1 /* SPARC-specific support for 64-bit ELF 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004, 2005 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 20 21 #include "bfd.h" 22 #include "sysdep.h" 23 #include "libbfd.h" 24 #include "elf-bfd.h" 25 #include "elf/sparc.h" 26 #include "opcode/sparc.h" 27 #include "elfxx-sparc.h" 28 29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 30 #define MINUS_ONE (~ (bfd_vma) 0) 31 32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA 33 section can represent up to two relocs, we must tell the user to allocate 34 more space. */ 35 36 static long 37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) 38 { 39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *); 40 } 41 42 static long 43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd) 44 { 45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2; 46 } 47 48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of 49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10 50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations 51 for the same location, R_SPARC_LO10 and R_SPARC_13. */ 52 53 static bfd_boolean 54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect, 55 Elf_Internal_Shdr *rel_hdr, 56 asymbol **symbols, bfd_boolean dynamic) 57 { 58 PTR allocated = NULL; 59 bfd_byte *native_relocs; 60 arelent *relent; 61 unsigned int i; 62 int entsize; 63 bfd_size_type count; 64 arelent *relents; 65 66 allocated = (PTR) bfd_malloc (rel_hdr->sh_size); 67 if (allocated == NULL) 68 goto error_return; 69 70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size) 72 goto error_return; 73 74 native_relocs = (bfd_byte *) allocated; 75 76 relents = asect->relocation + canon_reloc_count (asect); 77 78 entsize = rel_hdr->sh_entsize; 79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela)); 80 81 count = rel_hdr->sh_size / entsize; 82 83 for (i = 0, relent = relents; i < count; 84 i++, relent++, native_relocs += entsize) 85 { 86 Elf_Internal_Rela rela; 87 unsigned int r_type; 88 89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela); 90 91 /* The address of an ELF reloc is section relative for an object 92 file, and absolute for an executable file or shared library. 93 The address of a normal BFD reloc is always section relative, 94 and the address of a dynamic reloc is absolute.. */ 95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic) 96 relent->address = rela.r_offset; 97 else 98 relent->address = rela.r_offset - asect->vma; 99 100 if (ELF64_R_SYM (rela.r_info) == 0) 101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 102 else 103 { 104 asymbol **ps, *s; 105 106 ps = symbols + ELF64_R_SYM (rela.r_info) - 1; 107 s = *ps; 108 109 /* Canonicalize ELF section symbols. FIXME: Why? */ 110 if ((s->flags & BSF_SECTION_SYM) == 0) 111 relent->sym_ptr_ptr = ps; 112 else 113 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; 114 } 115 116 relent->addend = rela.r_addend; 117 118 r_type = ELF64_R_TYPE_ID (rela.r_info); 119 if (r_type == R_SPARC_OLO10) 120 { 121 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10); 122 relent[1].address = relent->address; 123 relent++; 124 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 125 relent->addend = ELF64_R_TYPE_DATA (rela.r_info); 126 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13); 127 } 128 else 129 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type); 130 } 131 132 canon_reloc_count (asect) += relent - relents; 133 134 if (allocated != NULL) 135 free (allocated); 136 137 return TRUE; 138 139 error_return: 140 if (allocated != NULL) 141 free (allocated); 142 return FALSE; 143 } 144 145 /* Read in and swap the external relocs. */ 146 147 static bfd_boolean 148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect, 149 asymbol **symbols, bfd_boolean dynamic) 150 { 151 struct bfd_elf_section_data * const d = elf_section_data (asect); 152 Elf_Internal_Shdr *rel_hdr; 153 Elf_Internal_Shdr *rel_hdr2; 154 bfd_size_type amt; 155 156 if (asect->relocation != NULL) 157 return TRUE; 158 159 if (! dynamic) 160 { 161 if ((asect->flags & SEC_RELOC) == 0 162 || asect->reloc_count == 0) 163 return TRUE; 164 165 rel_hdr = &d->rel_hdr; 166 