1 /* X86-64 specific support for 64-bit ELF 2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006 3 Free Software Foundation, Inc. 4 Contributed by Jan Hubicka <jh@suse.cz>. 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 21 22 #include "bfd.h" 23 #include "sysdep.h" 24 #include "bfdlink.h" 25 #include "libbfd.h" 26 #include "elf-bfd.h" 27 28 #include "elf/x86-64.h" 29 30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 31 #define MINUS_ONE (~ (bfd_vma) 0) 32 33 /* The relocation "howto" table. Order of fields: 34 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow, 35 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */ 36 static reloc_howto_type x86_64_elf_howto_table[] = 37 { 38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, 39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000, 40 FALSE), 41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE, 43 FALSE), 44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff, 46 TRUE), 47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff, 49 FALSE), 50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff, 52 TRUE), 53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff, 55 FALSE), 56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE, 58 MINUS_ONE, FALSE), 59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE, 61 MINUS_ONE, FALSE), 62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE, 64 MINUS_ONE, FALSE), 65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed, 66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff, 67 0xffffffff, TRUE), 68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, 69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, 70 FALSE), 71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed, 72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff, 73 FALSE), 74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE), 76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield, 77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE), 78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE), 80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, 81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE), 82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE, 84 MINUS_ONE, FALSE), 85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE, 87 MINUS_ONE, FALSE), 88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE, 90 MINUS_ONE, FALSE), 91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed, 92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff, 93 0xffffffff, TRUE), 94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed, 95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff, 96 0xffffffff, TRUE), 97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff, 99 0xffffffff, FALSE), 100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed, 101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff, 102 0xffffffff, TRUE), 103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff, 105 0xffffffff, FALSE), 106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, 107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE, 108 TRUE), 109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64", 111 FALSE, MINUS_ONE, MINUS_ONE, FALSE), 112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32", 114 FALSE, 0xffffffff, 0xffffffff, TRUE), 115 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 116 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE, 117 FALSE), 118 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed, 119 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE, 120 MINUS_ONE, TRUE), 121 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed, 122 bfd_elf_generic_reloc, "R_X86_64_GOTPC64", 123 FALSE, MINUS_ONE, MINUS_ONE, TRUE), 124 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 125 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE, 126 MINUS_ONE, FALSE), 127 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 128 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE, 129 MINUS_ONE, FALSE), 130 EMPTY_HOWTO (32), 131 EMPTY_HOWTO (33), 132 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0, 133 complain_overflow_bitfield, bfd_elf_generic_reloc, 134 "R_X86_64_GOTPC32_TLSDESC", 135 FALSE, 0xffffffff, 0xffffffff, TRUE), 136 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0, 137 complain_overflow_dont, bfd_elf_generic_reloc, 138 "R_X86_64_TLSDESC_CALL", 139 FALSE, 0, 0, FALSE), 140 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0, 141 complain_overflow_bitfield, bfd_elf_generic_reloc, 142 "R_X86_64_TLSDESC", 143 FALSE, MINUS_ONE, MINUS_ONE, FALSE), 144 145 /* We have a gap in the reloc numbers here. 146 R_X86_64_standard counts the number up to this point, and 147 R_X86_64_vt_offset is the value to subtract from a reloc type of 148 R_X86_64_GNU_VT* to form an index into this table. */ 149 #define R_X86_64_standard (R_X86_64_TLSDESC + 1) 150 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard) 151 152 /* GNU extension to record C++ vtable hierarchy. */ 153 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont, 154 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE), 155 156 /* GNU extension to record C++ vtable member usage. */ 157 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont, 158 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0, 159 FALSE) 160 }; 161 162 /* Map BFD relocs to the x86_64 elf relocs. */ 163 struct elf_reloc_map 164 { 165 bfd_reloc_code_real_type bfd_reloc_val; 166 unsigned char elf_reloc_val; 167 }; 168 169 static const struct elf_reloc_map x86_64_reloc_map[] = 170 { 171 { BFD_RELOC_NONE, R_X86_64_NONE, }, 172 { BFD_RELOC_64, R_X86_64_64, }, 173 { BFD_RELOC_32_PCREL, R_X86_64_PC32, }, 174 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,}, 175 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,}, 176 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, }, 177 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, }, 178 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, }, 179 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, }, 180 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, }, 181 { BFD_RELOC_32, R_X86_64_32, }, 182 { BFD_RELOC_X86_64_32S, R_X86_64_32S, }, 183 { BFD_RELOC_16, R_X86_64_16, }, 184 { BFD_RELOC_16_PCREL, R_X86_64_PC16, }, 185 { BFD_RELOC_8, R_X86_64_8, }, 186 { BFD_RELOC_8_PCREL, R_X86_64_PC8, }, 187 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, }, 188 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, }, 189 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, }, 190 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, }, 191 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, }, 192 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, }, 193 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, }, 194 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, }, 195 { BFD_RELOC_64_PCREL, R_X86_64_PC64, }, 196 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, }, 197 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, }, 198 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, }, 199 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, }, 200 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, }, 201 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, }, 202 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, }, 203 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, }, 204 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, }, 205 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, }, 206 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, }, 207 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, }, 208 }; 209 210 static reloc_howto_type * 211 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type) 212 { 213 unsigned i; 214 215 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT 216 || r_type >= (unsigned int) R_X86_64_max) 217 { 218 if (r_type >= (unsigned int) R_X86_64_standard) 219 { 220 (*_bfd_error_handler) (_("%B: invalid relocation type %d"), 221 abfd, (int) r_type); 222 r_type = R_X86_64_NONE; 223 } 224 i = r_type; 225 } 226 else 227 i = r_type - (unsigned int) R_X86_64_vt_offset; 228 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type); 229 return &x86_64_elf_howto_table[i]; 230 } 231 232 /* Given a BFD reloc type, return a HOWTO structure. */ 233 static reloc_howto_type * 234 elf64_x86_64_reloc_type_lookup (bfd *abfd, 235 bfd_reloc_code_real_type code) 236 { 237 unsigned int i; 238 