here. */ 2405 2406 bfd_boolean 2407 _bfd_mmix_after_linker_allocation (abfd, link_info) 2408 bfd *abfd ATTRIBUTE_UNUSED; 2409 struct bfd_link_info *link_info; 2410 { 2411 asection *bpo_gregs_section; 2412 bfd *bpo_greg_owner; 2413 struct bpo_greg_section_info *gregdata; 2414 size_t n_gregs; 2415 size_t i, j; 2416 size_t lastreg; 2417 bfd_byte *contents; 2418 2419 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2420 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2421 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2422 bpo_greg_owner = (bfd *) link_info->base_file; 2423 if (bpo_greg_owner == NULL) 2424 return TRUE; 2425 2426 bpo_gregs_section 2427 = bfd_get_section_by_name (bpo_greg_owner, 2428 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2429 2430 /* This can't happen without DSO handling. When DSOs are handled 2431 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2432 section. */ 2433 if (bpo_gregs_section == NULL) 2434 return TRUE; 2435 2436 /* We use the target-data handle in the ELF section data. */ 2437 2438 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2439 if (gregdata == NULL) 2440 return FALSE; 2441 2442 n_gregs = gregdata->n_allocated_bpo_gregs; 2443 2444 bpo_gregs_section->contents 2445 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2446 if (contents == NULL) 2447 return FALSE; 2448 2449 /* Sanity check: If these numbers mismatch, some relocation has not been 2450 accounted for and the rest of gregdata is probably inconsistent. 2451 It's a bug, but it's more helpful to identify it than segfaulting 2452 below. */ 2453 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2454 != gregdata->n_bpo_relocs) 2455 { 2456 (*_bfd_error_handler) 2457 (_("Internal inconsistency: remaining %u != max %u.\n\ 2458 Please report this bug."), 2459 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2460 gregdata->n_bpo_relocs); 2461 return FALSE; 2462 } 2463 2464 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2465 if (gregdata->reloc_request[i].regindex != lastreg) 2466 { 2467 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2468 contents + j * 8); 2469 lastreg = gregdata->reloc_request[i].regindex; 2470 j++; 2471 } 2472 2473 return TRUE; 2474 } 2475 2476 /* Sort valid relocs to come before non-valid relocs, then on increasing 2477 value. */ 2478 2479 static int 2480 bpo_reloc_request_sort_fn (p1, p2) 2481 const PTR p1; 2482 const PTR p2; 2483 { 2484 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2485 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2486 2487 /* Primary function is validity; non-valid relocs sorted after valid 2488 ones. */ 2489 if (r1->valid != r2->valid) 2490 return r2->valid - r1->valid; 2491 2492 /* Then sort on value. Don't simplify and return just the difference of 2493 the values: the upper bits of the 64-bit value would be truncated on 2494 a host with 32-bit ints. */ 2495 if (r1->value != r2->value) 2496 return r1->value > r2->value ? 1 : -1; 2497 2498 /* As a last re-sort, use the relocation number, so we get a stable 2499 sort. The *addresses* aren't stable since items are swapped during 2500 sorting. It depends on the qsort implementation if this actually 2501 happens. */ 2502 return r1->bpo_reloc_no > r2->bpo_reloc_no 2503 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2504 } 2505 2506 /* For debug use only. Dumps the global register allocations resulting 2507 from base-plus-offset relocs. */ 2508 2509 void 2510 mmix_dump_bpo_gregs (link_info, pf) 2511 struct bfd_link_info *link_info; 2512 bfd_error_handler_type pf; 2513 { 2514 bfd *bpo_greg_owner; 2515 asection *bpo_gregs_section; 2516 struct bpo_greg_section_info *gregdata; 2517 unsigned int i; 2518 2519 if (link_info == NULL || link_info->base_file == NULL) 2520 return; 2521 2522 bpo_greg_owner = (bfd *) link_info->base_file; 2523 2524 bpo_gregs_section 2525 = bfd_get_section_by_name (bpo_greg_owner, 2526 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2527 2528 if (bpo_gregs_section == NULL) 2529 return; 2530 2531 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2532 if (gregdata == NULL) 2533 return; 2534 2535 if (pf == NULL) 2536 pf = _bfd_error_handler; 2537 2538 /* These format strings are not translated. They are for debug purposes 2539 only and never displayed to an end user. Should they escape, we 2540 surely want them in original. */ 2541 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2542 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2543 gregdata->n_max_bpo_relocs, 2544 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2545 gregdata->n_allocated_bpo_gregs); 2546 2547 if (gregdata->reloc_request) 2548 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2549 