rel_hdr2 = d->rel_hdr2; 167 168 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset 169 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset)); 170 } 171 else 172 { 173 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this 174 case because relocations against this section may use the 175 dynamic symbol table, and in that case bfd_section_from_shdr 176 in elf.c does not update the RELOC_COUNT. */ 177 if (asect->size == 0) 178 return TRUE; 179 180 rel_hdr = &d->this_hdr; 181 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr); 182 rel_hdr2 = NULL; 183 } 184 185 amt = asect->reloc_count; 186 amt *= 2 * sizeof (arelent); 187 asect->relocation = (arelent *) bfd_alloc (abfd, amt); 188 if (asect->relocation == NULL) 189 return FALSE; 190 191 /* The elf64_sparc_slurp_one_reloc_table routine increments 192 canon_reloc_count. */ 193 canon_reloc_count (asect) = 0; 194 195 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, 196 dynamic)) 197 return FALSE; 198 199 if (rel_hdr2 200 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols, 201 dynamic)) 202 return FALSE; 203 204 return TRUE; 205 } 206 207 /* Canonicalize the relocs. */ 208 209 static long 210 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section, 211 arelent **relptr, asymbol **symbols) 212 { 213 arelent *tblptr; 214 unsigned int i; 215 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 216 217 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 218 return -1; 219 220 tblptr = section->relocation; 221 for (i = 0; i < canon_reloc_count (section); i++) 222 *relptr++ = tblptr++; 223 224 *relptr = NULL; 225 226 return canon_reloc_count (section); 227 } 228 229 230 /* Canonicalize the dynamic relocation entries. Note that we return 231 the dynamic relocations as a single block, although they are 232 actually associated with particular sections; the interface, which 233 was designed for SunOS style shared libraries, expects that there 234 is only one set of dynamic relocs. Any section that was actually 235 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses 236 the dynamic symbol table, is considered to be a dynamic reloc 237 section. */ 238 239 static long 240 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, 241 asymbol **syms) 242 { 243 asection *s; 244 long ret; 245 246 if (elf_dynsymtab (abfd) == 0) 247 { 248 bfd_set_error (bfd_error_invalid_operation); 249 return -1; 250 } 251 252 ret = 0; 253 for (s = abfd->sections; s != NULL; s = s->next) 254 { 255 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 256 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 257 { 258 arelent *p; 259 long count, i; 260 261 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE)) 262 return -1; 263 count = canon_reloc_count (s); 264 p = s->relocation; 265 for (i = 0; i < count; i++) 266 *storage++ = p++; 267 ret += count; 268 } 269 } 270 271 *storage = NULL; 272 273 return ret; 274 } 275 276 /* Write out the relocs. */ 277 278 static void 279 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data) 280 { 281 bfd_boolean *failedp = (bfd_boolean *) data; 282 Elf_Internal_Shdr *rela_hdr; 283 bfd_vma addr_offset; 284 Elf64_External_Rela *outbound_relocas, *src_rela; 285 unsigned int idx, count; 286 asymbol *last_sym = 0; 287 int last_sym_idx = 0; 288 289 /* If we have already failed, don't do anything. */ 290 if (*failedp) 291 return; 292 293 if ((sec->flags & SEC_RELOC) == 0) 294 return; 295 296 /* The linker backend writes the relocs out itself, and sets the 297 reloc_count field to zero to inhibit writing them here. Also, 298 sometimes the SEC_RELOC flag gets set even when there aren't any 299 relocs. */ 300 if (sec->reloc_count == 0) 301 return; 302 303 /* We can combine two relocs that refer to the same address 304 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the 305 latter is R_SPARC_13 with no associated symbol. */ 306 count = 0; 307 for (idx = 0; idx < sec->reloc_count; idx++) 308 { 309 bfd_vma addr; 310 311 ++count; 312 313 addr = sec->orelocation[idx]->address; 314 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10 315 && idx < sec->reloc_count - 1) 316 { 317 arelent *r = sec->orelocation[idx + 1]; 318 319 