239 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map); 240 i++) 241 { 242 if (x86_64_reloc_map[i].bfd_reloc_val == code) 243 return elf64_x86_64_rtype_to_howto (abfd, 244 x86_64_reloc_map[i].elf_reloc_val); 245 } 246 return 0; 247 } 248 249 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */ 250 251 static void 252 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, 253 Elf_Internal_Rela *dst) 254 { 255 unsigned r_type; 256 257 r_type = ELF64_R_TYPE (dst->r_info); 258 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type); 259 BFD_ASSERT (r_type == cache_ptr->howto->type); 260 } 261 262 /* Support for core dump NOTE sections. */ 263 static bfd_boolean 264 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 265 { 266 int offset; 267 size_t size; 268 269 switch (note->descsz) 270 { 271 default: 272 return FALSE; 273 274 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */ 275 /* pr_cursig */ 276 elf_tdata (abfd)->core_signal 277 = bfd_get_16 (abfd, note->descdata + 12); 278 279 /* pr_pid */ 280 elf_tdata (abfd)->core_pid 281 = bfd_get_32 (abfd, note->descdata + 32); 282 283 /* pr_reg */ 284 offset = 112; 285 size = 216; 286 287 break; 288 } 289 290 /* Make a ".reg/999" section. */ 291 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 292 size, note->descpos + offset); 293 } 294 295 static bfd_boolean 296 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 297 { 298 switch (note->descsz) 299 { 300 default: 301 return FALSE; 302 303 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */ 304 elf_tdata (abfd)->core_program 305 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); 306 elf_tdata (abfd)->core_command 307 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); 308 } 309 310 /* Note that for some reason, a spurious space is tacked 311 onto the end of the args in some (at least one anyway) 312 implementations, so strip it off if it exists. */ 313 314 { 315 char *command = elf_tdata (abfd)->core_command; 316 int n = strlen (command); 317 318 if (0 < n && command[n - 1] == ' ') 319 command[n - 1] = '\0'; 320 } 321 322 return TRUE; 323 } 324 325 /* Functions for the x86-64 ELF linker. */ 326 327 /* The name of the dynamic interpreter. This is put in the .interp 328 section. */ 329 330 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1" 331 332 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 333 copying dynamic variables from a shared lib into an app's dynbss 334 section, and instead use a dynamic relocation to point into the 335 shared lib. */ 336 #define ELIMINATE_COPY_RELOCS 1 337 338 /* The size in bytes of an entry in the global offset table. */ 339 340 #define GOT_ENTRY_SIZE 8 341 342 /* The size in bytes of an entry in the procedure linkage table. */ 343 344 #define PLT_ENTRY_SIZE 16 345 346 /* The first entry in a procedure linkage table looks like this. See the 347 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */ 348 349 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] = 350 { 351 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ 352 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */ 353 0xcc, 0xcc, 0xcc, 0xcc /* pad out to 16 bytes with int3. */ 354 }; 355 356 /* Subsequent entries in a procedure linkage table look like this. */ 357 358 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] = 359 { 360 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */ 361 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ 362 0x68, /* pushq immediate */ 363 0, 0, 0, 0, /* replaced with index into relocation table. */ 364 0xe9, /* jmp relative */ 365 0, 0, 0, 0 /* replaced with offset to start of .plt0. */ 366 }; 367 368 /* The x86-64 linker needs to keep track of the number of relocs that 369 it decides to copy as dynamic relocs in check_relocs for each symbol. 370 This is so that it can later discard them if they are found to be 371 unnecessary. We store the information in a field extending the 372 regular ELF linker hash table. */ 373 374 struct elf64_x86_64_dyn_relocs 375 { 376 /* Next section. */ 377 struct elf64_x86_64_dyn_relocs *next; 378 379 /* The input section of the reloc. */ 380 asection *sec; 381 382 /* Total number of relocs copied for the input section. */ 383 bfd_size_type count; 384 385 /* Number of pc-relative relocs copied for the input section. */ 386 bfd_size_type pc_count; 387 }; 388 389 /* x86-64 ELF linker hash entry. */ 390 391 struct elf64_x86_64_link_hash_entry 392 { 393 struct elf_link_hash_entry elf; 394 395 /* Track dynamic relocs copied for this symbol. */ 396 struct elf64_x86_64_dyn_relocs *dyn_relocs; 397 398 #define GOT_UNKNOWN 0 399 #define GOT_NORMAL 1 400 #define GOT_TLS_GD 2 401 #define GOT_TLS_IE 3 402 #define GOT_TLS_GDESC 4 403 #define GOT_TLS_GD_BOTH_P(type) \ 404 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) 405 #define GOT_TLS_GD_P(type) \ 406 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) 407 #define GOT_TLS_GDESC_P(type) \ 408 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) 409 #define GOT_TLS_GD_ANY_P(type) \ 410 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) 411 unsigned char tls_type; 412 413 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 414 starting at the end of the jump table. */ 415 bfd_vma tlsdesc_got; 416 }; 417 418 #define elf64_x86_64_hash_entry(ent) \ 419 ((struct elf64_x86_64_link_hash_entry *)(ent)) 420 421 struct elf64_x86_64_obj_tdata 422 { 423 struct elf_obj_tdata root; 424 425 /* tls_type for each local got entry. */ 426 char *local_got_tls_type; 427 428 /* GOTPLT entries for TLS descriptors. */ 429 bfd_vma *local_tlsdesc_gotent; 430 }; 431 432 #define elf64_x86_64_tdata(abfd) \ 433 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any) 434 435 #define elf64_x86_64_local_got_tls_type(abfd) \ 436 (elf64_x86_64_tdata (abfd)->local_got_tls_type) 437 438 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \ 439 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent) 440 441 /* x86-64 ELF linker hash table. */ 442 443 struct elf64_x86_64_link_hash_table 444 { 445 struct elf_link_hash_table elf; 446 447 /* Short-cuts to get to dynamic linker sections. */ 448 asection *sgot; 449 asection *sgotplt; 450 asection *srelgot; 451 asection *splt; 452 asection *srelplt; 453 asection *sdynbss; 454 asection *srelbss; 455 456 /* The offset into splt of the PLT entry for the TLS descriptor 457 resolver. Special values are 0, if not necessary (or not found 458 to be necessary yet), and -1 if needed but not determined 459 yet. */ 460 bfd_vma tlsdesc_plt; 461 /* The offset into sgot of the GOT entry used by the PLT entry 462 above. */ 463 bfd_vma tlsdesc_got; 464 465 union { 466 bfd_signed_vma refcount; 467 bfd_vma offset; 468 } tls_ld_got; 469 470 /* The amount of space used by the jump slots in the GOT. */ 471 bfd_vma sgotplt_jump_table_size; 472 473 /* Small local sym to section mapping cache. */ 474 struct sym_sec_cache sym_sec; 475 }; 476 477 /* Get the x86-64 ELF linker hash table from a link_info structure. */ 478 479 #define elf64_x86_64_hash_table(p) \ 480 ((struct elf64_x86_64_link_hash_table *) ((p)->hash)) 481 482 #define elf64_x86_64_compute_jump_table_size(htab) \ 483 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE) 484 485 /* Create an entry in an x86-64 ELF linker hash table. */ 486 487 static struct bfd_hash_entry * 488 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, 489 const char *string) 490 { 491 /* Allocate the structure if it has not already been allocated by a 492 subclass. */ 493 if (entry == NULL) 494 { 495 entry = bfd_hash_allocate (table, 496 sizeof (struct elf64_x86_64_link_hash_entry)); 497 if (entry == NULL) 498 return entry; 499 } 500 501 /* Call the allocation method of the superclass. */ 502 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 503 if (entry != NULL) 504 { 505 struct elf64_x86_64_link_hash_entry *eh; 506 507 eh = (struct elf64_x86_64_link_hash_entry *) entry; 508 eh->dyn_relocs = NULL; 509 eh->tls_type = GOT_UNKNOWN; 510 eh->tlsdesc_got = (bfd_vma) -1; 511 } 512 513 return entry; 514 } 515 516 /* Create an X86-64 ELF linker hash table. */ 517 518 static struct bfd_link_hash_table * 519 elf64_x86_64_link_hash_table_create (bfd *abfd) 520 { 521 struct elf64_x86_64_link_hash_table *ret; 522 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table); 523 524 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt); 525 if (ret == NULL) 526 return NULL; 527 528 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, 