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2550 i, 2551 (gregdata->bpo_reloc_indexes != NULL 2552 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2553 gregdata->reloc_request[i].bpo_reloc_no, 2554 gregdata->reloc_request[i].valid, 2555 2556 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2557 (unsigned long) gregdata->reloc_request[i].value, 2558 gregdata->reloc_request[i].regindex, 2559 gregdata->reloc_request[i].offset); 2560 } 2561 2562 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2563 when the last such reloc is done, an index-array is sorted according to 2564 the values and iterated over to produce register numbers (indexed by 0 2565 from the first allocated register number) and offsets for use in real 2566 relocation. 2567 2568 PUSHJ stub accounting is also done here. 2569 2570 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2571 2572 static bfd_boolean 2573 mmix_elf_relax_section (abfd, sec, link_info, again) 2574 bfd *abfd; 2575 asection *sec; 2576 struct bfd_link_info *link_info; 2577 bfd_boolean *again; 2578 { 2579 Elf_Internal_Shdr *symtab_hdr; 2580 Elf_Internal_Rela *internal_relocs; 2581 Elf_Internal_Rela *irel, *irelend; 2582 asection *bpo_gregs_section = NULL; 2583 struct bpo_greg_section_info *gregdata; 2584 struct bpo_reloc_section_info *bpodata 2585 = mmix_elf_section_data (sec)->bpo.reloc; 2586 /* The initialization is to quiet compiler warnings. The value is to 2587 spot a missing actual initialization. */ 2588 size_t bpono = (size_t) -1; 2589 size_t pjsno = 0; 2590 bfd *bpo_greg_owner; 2591 Elf_Internal_Sym *isymbuf = NULL; 2592 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2593 2594 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2595 2596 /* Assume nothing changes. */ 2597 *again = FALSE; 2598 2599 /* We don't have to do anything if this section does not have relocs, or 2600 if this is not a code section. */ 2601 if ((sec->flags & SEC_RELOC) == 0 2602 || sec->reloc_count == 0 2603 || (sec->flags & SEC_CODE) == 0 2604 || (sec->flags & SEC_LINKER_CREATED) != 0 2605 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2606 then nothing to do. */ 2607 || (bpodata == NULL 2608 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2609 return TRUE; 2610 2611 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2612 2613 bpo_greg_owner = (bfd *) link_info->base_file; 2614 2615 if (bpodata != NULL) 2616 { 2617 bpo_gregs_section = bpodata->bpo_greg_section; 2618 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2619 bpono = bpodata->first_base_plus_offset_reloc; 2620 } 2621 else 2622 gregdata = NULL; 2623 2624 /* Get a copy of the native relocations. */ 2625 internal_relocs 2626 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL, 2627 (Elf_Internal_Rela *) NULL, 2628 link_info->keep_memory); 2629 if (internal_relocs == NULL) 2630 goto error_return; 2631 2632 /* Walk through them looking for relaxing opportunities. */ 2633 irelend = internal_relocs + sec->reloc_count; 2634 for (irel = internal_relocs; irel < irelend; irel++) 2635 { 2636 bfd_vma symval; 2637 struct elf_link_hash_entry *h = NULL; 2638 2639 /* We only process two relocs. */ 2640 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2641 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2642 continue; 2643 2644 /* We process relocs in a distinctly different way when this is a 2645 relocatable link (for one, we don't look at symbols), so we avoid 2646 mixing its code with that for the "normal" relaxation. */ 2647 if (link_info->relocatable) 2648 { 2649 /* The only transformation in a relocatable link is to generate 2650 a full stub at the location of the stub calculated for the 2651 input section, if the relocated stub location, the end of the 2652 output section plus earlier stubs, cannot be reached. Thus 2653 relocatable linking can only lead to worse code, but it still 2654 works. */ 2655 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2656 { 2657 /* If we can reach the end of the output-section and beyond 2658 any current stubs, then we don't need a stub for this 2659 reloc. The relaxed order of output stub allocation may 2660 not exactly match the straightforward order, so we always 2661 assume presence of output stubs, which will allow 2662 relaxation only on relocations indifferent to the 2663 presence of output stub allocations for other relocations 2664 and thus the order of output stub allocation. */ 2665 if (bfd_check_overflow (complain_overflow_signed, 2666 19, 2667 0, 2668 bfd_arch_bits_per_address (abfd), 2669 /* Output-stub location. */ 2670 sec->output_section->rawsize 2671 + (mmix_elf_section_data (sec 2672 ->output_section) 2673 ->pjs.stubs_size_sum) 2674 /* Location of this PUSHJ reloc. */ 2675 - (sec->output_offset + irel->r_offset) 2676 /* Don't count *this* stub twice. */ 2677 - (mmix_elf_section_data (sec) 2678 ->pjs.stub_size[pjsno] 2679 + MAX_PUSHJ_STUB_SIZE)) 2680 == bfd_reloc_ok) 2681 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2682 2683 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2684 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2685 2686 pjsno++; 2687 } 2688 2689 continue; 2690 } 2691 2692 /* Get the value of the symbol referred to by the reloc. */ 2693 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2694 { 2695 /* A local symbol. */ 2696 Elf_Internal_Sym *isym; 2697 asection *sym_sec; 2698 2699 /* Read this BFD's local symbols if we haven't already. */ 2700 if (isymbuf == NULL) 2701 { 2702 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2703 if (isymbuf == NULL) 2704 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2705 symtab_hdr->sh_info, 0, 2706 NULL, NULL, NULL); 2707 if (isymbuf == 0) 2708 goto error_return; 2709 } 2710 2711 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2712 if (isym->st_shndx == SHN_UNDEF) 2713 sym_sec = bfd_und_section_ptr; 2714 else if (isym->st_shndx == SHN_ABS) 2715 sym_sec = bfd_abs_section_ptr; 2716 else if (isym->st_shndx == SHN_COMMON) 2717 sym_sec = bfd_com_section_ptr; 2718 else 2719 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2720 symval = (isym->st_value 2721 + sym_sec->output_section->vma 2722 + sym_sec->output_offset); 2723 } 2724 else 2725 { 2726 unsigned long indx; 2727 2728 /* An external symbol. */ 2729 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2730 h = elf_sym_hashes (abfd)[indx]; 2731 BFD_ASSERT (h != NULL); 2732 if (h->root.type != bfd_link_hash_defined 2733 && h->root.type != bfd_link_hash_defweak) 2734 { 2735 /* This appears to be a reference to an undefined symbol. Just 2736 ignore it--it will be caught by the regular reloc processing. 2737 We need to keep BPO reloc accounting consistent, though 2738 else we'll abort instead of emitting an error message. */ 2739 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2740 && gregdata != NULL) 2741 { 2742 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2743 bpono++; 2744 } 2745 continue; 2746 } 2747 2748 symval = (h->root.u.def.value 2749 + h->root.u.def.section->output_section->vma 2750 + h->root.u.def.section->output_offset); 2751 } 2752 2753 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2754 { 2755 bfd_vma value = symval + irel->r_addend; 2756 bfd_vma dot 2757 = (sec->output_section->vma 2758 + sec->output_offset 2759 + irel->r_offset); 2760 bfd_vma stubaddr 2761 = (sec->output_section->vma 2762 + sec->output_offset 2763 + size 2764 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2765 2766 if ((value & 3) == 0 2767 && bfd_check_overflow (complain_overflow_signed, 2768 19, 2769 0, 2770 bfd_arch_bits_per_address (abfd), 2771 value - dot 2772 - (value > dot 2773 ? mmix_elf_section_data (sec) 2774 ->pjs.stub_size[pjsno] 2775 : 0)) 2776 == bfd_reloc_ok) 2777 /* If the reloc fits, no stub is needed. */ 2778 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2779 else 2780 /* Maybe we can get away with just a JMP insn? */ 2781 if ((value & 3) == 0 2782 && bfd_check_overflow (complain_overflow_signed, 2783 27, 2784 0, 2785 bfd_arch_bits_per_address (abfd), 2786 value - stubaddr 2787 - (value > dot 2788 ? mmix_elf_section_data (sec) 2789 ->pjs.stub_size[pjsno] - 4 2790 : 0)) 2791 == bfd_reloc_ok) 2792 /* Yep, account for a stub consisting of a single JMP insn. */ 2793 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2794 else 2795 /* Nope, go for the full insn stub. It doesn't seem useful to 2796 emit the intermediate sizes; those will only be useful for 2797 a >64M program assuming contiguous code. */ 2798 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2799 = MAX_PUSHJ_STUB_SIZE; 2800 2801 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2802 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2803 pjsno++; 2804 continue; 2805 } 2806 2807 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2808 2809 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2810 = symval + irel->r_addend; 2811 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2812 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2813 } 2814 2815 /* Check if that was the last BPO-reloc. If so, sort the values and 2816 calculate how many registers we need to cover them. Set the size of 2817 the linker gregs, and if the number of registers changed, indicate 2818 that we need to relax some more because we have more work to do. */ 2819 if (gregdata != NULL 2820 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2821 { 2822 size_t i; 2823 bfd_vma prev_base; 2824 size_t regindex; 