if (r->howto->type == R_SPARC_13 320 && r->address == addr 321 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 322 && (*r->sym_ptr_ptr)->value == 0) 323 ++idx; 324 } 325 } 326 327 rela_hdr = &elf_section_data (sec)->rel_hdr; 328 329 rela_hdr->sh_size = rela_hdr->sh_entsize * count; 330 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size); 331 if (rela_hdr->contents == NULL) 332 { 333 *failedp = TRUE; 334 return; 335 } 336 337 /* Figure out whether the relocations are RELA or REL relocations. */ 338 if (rela_hdr->sh_type != SHT_RELA) 339 abort (); 340 341 /* The address of an ELF reloc is section relative for an object 342 file, and absolute for an executable file or shared library. 343 The address of a BFD reloc is always section relative. */ 344 addr_offset = 0; 345 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 346 addr_offset = sec->vma; 347 348 /* orelocation has the data, reloc_count has the count... */ 349 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents; 350 src_rela = outbound_relocas; 351 352 for (idx = 0; idx < sec->reloc_count; idx++) 353 { 354 Elf_Internal_Rela dst_rela; 355 arelent *ptr; 356 asymbol *sym; 357 int n; 358 359 ptr = sec->orelocation[idx]; 360 sym = *ptr->sym_ptr_ptr; 361 if (sym == last_sym) 362 n = last_sym_idx; 363 else if (bfd_is_abs_section (sym->section) && sym->value == 0) 364 n = STN_UNDEF; 365 else 366 { 367 last_sym = sym; 368 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); 369 if (n < 0) 370 { 371 *failedp = TRUE; 372 return; 373 } 374 last_sym_idx = n; 375 } 376 377 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL 378 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec 379 && ! _bfd_elf_validate_reloc (abfd, ptr)) 380 { 381 *failedp = TRUE; 382 return; 383 } 384 385 if (ptr->howto->type == R_SPARC_LO10 386 && idx < sec->reloc_count - 1) 387 { 388 arelent *r = sec->orelocation[idx + 1]; 389 390 if (r->howto->type == R_SPARC_13 391 && r->address == ptr->address 392 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 393 && (*r->sym_ptr_ptr)->value == 0) 394 { 395 idx++; 396 dst_rela.r_info 397 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend, 398 R_SPARC_OLO10)); 399 } 400 else 401 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10); 402 } 403 else 404 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type); 405 406 dst_rela.r_offset = ptr->address + addr_offset; 407 dst_rela.r_addend = ptr->addend; 408 409 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela); 410 ++src_rela; 411 } 412 } 413 414 /* Hook called by the linker routine which adds symbols from an object 415 file. We use it for STT_REGISTER symbols. */ 416 417 static bfd_boolean 418 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 419 Elf_Internal_Sym *sym, const char **namep, 420 flagword *flagsp ATTRIBUTE_UNUSED, 421 asection **secp ATTRIBUTE_UNUSED, 422 bfd_vma *valp ATTRIBUTE_UNUSED) 423 { 424 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" }; 425 426 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER) 427 { 428 int reg; 429 struct _bfd_sparc_elf_app_reg *p; 430 431 reg = (int)sym->st_value; 432 switch (reg & ~1) 433 { 434 case 2: reg -= 2; break; 435 case 6: reg -= 4; break; 436 default: 437 (*_bfd_error_handler) 438 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"), 439 abfd); 440 return FALSE; 441 } 442 443 if (info->hash->creator != abfd->xvec 444 || (abfd->flags & DYNAMIC) != 0) 445 { 446 /* STT_REGISTER only works when linking an elf64_sparc object. 447 If STT_REGISTER comes from a dynamic object, don't put it into 448 the output bfd. The dynamic linker will recheck it. */ 449 *namep = NULL; 450 return TRUE; 451 } 452 453 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg; 454 455 if (p->name != NULL && strcmp (p->name, *namep)) 456 { 457 (*_bfd_error_handler) 458 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"), 459 abfd, p->abfd, (int) sym->st_value, 460 **namep ? *namep : "#scratch", 461 *p->name ? p->name : "#scratch"); 462 return FALSE; 463 } 464 465 if (p->name == NULL) 466 { 467 if (**namep) 468 { 469 struct elf_link_hash_entry *h; 470 471 h = (struct elf_link_hash_entry *) 472 