529 sizeof (struct elf64_x86_64_link_hash_entry))) 530 { 531 free (ret); 532 return NULL; 533 } 534 535 ret->sgot = NULL; 536 ret->sgotplt = NULL; 537 ret->srelgot = NULL; 538 ret->splt = NULL; 539 ret->srelplt = NULL; 540 ret->sdynbss = NULL; 541 ret->srelbss = NULL; 542 ret->sym_sec.abfd = NULL; 543 ret->tlsdesc_plt = 0; 544 ret->tlsdesc_got = 0; 545 ret->tls_ld_got.refcount = 0; 546 ret->sgotplt_jump_table_size = 0; 547 548 return &ret->elf.root; 549 } 550 551 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up 552 shortcuts to them in our hash table. */ 553 554 static bfd_boolean 555 create_got_section (bfd *dynobj, struct bfd_link_info *info) 556 { 557 struct elf64_x86_64_link_hash_table *htab; 558 559 if (! _bfd_elf_create_got_section (dynobj, info)) 560 return FALSE; 561 562 htab = elf64_x86_64_hash_table (info); 563 htab->sgot = bfd_get_section_by_name (dynobj, ".got"); 564 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); 565 if (!htab->sgot || !htab->sgotplt) 566 abort (); 567 568 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", 569 (SEC_ALLOC | SEC_LOAD 570 | SEC_HAS_CONTENTS 571 | SEC_IN_MEMORY 572 | SEC_LINKER_CREATED 573 | SEC_READONLY)); 574 if (htab->srelgot == NULL 575 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3)) 576 return FALSE; 577 return TRUE; 578 } 579 580 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and 581 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our 582 hash table. */ 583 584 static bfd_boolean 585 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 586 { 587 struct elf64_x86_64_link_hash_table *htab; 588 589 htab = elf64_x86_64_hash_table (info); 590 if (!htab->sgot && !create_got_section (dynobj, info)) 591 return FALSE; 592 593 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 594 return FALSE; 595 596 htab->splt = bfd_get_section_by_name (dynobj, ".plt"); 597 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); 598 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); 599 if (!info->shared) 600 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss"); 601 602 if (!htab->splt || !htab->srelplt || !htab->sdynbss 603 || (!info->shared && !htab->srelbss)) 604 abort (); 605 606 return TRUE; 607 } 608 609 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 610 611 static void 612 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info, 613 struct elf_link_hash_entry *dir, 614 struct elf_link_hash_entry *ind) 615 { 616 struct elf64_x86_64_link_hash_entry *edir, *eind; 617 618 edir = (struct elf64_x86_64_link_hash_entry *) dir; 619 eind = (struct elf64_x86_64_link_hash_entry *) ind; 620 621 if (eind->dyn_relocs != NULL) 622 { 623 if (edir->dyn_relocs != NULL) 624 { 625 struct elf64_x86_64_dyn_relocs **pp; 626 struct elf64_x86_64_dyn_relocs *p; 627 628 /* Add reloc counts against the indirect sym to the direct sym 629 list. Merge any entries against the same section. */ 630 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 631 { 632 struct elf64_x86_64_dyn_relocs *q; 633 634 for (q = edir->dyn_relocs; q != NULL; q = q->next) 635 if (q->sec == p->sec) 636 { 637 q->pc_count += p->pc_count; 638 q->count += p->count; 639 *pp = p->next; 640 break; 641 } 642 if (q == NULL) 643 pp = &p->next; 644 } 645 *pp = edir->dyn_relocs; 646 } 647 648 edir->dyn_relocs = eind->dyn_relocs; 649 eind->dyn_relocs = NULL; 650 } 651 652 if (ind->root.type == bfd_link_hash_indirect 653 && dir->got.refcount <= 0) 654 { 655 edir->tls_type = eind->tls_type; 656 eind->tls_type = GOT_UNKNOWN; 657 } 658 659 if (ELIMINATE_COPY_RELOCS 660 && ind->root.type != bfd_link_hash_indirect 661 && dir->dynamic_adjusted) 662 { 663 /* If called to transfer flags for a weakdef during processing 664 of elf_adjust_dynamic_symbol, don't copy non_got_ref. 665 We clear it ourselves for ELIMINATE_COPY_RELOCS. */ 666 dir->ref_dynamic |= ind->ref_dynamic; 667 dir->ref_regular |= ind->ref_regular; 668 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 669 dir->needs_plt |= ind->needs_plt; 670 dir->pointer_equality_needed |= ind->pointer_equality_needed; 671 } 672 else 673 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 674 } 675 676 static bfd_boolean 677 elf64_x86_64_mkobject (bfd *abfd) 678 { 679 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata); 680 abfd->tdata.any = bfd_zalloc (abfd, amt); 681 if (abfd->tdata.any == NULL) 682 return FALSE; 683 return TRUE; 684 } 685 686 static bfd_boolean 687 elf64_x86_64_elf_object_p (bfd *abfd) 688 { 689 /* Set the right machine number for an x86-64 elf64 file. */ 690 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64); 691 return TRUE; 692 } 693 694 static int 695 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local) 696 { 697 if (info->shared && !info->executable) 698 return r_type; 699 700 switch (r_type) 701 { 702 case R_X86_64_TLSGD: 703 case R_X86_64_GOTPC32_TLSDESC: 704 case R_X86_64_TLSDESC_CALL: 705 case R_X86_64_GOTTPOFF: 706 if (is_local) 707 return R_X86_64_TPOFF32; 708 return R_X86_64_GOTTPOFF; 709 case R_X86_64_TLSLD: 710 return R_X86_64_TPOFF32; 711 } 712 713 return r_type; 714 } 715 716 /* Look through the relocs for a section during the first phase, and 717 calculate needed space in the global offset table, procedure 718 linkage table, and dynamic reloc sections. */ 719 720 static bfd_boolean 721 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, 722 const Elf_Internal_Rela *relocs) 723 { 724 struct elf64_x86_64_link_hash_table *htab; 725 Elf_Internal_Shdr *symtab_hdr; 726 struct elf_link_hash_entry **sym_hashes; 727 const Elf_Internal_Rela *rel; 728 const Elf_Internal_Rela *rel_end; 729 asection *sreloc; 730 731 if (info->relocatable) 732 return TRUE; 733 734 htab = elf64_x86_64_hash_table (info); 735 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 736 sym_hashes = elf_sym_hashes (abfd); 737 738 sreloc = NULL; 739 740 rel_end = relocs + sec->reloc_count; 741 for (rel = relocs; rel < rel_end; rel++) 742 { 743 unsigned int r_type; 744 unsigned long r_symndx; 745 struct elf_link_hash_entry *h; 746 747 r_symndx = ELF64_R_SYM (rel->r_info); 748 r_type = ELF64_R_TYPE (rel->r_info); 749 750 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 751 { 752 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), 753 abfd, r_symndx); 754 return FALSE; 755 } 756 757 if (r_symndx < symtab_hdr->sh_info) 758 h = NULL; 759 else 760 { 761 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 762 while (h->root.type == bfd_link_hash_indirect 763 || h->root.type == bfd_link_hash_warning) 764 h = (struct elf_link_hash_entry *) h->root.u.i.link; 765 } 766 767 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL); 768 switch (r_type) 769 { 770 case R_X86_64_TLSLD: 771 htab->tls_ld_got.refcount += 1; 772 goto create_got; 773 774 case R_X86_64_TPOFF32: 775 if (info->shared && !info->executable) 776 { 777 (*_bfd_error_handler) 778 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 779 abfd, 780 x86_64_elf_howto_table[r_type].name, 781 (h) ? h->root.root.string : "a local symbol"); 782 bfd_set_error (bfd_error_bad_value); 783 return FALSE; 784 } 785 break; 786 787 case R_X86_64_GOTTPOFF: 788 if (info->shared && !info->executable) 789 info->flags |= DF_STATIC_TLS; 790 /* Fall through */ 791 792 case R_X86_64_GOT32: 793 case R_X86_64_GOTPCREL: 794 case R_X86_64_TLSGD: 795 case R_X86_64_GOT64: 796 case R_X86_64_GOTPCREL64: 797 case R_X86_64_GOTPLT64: 798 case R_X86_64_GOTPC32_TLSDESC: 799 case R_X86_64_TLSDESC_CALL: 800 /* This symbol requires a global offset table entry. */ 801 { 802 int tls_type, old_tls_type; 803 804 switch (r_type) 805 { 806 default: tls_type = GOT_NORMAL; break; 807 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break; 808 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break; 809 case R_X86_64_GOTPC32_TLSDESC: 810 case R_X86_64_TLSDESC_CALL: 811 tls_type = GOT_TLS_GDESC; break; 812 } 813 814 if (h != NULL) 815 { 816 if (r_type == R_X86_64_GOTPLT64) 817 { 818 /* This relocation indicates that we also need 819 a PLT entry, as this is a function. We don't need 820 a PLT entry for local symbols. */ 821 h->needs_plt = 1; 822 h->plt.refcount += 1; 823 } 824 h->got.refcount += 1; 825 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type; 826 } 827 else 828 { 829 bfd_signed_vma *local_got_refcounts; 830 831 /* This is a global offset table entry for a local symbol. */ 832 local_got_refcounts = elf_local_got_refcounts (abfd); 833 if (local_got_refcounts == NULL) 834 { 835 bfd_size_type size; 836 