2825 2826 /* First, reset the remaining relocs for the next round. */ 2827 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2828 = gregdata->n_bpo_relocs; 2829 2830 qsort ((PTR) gregdata->reloc_request, 2831 gregdata->n_max_bpo_relocs, 2832 sizeof (struct bpo_reloc_request), 2833 bpo_reloc_request_sort_fn); 2834 2835 /* Recalculate indexes. When we find a change (however unlikely 2836 after the initial iteration), we know we need to relax again, 2837 since items in the GREG-array are sorted by increasing value and 2838 stored in the relaxation phase. */ 2839 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2840 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2841 != i) 2842 { 2843 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2844 = i; 2845 *again = TRUE; 2846 } 2847 2848 /* Allocate register numbers (indexing from 0). Stop at the first 2849 non-valid reloc. */ 2850 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2851 i < gregdata->n_bpo_relocs; 2852 i++) 2853 { 2854 if (gregdata->reloc_request[i].value > prev_base + 255) 2855 { 2856 regindex++; 2857 prev_base = gregdata->reloc_request[i].value; 2858 } 2859 gregdata->reloc_request[i].regindex = regindex; 2860 gregdata->reloc_request[i].offset 2861 = gregdata->reloc_request[i].value - prev_base; 2862 } 2863 2864 /* If it's not the same as the last time, we need to relax again, 2865 because the size of the section has changed. I'm not sure we 2866 actually need to do any adjustments since the shrinking happens 2867 at the start of this section, but better safe than sorry. */ 2868 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2869 { 2870 gregdata->n_allocated_bpo_gregs = regindex + 1; 2871 *again = TRUE; 2872 } 2873 2874 bpo_gregs_section->size = (regindex + 1) * 8; 2875 } 2876 2877 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2878 { 2879 if (! link_info->keep_memory) 2880 free (isymbuf); 2881 else 2882 { 2883 /* Cache the symbols for elf_link_input_bfd. */ 2884 symtab_hdr->contents = (unsigned char *) isymbuf; 2885 } 2886 } 2887 2888 if (internal_relocs != NULL 2889 && elf_section_data (sec)->relocs != internal_relocs) 2890 free (internal_relocs); 2891 2892 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2893 abort (); 2894 2895 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2896 { 2897 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2898 *again = TRUE; 2899 } 2900 2901 return TRUE; 2902 2903 error_return: 2904 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2905 free (isymbuf); 2906 if (internal_relocs != NULL 2907 && elf_section_data (sec)->relocs != internal_relocs) 2908 free (internal_relocs); 2909 return FALSE; 2910 } 2911 2912 #define ELF_ARCH bfd_arch_mmix 2913 #define ELF_MACHINE_CODE EM_MMIX 2914 2915 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2916 However, that's too much for something somewhere in the linker part of 2917 BFD; perhaps the start-address has to be a non-zero multiple of this 2918 number, or larger than this number. The symptom is that the linker 2919 complains: "warning: allocated section `.text' not in segment". We 2920 settle for 64k; the page-size used in examples is 8k. 2921 #define ELF_MAXPAGESIZE 0x10000 2922 2923 Unfortunately, this causes excessive padding in the supposedly small 2924 for-education programs that are the expected usage (where people would 2925 inspect output). We stick to 256 bytes just to have *some* default 2926 alignment. */ 2927 #define ELF_MAXPAGESIZE 0x100 2928 2929 #define TARGET_BIG_SYM bfd_elf64_mmix_vec 2930 #define TARGET_BIG_NAME "elf64-mmix" 2931 2932 #define elf_info_to_howto_rel NULL 2933 #define elf_info_to_howto mmix_info_to_howto_rela 2934 #define elf_backend_relocate_section mmix_elf_relocate_section 2935 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2936 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2937 2938 #define elf_backend_link_output_symbol_hook \ 2939 mmix_elf_link_output_symbol_hook 2940 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2941 2942 #define elf_backend_check_relocs mmix_elf_check_relocs 2943 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2944 2945 #define bfd_elf64_bfd_is_local_label_name \ 2946 mmix_elf_is_local_label_name 2947 2948 #define elf_backend_may_use_rel_p 0 2949 #define elf_backend_may_use_rela_p 1 2950 #define elf_backend_default_use_rela_p 1 2951 2952 #define elf_backend_can_gc_sections 1 2953 #define elf_backend_section_from_bfd_section \ 2954 mmix_elf_section_from_bfd_section 2955 2956 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2957 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2958 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2959 2960 #include "elf64-target.h" 2961