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE); 473 474 if (h != NULL) 475 { 476 unsigned char type = h->type; 477 478 if (type > STT_FUNC) 479 type = 0; 480 (*_bfd_error_handler) 481 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"), 482 abfd, p->abfd, *namep, stt_types[type]); 483 return FALSE; 484 } 485 486 p->name = bfd_hash_allocate (&info->hash->table, 487 strlen (*namep) + 1); 488 if (!p->name) 489 return FALSE; 490 491 strcpy (p->name, *namep); 492 } 493 else 494 p->name = ""; 495 p->bind = ELF_ST_BIND (sym->st_info); 496 p->abfd = abfd; 497 p->shndx = sym->st_shndx; 498 } 499 else 500 { 501 if (p->bind == STB_WEAK 502 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL) 503 { 504 p->bind = STB_GLOBAL; 505 p->abfd = abfd; 506 } 507 } 508 *namep = NULL; 509 return TRUE; 510 } 511 else if (*namep && **namep 512 && info->hash->creator == abfd->xvec) 513 { 514 int i; 515 struct _bfd_sparc_elf_app_reg *p; 516 517 p = _bfd_sparc_elf_hash_table(info)->app_regs; 518 for (i = 0; i < 4; i++, p++) 519 if (p->name != NULL && ! strcmp (p->name, *namep)) 520 { 521 unsigned char type = ELF_ST_TYPE (sym->st_info); 522 523 if (type > STT_FUNC) 524 type = 0; 525 (*_bfd_error_handler) 526 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"), 527 abfd, p->abfd, *namep, stt_types[type]); 528 return FALSE; 529 } 530 } 531 return TRUE; 532 } 533 534 /* This function takes care of emitting STT_REGISTER symbols 535 which we cannot easily keep in the symbol hash table. */ 536 537 static bfd_boolean 538 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED, 539 struct bfd_link_info *info, 540 PTR finfo, bfd_boolean (*func) (PTR, const char *, 541 Elf_Internal_Sym *, 542 asection *, 543 struct elf_link_hash_entry *)) 544 { 545 int reg; 546 struct _bfd_sparc_elf_app_reg *app_regs = 547 _bfd_sparc_elf_hash_table(info)->app_regs; 548 Elf_Internal_Sym sym; 549 550 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries 551 at the end of the dynlocal list, so they came at the end of the local 552 symbols in the symtab. Except that they aren't STB_LOCAL, so we need 553 to back up symtab->sh_info. */ 554 if (elf_hash_table (info)->dynlocal) 555 { 556 bfd * dynobj = elf_hash_table (info)->dynobj; 557 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym"); 558 struct elf_link_local_dynamic_entry *e; 559 560 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 561 if (e->input_indx == -1) 562 break; 563 if (e) 564 { 565 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info 566 = e->dynindx; 567 } 568 } 569 570 if (info->strip == strip_all) 571 return TRUE; 572 573 for (reg = 0; reg < 4; reg++) 574 if (app_regs [reg].name != NULL) 575 { 576 if (info->strip == strip_some 577 && bfd_hash_lookup (info->keep_hash, 578 app_regs [reg].name, 579 FALSE, FALSE) == NULL) 580 continue; 581 582 sym.st_value = reg < 2 ? reg + 2 : reg + 4; 583 sym.st_size = 0; 584 sym.st_other = 0; 585 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); 586 sym.st_shndx = app_regs [reg].shndx; 587 if (! (*func) (finfo, app_regs [reg].name, &sym, 588 sym.st_shndx == SHN_ABS 589 ? bfd_abs_section_ptr : bfd_und_section_ptr, 590 NULL)) 591 return FALSE; 592 } 593 594 return TRUE; 595 } 596 597 static int 598 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 599 { 600 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER) 601 return STT_REGISTER; 602 else 603 return type; 604 } 605 606 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL 607 even in SHN_UNDEF section. */ 608 609 static void 610 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) 611 { 612 elf_symbol_type *elfsym; 613 614 elfsym = (elf_symbol_type *) asym; 615 if (elfsym->internal_elf_sym.st_info 616 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER)) 617 { 618 asym->flags |= BSF_GLOBAL; 619 } 620 } 621 622 623 /* Functions for dealing with the e_flags field. */ 624 625 /* Merge backend specific data from an object file to the output 626 object file when linking. */ 627 628 static bfd_boolean 629 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 630 { 631 bfd_boolean error; 632 flagword new_flags, old_flags; 633 int new_mm, old_mm; 634 635 