837 size = symtab_hdr->sh_info; 838 size *= sizeof (bfd_signed_vma) 839 + sizeof (bfd_vma) + sizeof (char); 840 local_got_refcounts = ((bfd_signed_vma *) 841 bfd_zalloc (abfd, size)); 842 if (local_got_refcounts == NULL) 843 return FALSE; 844 elf_local_got_refcounts (abfd) = local_got_refcounts; 845 elf64_x86_64_local_tlsdesc_gotent (abfd) 846 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); 847 elf64_x86_64_local_got_tls_type (abfd) 848 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); 849 } 850 local_got_refcounts[r_symndx] += 1; 851 old_tls_type 852 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx]; 853 } 854 855 /* If a TLS symbol is accessed using IE at least once, 856 there is no point to use dynamic model for it. */ 857 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN 858 && (! GOT_TLS_GD_ANY_P (old_tls_type) 859 || tls_type != GOT_TLS_IE)) 860 { 861 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type)) 862 tls_type = old_tls_type; 863 else if (GOT_TLS_GD_ANY_P (old_tls_type) 864 && GOT_TLS_GD_ANY_P (tls_type)) 865 tls_type |= old_tls_type; 866 else 867 { 868 (*_bfd_error_handler) 869 (_("%B: %s' accessed both as normal and thread local symbol"), 870 abfd, h ? h->root.root.string : "<local>"); 871 return FALSE; 872 } 873 } 874 875 if (old_tls_type != tls_type) 876 { 877 if (h != NULL) 878 elf64_x86_64_hash_entry (h)->tls_type = tls_type; 879 else 880 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type; 881 } 882 } 883 /* Fall through */ 884 885 case R_X86_64_GOTOFF64: 886 case R_X86_64_GOTPC32: 887 case R_X86_64_GOTPC64: 888 create_got: 889 if (htab->sgot == NULL) 890 { 891 if (htab->elf.dynobj == NULL) 892 htab->elf.dynobj = abfd; 893 if (!create_got_section (htab->elf.dynobj, info)) 894 return FALSE; 895 } 896 break; 897 898 case R_X86_64_PLT32: 899 /* This symbol requires a procedure linkage table entry. We 900 actually build the entry in adjust_dynamic_symbol, 901 because this might be a case of linking PIC code which is 902 never referenced by a dynamic object, in which case we 903 don't need to generate a procedure linkage table entry 904 after all. */ 905 906 /* If this is a local symbol, we resolve it directly without 907 creating a procedure linkage table entry. */ 908 if (h == NULL) 909 continue; 910 911 h->needs_plt = 1; 912 h->plt.refcount += 1; 913 break; 914 915 case R_X86_64_PLTOFF64: 916 /* This tries to form the 'address' of a function relative 917 to GOT. For global symbols we need a PLT entry. */ 918 if (h != NULL) 919 { 920 h->needs_plt = 1; 921 h->plt.refcount += 1; 922 } 923 goto create_got; 924 925 case R_X86_64_8: 926 case R_X86_64_16: 927 case R_X86_64_32: 928 case R_X86_64_32S: 929 /* Let's help debug shared library creation. These relocs 930 cannot be used in shared libs. Don't error out for 931 sections we don't care about, such as debug sections or 932 non-constant sections. */ 933 if (info->shared 934 && (sec->flags & SEC_ALLOC) != 0 935 && (sec->flags & SEC_READONLY) != 0) 936 { 937 (*_bfd_error_handler) 938 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 939 abfd, 940 x86_64_elf_howto_table[r_type].name, 941 (h) ? h->root.root.string : "a local symbol"); 942 bfd_set_error (bfd_error_bad_value); 943 return FALSE; 944 } 945 /* Fall through. */ 946 947 case R_X86_64_PC8: 948 case R_X86_64_PC16: 949 case R_X86_64_PC32: 950 case R_X86_64_PC64: 951 case R_X86_64_64: 952 if (h != NULL && !info->shared) 953 { 954 /* If this reloc is in a read-only section, we might 955 need a copy reloc. We can't check reliably at this 956 stage whether the section is read-only, as input 957 sections have not yet been mapped to output sections. 958 Tentatively set the flag for now, and correct in 959 adjust_dynamic_symbol. */ 960 h->non_got_ref = 1; 961 962 /* We may need a .plt entry if the function this reloc 963 refers to is in a shared lib. */ 964 h->plt.refcount += 1; 965 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64) 966 h->pointer_equality_needed = 1; 967 } 968 969 /* If we are creating a shared library, and this is a reloc 970 against a global symbol, or a non PC relative reloc 971 against a local symbol, then we need to copy the reloc 972 into the shared library. However, if we are linking with 973 -Bsymbolic, we do not need to copy a reloc against a 974 global symbol which is defined in an object we are 975 including in the link (i.e., DEF_REGULAR is set). At 976 this point we have not seen all the input files, so it is 977 possible that DEF_REGULAR is not set now but will be set 978 later (it is never cleared). In case of a weak definition, 979 DEF_REGULAR may be cleared later by a strong definition in 980 a shared library. We account for that possibility below by 981 storing information in the relocs_copied field of the hash 982 table entry. A similar situation occurs when creating 983 shared libraries and symbol visibility changes render the 984 symbol local. 985 986 If on the other hand, we are creating an executable, we 987 may need to keep relocations for symbols satisfied by a 988 dynamic library if we manage to avoid copy relocs for the 989 symbol. */ 990 if ((info->shared 991 && (sec->flags & SEC_ALLOC) != 0 992 && (((r_type != R_X86_64_PC8) 993 && (r_type != R_X86_64_PC16) 994 && (r_type != R_X86_64_PC32) 995 && (r_type != R_X86_64_PC64)) 996 || (h != NULL 997 && (! info->symbolic 998 || h->root.type == bfd_link_hash_defweak 999 || !h->def_regular)))) 1000 || (ELIMINATE_COPY_RELOCS 1001 && !info->shared 1002 && (sec->flags & SEC_ALLOC) != 0 1003 && h != NULL 1004 && (h->root.type == bfd_link_hash_defweak 1005 || !h->def_regular))) 1006 { 1007 struct elf64_x86_64_dyn_relocs *p; 1008 struct elf64_x86_64_dyn_relocs **head; 1009 1010 /* We must copy these reloc types into the output file. 1011 Create a reloc section in dynobj and make room for 1012 this reloc. */ 1013 if (sreloc == NULL) 1014 { 1015 const char *name; 1016 bfd *dynobj; 1017 1018 name = (bfd_elf_string_from_elf_section 1019 (abfd, 1020 elf_elfheader (abfd)->e_shstrndx, 1021 elf_section_data (sec)->rel_hdr.sh_name)); 1022 if (name == NULL) 1023 return FALSE; 1024 1025 if (strncmp (name, ".rela", 5) != 0 1026 || strcmp (bfd_get_section_name (abfd, sec), 1027 name + 5) != 0) 1028 { 1029 (*_bfd_error_handler) 1030 (_("%B: bad relocation section name `%s\'"), 1031 abfd, name); 1032 } 1033 1034 if (htab->elf.dynobj == NULL) 1035 htab->elf.dynobj = abfd; 1036 1037 dynobj = htab->elf.dynobj; 1038 1039 sreloc = bfd_get_section_by_name (dynobj, name); 1040 if (sreloc == NULL) 1041 { 1042 flagword flags; 1043 1044 flags = (SEC_HAS_CONTENTS | SEC_READONLY 1045 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 1046 if ((sec->flags & SEC_ALLOC) != 0) 1047 flags |= SEC_ALLOC | SEC_LOAD; 1048 sreloc = bfd_make_section_with_flags (dynobj, 1049 name, 1050 flags); 1051 if (sreloc == NULL 1052 || ! bfd_set_section_alignment (dynobj, sreloc, 3)) 1053 return FALSE; 1054 } 1055 elf_section_data (sec)->sreloc = sreloc; 1056 } 1057 1058 /* If this is a global symbol, we count the number of 1059 relocations we need for this symbol. */ 1060 if (h != NULL) 1061 { 1062 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs; 1063 } 1064 else 1065 { 1066 void **vpp; 1067 /* Track dynamic relocs needed for local syms too. 1068 We really need local syms available to do this 1069 easily. Oh well. */ 1070 1071 asection *s; 1072 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, 1073 sec, r_symndx); 1074 if (s == NULL) 1075 return FALSE; 1076 1077 /* Beware of type punned pointers vs strict aliasing 1078 rules. */ 1079 vpp = &(elf_section_data (s)->local_dynrel); 1080 head = (struct elf64_x86_64_dyn_relocs **)vpp; 1081 } 1082 1083 p = *head; 1084 if (p == NULL || p->sec != sec) 1085 { 1086 bfd_size_type amt = sizeof *p; 1087 p = ((struct elf64_x86_64_dyn_relocs *) 1088 bfd_alloc (htab->elf.dynobj, amt)); 1089 if (p == NULL) 1090 return FALSE; 1091 p->next = *head; 1092 *head = p; 1093 p->sec = sec; 1094 p->count = 0; 1095 p->pc_count = 0; 1096 } 1097 1098 p->count += 1; 1099 if (r_type == R_X86_64_PC8 1100 || r_type == R_X86_64_PC16 1101 || r_type == R_X86_64_PC32 1102 || r_type == R_X86_64_PC64) 1103 p->pc_count += 1; 1104 } 1105 break; 1106 1107 /* This relocation describes the C++ object vtable hierarchy. 1108 Reconstruct it for later use during GC. */ 1109 case R_X86_64_GNU_VTINHERIT: 1110 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 1111 return FALSE; 1112 break; 1113 1114 /* This relocation describes which C++ vtable entries are actually 1115 used. Record for later use during GC. */ 1116 case R_X86_64_GNU_VTENTRY: 1117 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 1118 return FALSE; 1119 break; 1120 1121 default: 1122 break; 1123 } 1124 } 1125 1126 return TRUE; 1127 } 1128 1129 /* Return the section that should be marked against GC for a given 1130 relocation. */ 1131 1132 static asection * 1133 elf64_x86_64_gc_mark_hook (asection *sec, 1134 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1135 Elf_Internal_Rela *rel, 1136 struct elf_link_hash_entry *h, 1137 Elf_Internal_Sym *sym) 1138 { 1139 if (h != NULL) 1140 { 1141 switch (ELF64_R_TYPE (rel->r_info)) 1142 { 1143 case R_X86_64_GNU_VTINHERIT: 1144 case R_X86_64_GNU_VTENTRY: 1145 break; 1146 1147 default: 1148 switch (h->root.type) 1149 { 1150 case bfd_link_hash_defined: 1151 case bfd_link_hash_defweak: 1152 return h->root.u.def.section; 1153 1154 case bfd_link_hash_common: 1155 return h->root.u.c.p->section; 1156 1157 default: 1158 break; 1159 } 1160 } 1161 } 1162 else 1163 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 1164 1165 return NULL; 1166 } 1167 1168 /* Update the got entry reference counts for the section being removed. */ 1169 1170 static bfd_boolean 1171 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, 1172 asection *sec, const Elf_Internal_Rela *relocs) 1173 { 1174 Elf_Internal_Shdr *symtab_hdr; 1175 struct elf_link_hash_entry **sym_hashes; 1176 bfd_signed_vma *local_got_refcounts; 1177 const Elf_Internal_Rela *rel, *relend; 1178 1179 elf_section_data (sec)->local_dynrel = NULL; 1180 1181 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1182 sym_hashes = elf_sym_hashes (abfd); 1183 local_got_refcounts = elf_local_got_refcounts (abfd); 1184 1185 relend = relocs + sec->reloc_count; 1186 for (rel = relocs; rel < relend; rel++) 1187 { 1188 unsigned long r_symndx; 1189 unsigned int r_type; 1190 struct elf_link_hash_entry *h = NULL; 1191 1192 r_symndx = ELF64_R_SYM (rel->r_info); 1193 if (r_symndx >= symtab_hdr->sh_info) 1194 { 1195 struct elf64_x86_64_link_hash_entry *eh; 1196 struct elf64_x86_64_dyn_relocs **pp; 1197 struct elf64_x86_64_dyn_relocs *p; 1198 1199 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1200 while (h->root.type == bfd_link_hash_indirect 1201 || h->root.type == bfd_link_hash_warning) 1202 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1203 eh = (struct elf64_x86_64_link_hash_entry *) h; 1204 1205 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) 1206 if (p->sec == sec) 1207 { 1208 /* Everything must go for SEC. */ 1209 *pp = p->next; 1210 break; 1211 } 1212 } 1213 1214 r_type = ELF64_R_TYPE (rel->r_info); 1215 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL); 1216 switch (r_type) 1217 { 1218 case R_X86_64_TLSLD: 1219 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0) 1220 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1; 1221 break; 1222 1223 case R_X86_64_TLSGD: 1224 case R_X86_64_GOTPC32_TLSDESC: 1225 case R_X86_64_TLSDESC_CALL: 1226 case R_X86_64_GOTTPOFF: 1227 case R_X86_64_GOT32: 1228 case R_X86_64_GOTPCREL: 1229 case R_X86_64_GOT64: 1230 case R_X86_64_GOTPCREL64: 1231 case R_X86_64_GOTPLT64: 1232 if (h != NULL) 1233 { 1234 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0) 1235 h->plt.refcount -= 1; 1236 if (h->got.refcount > 0) 1237 h->got.refcount -= 1; 1238 } 1239 else if (local_got_refcounts != NULL) 1240 { 1241 if (local_got_refcounts[r_symndx] > 0) 1242 local_got_refcounts[r_symndx] -= 1; 1243 } 1244 break; 1245 1246 case R_X86_64_8: 1247 case R_X86_64_16: 1248 case R_X86_64_32: 1249 case R_X86_64_64: 1250 case R_X86_64_32S: 1251 case R_X86_64_PC8: 1252 case R_X86_64_PC16: 1253 case R_X86_64_PC32: 1254 case R_X86_64_PC64: 1255 if (info->shared) 1256 break; 1257 /* Fall thru */ 1258 1259 case R_X86_64_PLT32: 1260 case R_X86_64_PLTOFF64: 1261 if (h != NULL) 1262 { 1263 if (h->plt.refcount > 0) 1264 h->plt.refcount -= 1; 1265 } 1266 break; 1267 1268 default: 1269 break; 1270 } 1271 } 1272 1273 return TRUE; 1274 } 1275 1276 /* Adjust a symbol defined by a dynamic object and referenced by a 1277 regular object. The current definition is in some section of the 1278 dynamic object, but we're not including those sections. We have to 1279 change the definition to something the rest of the link can 1280 understand. */ 1281 1282 static bfd_boolean 1283 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info, 1284 struct elf_link_hash_entry *h) 1285 { 1286 struct elf64_x86_64_link_hash_table *htab; 1287 asection *s; 1288 unsigned int power_of_two; 1289 1290 /* If this is a function, put it in the procedure linkage table. We 1291 will fill in the contents of the procedure linkage table later, 1292 when we know the address of the .got section. */ 1293 if (h->type == STT_FUNC 1294 || h->needs_plt) 1295 { 1296 if (h->plt.refcount <= 0 1297 || SYMBOL_CALLS_LOCAL (info, h) 1298 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1299 && h->root.type == bfd_link_hash_undefweak)) 1300 { 1301 /* This case can occur if we saw a PLT32 reloc in an input 1302 file, but the symbol was never referred to by a dynamic 1303 object, or if all references were garbage collected. In 1304 such a case, we don't actually need to build a procedure 1305 linkage table, and we can just do a PC32 reloc instead. */ 1306 h->plt.offset = (bfd_vma) -1; 1307 h->needs_plt = 0; 1308 } 1309 1310 return TRUE; 1311 } 1312 else 1313 /* It's possible that we incorrectly decided a .plt reloc was 1314 needed for an R_X86_64_PC32 reloc to a non-function sym in 1315 check_relocs. We can't decide accurately between function and 1316 non-function syms in check-relocs; Objects loaded later in 1317 the link may change h->type. So fix it now. */ 1318 h->plt.offset = (bfd_vma) -1; 1319 1320 /* If this is a weak symbol, and there is a real definition, the 1321 processor independent code will have arranged for us to see the 1322 real definition first, and we can just use the same value. */ 1323 if (h->u.weakdef != NULL) 1324 { 1325 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 1326 || h->u.weakdef->root.type == bfd_link_hash_defweak); 1327 h->root.u.def.section = h->u.weakdef->root.u.def.section; 1328 h->root.u.def.value = h->u.weakdef->root.u.def.value; 1329 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) 1330 h->non_got_ref = h->u.weakdef->non_got_ref; 1331 return TRUE; 1332 } 1333 1334 /* This is a reference to a symbol defined by a dynamic object which 1335 is not a function. */ 1336 1337 /* If we are creating a shared library, we must presume that the 1338 only references to the symbol are via the global offset table. 1339 For such cases we need not do anything here; the relocations will 1340 be handled correctly by relocate_section. */ 1341 if (info->shared) 1342 return TRUE; 1343 1344 /* If there are no references to this symbol that do not use the 1345 GOT, we don't need to generate a copy reloc. */ 1346 if (!h->non_got_ref) 1347 return TRUE; 1348 1349 /* If -z nocopyreloc was given, we won't generate them either. */ 1350 if (info->nocopyreloc) 1351 { 1352 h->non_got_ref = 0; 1353 return TRUE; 1354 } 1355 1356 if (ELIMINATE_COPY_RELOCS) 1357 { 1358 struct elf64_x86_64_link_hash_entry * eh; 1359 struct elf64_x86_64_dyn_relocs *p; 1360 1361 eh = (struct elf64_x86_64_link_hash_entry *) h; 1362 for (p = eh->dyn_relocs; p != NULL; p = p->next) 1363 { 1364 s = p->sec->output_section; 1365 if (s != NULL && (s->flags & SEC_READONLY) != 0) 1366 break; 1367 } 1368 1369 /* If we didn't find any dynamic relocs in read-only sections, then 1370 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 1371 if (p == NULL) 1372 { 1373 h->non_got_ref = 0; 1374 return TRUE; 1375 } 1376 } 1377 1378 if (h->size == 0) 1379 { 1380 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), 1381 h->root.root.string); 1382 return TRUE; 1383 } 1384 1385 /* We must allocate the symbol in our .dynbss section, which will 1386 become part of the .bss section of the executable. There will be 1387 an entry for this symbol in the .dynsym section. The dynamic 1388 object will contain position independent code, so all references 1389 from the dynamic object to this symbol will go through the global 1390 offset table. The dynamic linker will use the .dynsym entry to 1391 determine the address it must put in the global offset table, so 1392 both the dynamic object and the regular object will refer to the 1393 same memory location for the