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 636 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 637 return TRUE; 638 639 new_flags = elf_elfheader (ibfd)->e_flags; 640 old_flags = elf_elfheader (obfd)->e_flags; 641 642 if (!elf_flags_init (obfd)) /* First call, no flags set */ 643 { 644 elf_flags_init (obfd) = TRUE; 645 elf_elfheader (obfd)->e_flags = new_flags; 646 } 647 648 else if (new_flags == old_flags) /* Compatible flags are ok */ 649 ; 650 651 else /* Incompatible flags */ 652 { 653 error = FALSE; 654 655 #define EF_SPARC_ISA_EXTENSIONS \ 656 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1) 657 658 if ((ibfd->flags & DYNAMIC) != 0) 659 { 660 /* We don't want dynamic objects memory ordering and 661 architecture to have any role. That's what dynamic linker 662 should do. */ 663 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS); 664 new_flags |= (old_flags 665 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS)); 666 } 667 else 668 { 669 /* Choose the highest architecture requirements. */ 670 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS); 671 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS); 672 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3)) 673 && (old_flags & EF_SPARC_HAL_R1)) 674 { 675 error = TRUE; 676 (*_bfd_error_handler) 677 (_("%B: linking UltraSPARC specific with HAL specific code"), 678 ibfd); 679 } 680 /* Choose the most restrictive memory ordering. */ 681 old_mm = (old_flags & EF_SPARCV9_MM); 682 new_mm = (new_flags & EF_SPARCV9_MM); 683 old_flags &= ~EF_SPARCV9_MM; 684 new_flags &= ~EF_SPARCV9_MM; 685 if (new_mm < old_mm) 686 old_mm = new_mm; 687 old_flags |= old_mm; 688 new_flags |= old_mm; 689 } 690 691 /* Warn about any other mismatches */ 692 if (new_flags != old_flags) 693 { 694 error = TRUE; 695 (*_bfd_error_handler) 696 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 697 ibfd, (long) new_flags, (long) old_flags); 698 } 699 700 elf_elfheader (obfd)->e_flags = old_flags; 701 702 if (error) 703 { 704 bfd_set_error (bfd_error_bad_value); 705 return FALSE; 706 } 707 } 708 return TRUE; 709 } 710 711 /* MARCO: Set the correct entry size for the .stab section. */ 712 713 static bfd_boolean 714 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, 715 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED, 716 asection *sec) 717 { 718 const char *name; 719 720 name = bfd_get_section_name (abfd, sec); 721 722 if (strcmp (name, ".stab") == 0) 723 { 724 /* Even in the 64bit case the stab entries are only 12 bytes long. */ 725 elf_section_data (sec)->this_hdr.sh_entsize = 12; 726 } 727 728 return TRUE; 729 } 730 731 /* Print a STT_REGISTER symbol to file FILE. */ 732 733 static const char * 734 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep, 735 asymbol *symbol) 736 { 737 FILE *file = (FILE *) filep; 738 int reg, type; 739 740 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info) 741 != STT_REGISTER) 742 return NULL; 743 744 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 745 type = symbol->flags; 746 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "", 747 ((type & BSF_LOCAL) 748 ? (type & BSF_GLOBAL) ? '!' : 'l' 749 : (type & BSF_GLOBAL) ? 'g' : ' '), 750 (type & BSF_WEAK) ? 'w' : ' '); 751 if (symbol->name == NULL || symbol->name [0] == '\0') 752 return "#scratch"; 753 else 754 return symbol->name; 755 } 756 757 static enum elf_reloc_type_class 758 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela) 759 { 760 switch ((int) ELF64_R_TYPE (rela->r_info)) 761 { 762 case R_SPARC_RELATIVE: 763 return reloc_class_relative; 764 case R_SPARC_JMP_SLOT: 765 return reloc_class_plt; 766 case R_SPARC_COPY: 767 return reloc_class_copy; 768 default: 769 return reloc_class_normal; 770 } 771 } 772 773 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in 774 standard ELF, because R_SPARC_OLO10 has secondary addend in 775 ELF64_R_TYPE_DATA field. This structure is used to redirect the 776 relocation handling routines. */ 777 778 const struct elf_size_info elf64_sparc_size_info = 779 { 780 sizeof (Elf64_External_Ehdr), 781 sizeof (Elf64_External_Phdr), 782 sizeof (Elf64_External_Shdr), 783 sizeof (Elf64_External_Rel), 784 sizeof (Elf64_External_Rela), 785 sizeof (Elf64_External_Sym), 786 sizeof (Elf64_External_Dyn), 787 sizeof (Elf_External_Note), 788 4, /* hash-table entry size. */ 789 /* Internal relocations per external relocations. 