variable. */ 1394 1395 htab = elf64_x86_64_hash_table (info); 1396 1397 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker 1398 to copy the initial value out of the dynamic object and into the 1399 runtime process image. */ 1400 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 1401 { 1402 htab->srelbss->size += sizeof (Elf64_External_Rela); 1403 h->needs_copy = 1; 1404 } 1405 1406 /* We need to figure out the alignment required for this symbol. I 1407 have no idea how ELF linkers handle this. 16-bytes is the size 1408 of the largest type that requires hard alignment -- long double. */ 1409 /* FIXME: This is VERY ugly. Should be fixed for all architectures using 1410 this construct. */ 1411 power_of_two = bfd_log2 (h->size); 1412 if (power_of_two > 4) 1413 power_of_two = 4; 1414 1415 /* Apply the required alignment. */ 1416 s = htab->sdynbss; 1417 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two)); 1418 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)) 1419 { 1420 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)) 1421 return FALSE; 1422 } 1423 1424 /* Define the symbol as being at this point in the section. */ 1425 h->root.u.def.section = s; 1426 h->root.u.def.value = s->size; 1427 1428 /* Increment the section size to make room for the symbol. */ 1429 s->size += h->size; 1430 1431 return TRUE; 1432 } 1433 1434 /* Allocate space in .plt, .got and associated reloc sections for 1435 dynamic relocs. */ 1436 1437 static bfd_boolean 1438 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) 1439 { 1440 struct bfd_link_info *info; 1441 struct elf64_x86_64_link_hash_table *htab; 1442 struct elf64_x86_64_link_hash_entry *eh; 1443 struct elf64_x86_64_dyn_relocs *p; 1444 1445 if (h->root.type == bfd_link_hash_indirect) 1446 return TRUE; 1447 1448 if (h->root.type == bfd_link_hash_warning) 1449 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1450 1451 info = (struct bfd_link_info *) inf; 1452 htab = elf64_x86_64_hash_table (info); 1453 1454 if (htab->elf.dynamic_sections_created 1455 && h->plt.refcount > 0) 1456 { 1457 /* Make sure this symbol is output as a dynamic symbol. 1458 Undefined weak syms won't yet be marked as dynamic. */ 1459 if (h->dynindx == -1 1460 && !h->forced_local) 1461 { 1462 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1463 return FALSE; 1464 } 1465 1466 if (info->shared 1467 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 1468 { 1469 asection *s = htab->splt; 1470 1471 /* If this is the first .plt entry, make room for the special 1472 first entry. */ 1473 if (s->size == 0) 1474 s->size += PLT_ENTRY_SIZE; 1475 1476 h->plt.offset = s->size; 1477 1478 /* If this symbol is not defined in a regular file, and we are 1479 not generating a shared library, then set the symbol to this 1480 location in the .plt. This is required to make function 1481 pointers compare as equal between the normal executable and 1482 the shared library. */ 1483 if (! info->shared 1484 && !h->def_regular) 1485 { 1486 h->root.u.def.section = s; 1487 h->root.u.def.value = h->plt.offset; 1488 } 1489 1490 /* Make room for this entry. */ 1491 s->size += PLT_ENTRY_SIZE; 1492 1493 /* We also need to make an entry in the .got.plt section, which 1494 will be placed in the .got section by the linker script. */ 1495 htab->sgotplt->size += GOT_ENTRY_SIZE; 1496 1497 /* We also need to make an entry in the .rela.plt section. */ 1498 htab->srelplt->size += sizeof (Elf64_External_Rela); 1499 htab->srelplt->reloc_count++; 1500 } 1501 else 1502 { 1503 h->plt.offset = (bfd_vma) -1; 1504 h->needs_plt = 0; 1505 } 1506 } 1507 else 1508 { 1509 h->plt.offset = (bfd_vma) -1; 1510 h->needs_plt = 0; 1511 } 1512 1513 eh = (struct elf64_x86_64_link_hash_entry *) h; 1514 eh->tlsdesc_got = (bfd_vma) -1; 1515 1516 /* If R_X86_64_GOTTPOFF symbol is now local to the binary, 1517 make it a R_X86_64_TPOFF32 requiring no GOT entry. */ 1518 if (h->got.refcount > 0 1519 && (!info->shared || info->executable) 1520 && h->dynindx == -1 1521 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE) 1522 h->got.offset = (bfd_vma) -1; 1523 else if (h->got.refcount > 0) 1524 { 1525 asection *s; 1526 bfd_boolean dyn; 1527 int tls_type = elf64_x86_64_hash_entry (h)->tls_type; 1528 1529 /* Make sure this symbol is output as a dynamic symbol. 1530 Undefined weak syms won't yet be marked as dynamic. */ 1531 if (h->dynindx == -1 1532 && !h->forced_local) 1533 { 1534 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1535 return FALSE; 1536 } 1537 1538 if (GOT_TLS_GDESC_P (tls_type)) 1539 { 1540 eh->tlsdesc_got = htab->sgotplt->size 1541 - elf64_x86_64_compute_jump_table_size (htab); 1542 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE; 1543 h->got.offset = (bfd_vma) -2; 1544 } 1545 if (! GOT_TLS_GDESC_P (tls_type) 1546 || GOT_TLS_GD_P (tls_type)) 1547 { 1548 s = htab->sgot; 1549 h->got.offset = s->size; 1550 s->size += GOT_ENTRY_SIZE; 1551 if (GOT_TLS_GD_P (tls_type)) 1552 s->size += GOT_ENTRY_SIZE; 1553 } 1554 dyn = htab->elf.dynamic_sections_created; 1555 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol 1556 and two if global. 1557 R_X86_64_GOTTPOFF needs one dynamic relocation. */ 1558 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) 1559 || tls_type == GOT_TLS_IE) 1560 htab->srelgot->size += sizeof (Elf64_External_Rela); 1561 else if (GOT_TLS_GD_P (tls_type)) 1562 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela); 1563 else if (! GOT_TLS_GDESC_P (tls_type) 1564 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 1565 || h->root.type != bfd_link_hash_undefweak) 1566 && (info->shared 1567 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) 1568 htab->srelgot->size += sizeof (Elf64_External_Rela); 1569 if (GOT_TLS_GDESC_P (tls_type)) 1570 { 1571 htab->srelplt->size += sizeof (Elf64_External_Rela); 1572 htab->tlsdesc_plt = (bfd_vma) -1; 1573 } 1574 } 1575 else 1576 h->got.offset = (bfd_vma) -1; 1577 1578 if (eh->dyn_relocs == NULL) 1579 return TRUE; 1580 1581 /* In the shared -Bsymbolic case, discard space allocated for 1582 dynamic pc-relative relocs against symbols which turn out to be 1583 defined in regular objects. For the normal shared case, discard 1584 space for pc-relative relocs that have become local due to symbol 1585 visibility changes. */ 1586 1587 if (info->shared) 1588 { 1589 /* Relocs that use pc_count are those that appear on a call 1590 insn, or certain REL relocs that can generated via assembly. 1591 We want calls to protected symbols to resolve directly to the 1592 function rather than going via the plt. If people want 1593 function pointer comparisons to work as expected then they 1594 should avoid writing weird assembly. */ 1595 if (SYMBOL_CALLS_LOCAL (info, h)) 1596 { 1597 struct elf64_x86_64_dyn_relocs **pp; 1598 1599 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 1600 { 1601 p->count -= p->pc_count; 1602 p->pc_count = 0; 1603 if (p->count == 0) 1604 *pp = p->next; 1605 else 1606 pp = &p->next; 1607 } 1608 } 1609 1610 /* Also discard relocs on undefined weak syms with non-default 1611 visibility. */ 1612 if (eh->dyn_relocs != NULL 1613 && h->root.type == bfd_link_hash_undefweak) 1614 { 1615 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 1616 eh->dyn_relocs = NULL; 1617 1618 /* Make sure undefined weak symbols are output as a dynamic 1619 symbol in PIEs. */ 1620 else if (h->dynindx == -1 1621 && !h->forced_local) 1622 { 1623 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1624 return FALSE; 1625 } 1626 } 1627 } 1628 else if (ELIMINATE_COPY_RELOCS) 1629 { 1630 /* For the non-shared case, discard space for relocs against 1631 symbols which turn out to need copy relocs or are not 1632 dynamic. */ 1633 1634 if (!h->non_got_ref 1635 && ((h->def_dynamic 1636 && !h->def_regular) 1637 || (htab->elf.dynamic_sections_created 1638 && (h->root.type == bfd_link_hash_undefweak 1639 || h->root.type == bfd_link_hash_undefined)))) 1640 { 1641 /* Make sure this symbol is output as a dynamic symbol. 1642 Undefined weak syms won't yet be marked as dynamic. */ 1643 if (h->dynindx == -1 1644 && !h->forced_local) 1645 { 1646 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1647 return FALSE; 1648 } 1649 1650 /* If that succeeded, we know we'll be keeping all the 1651 relocs. */ 1652 if (h->dynindx != -1) 1653 goto keep; 1654 } 1655 1656 eh->dyn_relocs = NULL; 1657 1658 keep: ; 1659 } 1660 1661 /* Finally, allocate space. */ 1662 for (p = eh->dyn_relocs; p != NULL; p = p->next) 1663 { 1664 asection *sreloc = elf_section_data (p->sec)->sreloc; 1665 sreloc->size += p->count * sizeof (Elf64_External_Rela); 1666 } 1667 1668 return TRUE; 1669 } 1670 1671 /* Find any dynamic relocs that apply to read-only sections. */ 1672 1673 static bfd_boolean 1674 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf) 1675 { 1676 struct elf64_x86_64_link_hash_entry *eh; 1677 struct elf64_x86_64_dyn_relocs *p; 1678 1679 if (h->root.type == bfd_link_hash_warning) 1680 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1681 1682 eh = (struct elf64_x86_64_link_hash_entry *) h; 1683 for (p = eh->dyn_relocs; p != NULL; p = p->next) 1684 { 1685 asection *s = p->sec->output_section; 1686 1687 if (s != NULL && (s->flags & SEC_READONLY) != 0) 1688 { 1689 struct bfd_link_info *info = (struct bfd_link_info *) inf; 1690 1691 info->flags |= DF_TEXTREL; 1692 1693 /* Not an error, just cut short the traversal. */ 1694 return FALSE; 1695 } 1696 } 1697 return TRUE; 1698 } 1699 1700 /* Set the sizes of the dynamic sections. */ 1701 1702 static bfd_boolean 1703 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 1704 struct bfd_link_info *info) 1705 { 1706 struct elf64_x86_64_link_hash_table *htab; 1707 bfd *dynobj; 1708 asection *s; 1709 bfd_boolean relocs; 1710 bfd *ibfd; 1711 1712 htab = elf64_x86_64_hash_table (info); 1713 dynobj = htab->elf.dynobj; 1714 if (dynobj == NULL) 1715 abort (); 1716 1717 if (htab->elf.dynamic_sections_created) 1718 { 1719 /* Set the contents of the .interp section to the interpreter. */ 1720 if (info->executable && !info->static_link) 1721 { 1722 s = bfd_get_section_by_name (dynobj, ".interp"); 1723 if (s == NULL) 1724 abort (); 1725 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 1726 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1727 } 1728 } 1729 1730 /* Set up .got offsets for local syms, and space for local dynamic 1731 relocs. */ 1732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 1733 { 1734 bfd_signed_vma *local_got; 1735 bfd_signed_vma *end_local_got; 1736 char *local_tls_type; 1737 bfd_vma *local_tlsdesc_gotent; 1738 bfd_size_type locsymcount; 1739 Elf_Internal_Shdr *symtab_hdr; 1740 asection *srel; 1741 1742 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 1743 continue; 1744 1745 for (s = ibfd->sections; s != NULL; s = s->next) 1746 { 1747 struct elf64_x86_64_dyn_relocs *p; 1748 1749 for (p = (struct elf64_x86_64_dyn_relocs *) 1750 (elf_section_data (s)->local_dynrel); 1751 p != NULL; 1752 p = p->next) 1753 { 1754 if (!bfd_is_abs_section (p->sec) 1755 && bfd_is_abs_section (p->sec->output_section)) 1756 { 1757 /* Input section has been discarded, either because 1758 it is a copy of a linkonce section or due to 1759 linker script /DISCARD/, so we'll be discarding 1760 the relocs too. */ 1761 } 1762 else if (p->count != 0) 1763 { 1764 srel = elf_section_data (p->sec)->sreloc; 1765 srel->size += p->count * sizeof (Elf64_External_Rela); 1766 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 1767 info->flags |= DF_TEXTREL; 1768 1769 } 1770 } 1771 } 1772 1773 local_got = elf_local_got_refcounts (ibfd); 1774 if (!local_got) 1775 continue; 1776 1777 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; 1778 locsymcount = symtab_hdr->sh_info; 1779 end_local_got = local_got + locsymcount; 1780 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd); 1781 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd); 1782 s = htab->sgot; 1783 srel = htab->srelgot; 1784 for (; local_got < end_local_got; 1785 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) 1786 { 1787 *local_tlsdesc_gotent = (bfd_vma) -1; 1788 if (*local_got > 0) 1789 { 1790 if (GOT_TLS_GDESC_P (*local_tls_type)) 1791 { 1792 *local_tlsdesc_gotent = htab->sgotplt->size 1793 - elf64_x86_64_compute_jump_table_size (htab); 1794 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE; 1795 *local_got = (bfd_vma) -2; 1796 } 1797 if (! GOT_TLS_GDESC_P (*local_tls_type) 1798 || GOT_TLS_GD_P (*local_tls_type)) 1799 { 1800 *local_got = s->size; 1801 s->size += GOT_ENTRY_SIZE; 1802 if (GOT_TLS_GD_P (*local_tls_type)) 1803 s->size += GOT_ENTRY_SIZE; 1804 } 1805 if (info->shared 1806 || GOT_TLS_GD_ANY_P (*local_tls_type) 1807 || *local_tls_type == GOT_TLS_IE) 1808 { 1809 if (GOT_TLS_GDESC_P (*local_tls_type)) 1810 { 1811 htab->srelplt->size += sizeof (Elf64_External_Rela); 1812 htab->tlsdesc_plt = (bfd_vma) -1; 1813 } 1814 if (! GOT_TLS_GDESC_P (*local_tls_type) 1815 || GOT_TLS_GD_P (*local_tls_type)) 1816 srel->size += sizeof (Elf64_External_Rela); 1817 } 1818 } 1819 else 1820 *local_got = (bfd_vma) -1; 1821 } 1822 } 1823 1824 if (htab->tls_ld_got.refcount > 0) 1825 { 1826 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD 1827 relocs. */ 1828 htab->tls_ld_got.offset = htab->sgot->size; 1829 htab->sgot->size += 2 * GOT_ENTRY_SIZE; 1830 htab->srelgot->size += sizeof (Elf64_External_Rela); 1831 } 1832 else 1833 htab->tls_ld_got.offset = -1; 1834 1835 /* Allocate global sym .plt and .got entries, and space for global 1836 sym dynamic relocs. */ 1837 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); 1838 1839 /* For every jump slot reserved in the sgotplt, reloc_count is 1840 incremented. However, when we reserve space for TLS descriptors, 1841 it's not incremented, so in order to compute the space reserved 1842 for them, it suffices to multiply the reloc count by the jump 1843 slot size. */ 1844 if (htab->srelplt) 1845 htab->sgotplt_jump_table_size 1846 = elf64_x86_64_compute_jump_table_size (htab); 1847 1848 if (htab->tlsdesc_plt) 1849 { 1850 /* If we're not using lazy TLS relocations, don't generate the 1851 PLT and GOT entries they require. */ 1852 if ((info->flags & DF_BIND_NOW)) 1853 htab->tlsdesc_plt = 0; 1854 else 1855 { 1856 htab->tlsdesc_got = htab->sgot->size; 1857 htab->sgot->size += GOT_ENTRY_SIZE; 1858 /* Reserve room for the initial entry. 1859 FIXME: we could probably do away with it in this case. */ 1860 if (htab->splt->size == 0) 1861 htab->splt->size += PLT_ENTRY_SIZE; 1862 htab->tlsdesc_plt = htab->splt->size; 1863 htab->splt->size += PLT_ENTRY_SIZE; 1864 } 1865 } 1866 1867 /* We now have determined the sizes of the various dynamic sections. 1868 Allocate memory for them. */ 1869 relocs = FALSE; 1870 for (s = dynobj->sections; s != NULL; s = s->next) 1871 { 1872 if ((s->flags & SEC_LINKER_CREATED) == 0) 1873 continue; 1874 1875 if (s == htab->splt 1876 || s == htab->sgot 1877 || s == htab->sgotplt 1878 || s == htab->sdynbss) 1879 { 1880 /* Strip this section if we don't need it; see the 1881 comment below. */ 1882 } 1883 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0) 1884 { 1885 if (s->size != 0 && s != htab->srelplt) 1886 relocs = TRUE; 1887 1888 /* We use the reloc_count field as a counter if we need 1889 to copy relocs into the output file. */ 1890 if (s != htab->srelplt) 1891 s->reloc_count = 0; 1892 } 1893 else 1894 { 1895 /* It's not one of our sections, so don't allocate space. */ 1896 continue; 1897 } 1898 1899 if (s->size == 0) 1900 { 1901 /* If we don't need this section, strip it from the 1902 output file. This is mostly to handle .rela.bss and 1903 .rela.plt. We must create both sections in 1904 create_dynamic_sections, because they must be created 1905 before the linker maps input sections to output 1906 sections. The linker does that before 1907 adjust_dynamic_symbol is called, and it is that 1908 function which decides whether anything needs to go 1909 into these sections. */ 1910 1911 s->flags |= SEC_EXCLUDE; 1912 continue; 1913 } 1914 1915 if ((s->flags & SEC_HAS_CONTENTS) == 0) 1916 continue; 1917 1918 /* Allocate memory for the section contents. We use bfd_zalloc 1919 here in case unused entries are not reclaimed before the 1920 section's contents are written out. This should not happen, 1921 but this way if it does, we get a R_X86_64_NONE reloc instead 1922 of garbage. */ 1923 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 1924 if (s->contents == NULL) 1925 return FALSE; 1926 } 1927 1928 if (htab->elf.dynamic_sections_created) 1929 { 1930 /* Add some entries to the .dynamic section. We fill in the 1931 values later, in elf64_x86_64_finish_dynamic_sections, but we 1932 must add the entries now so that we get the correct size for 1933 the .dynamic section. The DT_DEBUG entry is filled in by the 1934 dynamic linker and used by the debugger. */ 1935 #define add_dynamic_entry(TAG, VAL) \ 1936 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1937 1938 if (info->executable) 1939 { 