790 For link purposes we use just 1 internal per 791 1 external, for assembly and slurp symbol table 792 we use 2. */ 793 1, 794 64, /* arch_size. */ 795 3, /* log_file_align. */ 796 ELFCLASS64, 797 EV_CURRENT, 798 bfd_elf64_write_out_phdrs, 799 bfd_elf64_write_shdrs_and_ehdr, 800 elf64_sparc_write_relocs, 801 bfd_elf64_swap_symbol_in, 802 bfd_elf64_swap_symbol_out, 803 elf64_sparc_slurp_reloc_table, 804 bfd_elf64_slurp_symbol_table, 805 bfd_elf64_swap_dyn_in, 806 bfd_elf64_swap_dyn_out, 807 bfd_elf64_swap_reloc_in, 808 bfd_elf64_swap_reloc_out, 809 bfd_elf64_swap_reloca_in, 810 bfd_elf64_swap_reloca_out 811 }; 812 813 #define TARGET_BIG_SYM bfd_elf64_sparc_vec 814 #define TARGET_BIG_NAME "elf64-sparc" 815 #define ELF_ARCH bfd_arch_sparc 816 #define ELF_MAXPAGESIZE 0x100000 817 818 /* This is the official ABI value. */ 819 #define ELF_MACHINE_CODE EM_SPARCV9 820 821 /* This is the value that we used before the ABI was released. */ 822 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9 823 824 #define elf_backend_reloc_type_class \ 825 elf64_sparc_reloc_type_class 826 #define bfd_elf64_get_reloc_upper_bound \ 827 elf64_sparc_get_reloc_upper_bound 828 #define bfd_elf64_get_dynamic_reloc_upper_bound \ 829 elf64_sparc_get_dynamic_reloc_upper_bound 830 #define bfd_elf64_canonicalize_reloc \ 831 elf64_sparc_canonicalize_reloc 832 #define bfd_elf64_canonicalize_dynamic_reloc \ 833 elf64_sparc_canonicalize_dynamic_reloc 834 #define elf_backend_add_symbol_hook \ 835 elf64_sparc_add_symbol_hook 836 #define elf_backend_get_symbol_type \ 837 elf64_sparc_get_symbol_type 838 #define elf_backend_symbol_processing \ 839 elf64_sparc_symbol_processing 840 #define elf_backend_print_symbol_all \ 841 elf64_sparc_print_symbol_all 842 #define elf_backend_output_arch_syms \ 843 elf64_sparc_output_arch_syms 844 #define bfd_elf64_bfd_merge_private_bfd_data \ 845 elf64_sparc_merge_private_bfd_data 846 #define elf_backend_fake_sections \ 847 elf64_sparc_fake_sections 848 #define elf_backend_size_info \ 849 elf64_sparc_size_info 850 851 #define elf_backend_plt_sym_val \ 852 _bfd_sparc_elf_plt_sym_val 853 #define bfd_elf64_bfd_link_hash_table_create \ 854 _bfd_sparc_elf_link_hash_table_create 855 #define elf_info_to_howto \ 856 _bfd_sparc_elf_info_to_howto 857 #define elf_backend_copy_indirect_symbol \ 858 _bfd_sparc_elf_copy_indirect_symbol 859 #define bfd_elf64_bfd_reloc_type_lookup \ 860 _bfd_sparc_elf_reloc_type_lookup 861 #define bfd_elf64_bfd_relax_section \ 862 _bfd_sparc_elf_relax_section 863 #define bfd_elf64_new_section_hook \ 864 _bfd_sparc_elf_new_section_hook 865 866 #define elf_backend_create_dynamic_sections \ 867 _bfd_sparc_elf_create_dynamic_sections 868 #define elf_backend_check_relocs \ 869 _bfd_sparc_elf_check_relocs 870 #define elf_backend_adjust_dynamic_symbol \ 871 _bfd_sparc_elf_adjust_dynamic_symbol 872 #define elf_backend_omit_section_dynsym \ 873 _bfd_sparc_elf_omit_section_dynsym 874 #define elf_backend_size_dynamic_sections \ 875 _bfd_sparc_elf_size_dynamic_sections 876 #define elf_backend_relocate_section \ 877 _bfd_sparc_elf_relocate_section 878 #define elf_backend_finish_dynamic_symbol \ 879 _bfd_sparc_elf_finish_dynamic_symbol 880 #define elf_backend_finish_dynamic_sections \ 881 _bfd_sparc_elf_finish_dynamic_sections 882 883 #define bfd_elf64_mkobject \ 884 _bfd_sparc_elf_mkobject 885 #define elf_backend_object_p \ 886 _bfd_sparc_elf_object_p 887 #define elf_backend_gc_mark_hook \ 888 _bfd_sparc_elf_gc_mark_hook 889 #define elf_backend_gc_sweep_hook \ 890 _bfd_sparc_elf_gc_sweep_hook 891 892 #define elf_backend_can_gc_sections 1 893 #define elf_backend_can_refcount 1 894 #define elf_backend_want_got_plt 0 895 #define elf_backend_plt_readonly 0 896 #define elf_backend_want_plt_sym 1 897 #define elf_backend_got_header_size 8 898 #define elf_backend_rela_normal 1 899 900 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */ 901 #define elf_backend_plt_alignment 8 902 903 #include "elf64-target.h" 904