1940 if (!add_dynamic_entry (DT_DEBUG, 0)) 1941 return FALSE; 1942 } 1943 1944 if (htab->splt->size != 0) 1945 { 1946 if (!add_dynamic_entry (DT_PLTGOT, 0) 1947 || !add_dynamic_entry (DT_PLTRELSZ, 0) 1948 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1949 || !add_dynamic_entry (DT_JMPREL, 0)) 1950 return FALSE; 1951 1952 if (htab->tlsdesc_plt 1953 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) 1954 || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) 1955 return FALSE; 1956 } 1957 1958 if (relocs) 1959 { 1960 if (!add_dynamic_entry (DT_RELA, 0) 1961 || !add_dynamic_entry (DT_RELASZ, 0) 1962 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) 1963 return FALSE; 1964 1965 /* If any dynamic relocs apply to a read-only section, 1966 then we need a DT_TEXTREL entry. */ 1967 if ((info->flags & DF_TEXTREL) == 0) 1968 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, 1969 (PTR) info); 1970 1971 if ((info->flags & DF_TEXTREL) != 0) 1972 { 1973 if (!add_dynamic_entry (DT_TEXTREL, 0)) 1974 return FALSE; 1975 } 1976 } 1977 } 1978 #undef add_dynamic_entry 1979 1980 return TRUE; 1981 } 1982 1983 static bfd_boolean 1984 elf64_x86_64_always_size_sections (bfd *output_bfd, 1985 struct bfd_link_info *info) 1986 { 1987 asection *tls_sec = elf_hash_table (info)->tls_sec; 1988 1989 if (tls_sec) 1990 { 1991 struct elf_link_hash_entry *tlsbase; 1992 1993 tlsbase = elf_link_hash_lookup (elf_hash_table (info), 1994 "_TLS_MODULE_BASE_", 1995 FALSE, FALSE, FALSE); 1996 1997 if (tlsbase && tlsbase->type == STT_TLS) 1998 { 1999 struct bfd_link_hash_entry *bh = NULL; 2000 const struct elf_backend_data *bed 2001 = get_elf_backend_data (output_bfd); 2002 2003 if (!(_bfd_generic_link_add_one_symbol 2004 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 2005 tls_sec, 0, NULL, FALSE, 2006 bed->collect, &bh))) 2007 return FALSE; 2008 tlsbase = (struct elf_link_hash_entry *)bh; 2009 tlsbase->def_regular = 1; 2010 tlsbase->other = STV_HIDDEN; 2011 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 2012 } 2013 } 2014 2015 return TRUE; 2016 } 2017 2018 /* Return the base VMA address which should be subtracted from real addresses 2019 when resolving @dtpoff relocation. 2020 This is PT_TLS segment p_vaddr. */ 2021 2022 static bfd_vma 2023 dtpoff_base (struct bfd_link_info *info) 2024 { 2025 /* If tls_sec is NULL, we should have signalled an error already. */ 2026 if (elf_hash_table (info)->tls_sec == NULL) 2027 return 0; 2028 return elf_hash_table (info)->tls_sec->vma; 2029 } 2030 2031 /* Return the relocation value for @tpoff relocation 2032 if STT_TLS virtual address is ADDRESS. */ 2033 2034 static bfd_vma 2035 tpoff (struct bfd_link_info *info, bfd_vma address) 2036 { 2037 struct elf_link_hash_table *htab = elf_hash_table (info); 2038 2039 /* If tls_segment is NULL, we should have signalled an error already. */ 2040 if (htab->tls_sec == NULL) 2041 return 0; 2042 return address - htab->tls_size - htab->tls_sec->vma; 2043 } 2044 2045 /* Is the instruction before OFFSET in CONTENTS a 32bit relative 2046 branch? */ 2047 2048 static bfd_boolean 2049 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset) 2050 { 2051 /* Opcode Instruction 2052 0xe8 call 2053 0xe9 jump 2054 0x0f 0x8x conditional jump */ 2055 return ((offset > 0 2056 && (contents [offset - 1] == 0xe8 2057 || contents [offset - 1] == 0xe9)) 2058 || (offset > 1 2059 && contents [offset - 2] == 0x0f 2060 && (contents [offset - 1] & 0xf0) == 0x80)); 2061 } 2062 2063 /* Relocate an x86_64 ELF section. */ 2064 2065 static bfd_boolean 2066 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 2067 bfd *input_bfd, asection *input_section, 2068 bfd_byte *contents, Elf_Internal_Rela *relocs, 2069 Elf_Internal_Sym *local_syms, 2070 asection **local_sections) 2071 { 2072 struct elf64_x86_64_link_hash_table *htab; 2073 Elf_Internal_Shdr *symtab_hdr; 2074 struct elf_link_hash_entry **sym_hashes; 2075 bfd_vma *local_got_offsets; 2076 bfd_vma *local_tlsdesc_gotents; 2077 Elf_Internal_Rela *rel; 2078 Elf_Internal_Rela *relend; 2079 2080 if (info->relocatable) 2081 return TRUE; 2082 2083 htab = elf64_x86_64_hash_table (info); 2084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2085 sym_hashes = elf_sym_hashes (input_bfd); 2086 local_got_offsets = elf_local_got_offsets (input_bfd); 2087 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd); 2088 2089 rel = relocs; 2090 relend = relocs + input_section->reloc_count; 2091 for (; rel < relend; rel++) 2092 { 2093 unsigned int r_type; 2094 reloc_howto_type *howto; 2095 unsigned long r_symndx; 2096 struct elf_link_hash_entry *h; 2097 Elf_Internal_Sym *sym; 2098 asection *sec; 2099 bfd_vma off, offplt; 2100 bfd_vma relocation; 2101 bfd_boolean unresolved_reloc; 2102 bfd_reloc_status_type r; 2103 int tls_type; 2104 2105 r_type = ELF64_R_TYPE (rel->r_info); 2106 if (r_type == (int) R_X86_64_GNU_VTINHERIT 2107 || r_type == (int) R_X86_64_GNU_VTENTRY) 2108 continue; 2109 2110 if (r_type >= R_X86_64_max) 2111 { 2112 bfd_set_error (bfd_error_bad_value); 2113 return FALSE; 2114 } 2115 2116 howto = x86_64_elf_howto_table + r_type; 2117 r_symndx = ELF64_R_SYM (rel->r_info); 2118 h = NULL; 2119 sym = NULL; 2120 sec = NULL; 2121 unresolved_reloc = FALSE; 2122 if (r_symndx < symtab_hdr->sh_info) 2123 { 2124 sym = local_syms + r_symndx; 2125 sec = local_sections[r_symndx]; 2126 2127 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 2128 } 2129 else 2130 { 2131 bfd_boolean warned; 2132 2133 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2134 r_symndx, symtab_hdr, sym_hashes, 2135 h, sec, relocation, 2136 unresolved_reloc, warned); 2137 } 2138 /* When generating a shared object, the relocations handled here are 2139 copied into the output file to be resolved at run time. */ 2140 switch (r_type) 2141 { 2142 asection *base_got; 2143 case R_X86_64_GOT32: 2144 case R_X86_64_GOT64: 2145 /* Relocation is to the entry for this symbol in the global 2146 offset table. */ 2147 case R_X86_64_GOTPCREL: 2148 case R_X86_64_GOTPCREL64: 2149 /* Use global offset table entry as symbol value. */ 2150 case R_X86_64_GOTPLT64: 2151 /* This is the same as GOT64 for relocation purposes, but 2152 indicates the existence of a PLT entry. The difficulty is, 2153 that we must calculate the GOT slot offset from the PLT 2154 offset, if this symbol got a PLT entry (it was global). 2155 Additionally if it's computed from the PLT entry, then that 2156 GOT offset is relative to .got.plt, not to .got. */ 2157 base_got = htab->sgot; 2158 2159 if (htab->sgot == NULL) 2160 abort (); 2161 2162 if (h != NULL) 2163 { 2164 bfd_boolean dyn; 2165 2166 off = h->got.offset; 2167 if (h->needs_plt 2168 && h->plt.offset != (bfd_vma)-1 2169 && off == (bfd_vma)-1) 2170 { 2171 /* We can't use h->got.offset here to save 2172 state, or even just remember the offset, as 2173 finish_dynamic_symbol would use that as offset into 2174 .got. */ 2175 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; 2176 off = (plt_index + 3) * GOT_ENTRY_SIZE; 2177 base_got = htab->sgotplt; 2178 } 2179 2180 dyn = htab->elf.dynamic_sections_created; 2181 2182 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 2183 || (info->shared 2184 && SYMBOL_REFERENCES_LOCAL (info, h)) 2185 || (ELF_ST_VISIBILITY (h->other) 2186 && h->root.type == bfd_link_hash_undefweak)) 2187 { 2188 /* This is actually a static link, or it is a -Bsymbolic 2189 link and the symbol is defined locally, or the symbol 2190 was forced to be local because of a version file. We 2191 must initialize this entry in the global offset table. 2192 Since the offset must always be a multiple of 8, we 2193 use the least significant bit to record whether we 2194 have initialized it already. 2195 2196 When doing a dynamic link, we create a .rela.got 2197 relocation entry to initialize the value. This is 2198 done in the finish_dynamic_symbol routine. */ 2199 if ((off & 1) != 0) 2200 off &= ~1; 2201 else 2202 { 2203 bfd_put_64 (output_bfd, relocation, 2204 base_got->contents + off); 2205 /* Note that this is harmless for the GOTPLT64 case, 2206 as -1 | 1 still is -1. */ 2207 h->got.offset |= 1; 2208 } 2209 } 2210 else 2211 unresolved_reloc = FALSE; 2212 } 2213 else 2214 { 2215 if (local_got_offsets == NULL) 2216 abort (); 2217 2218 off = local_got_offsets[r_symndx]; 2219 2220 /* The offset must always be a multiple of 8. We use 2221 the least significant bit to record whether we have 2222 already generated the necessary reloc. */ 2223 if ((off & 1) != 0) 2224 off &= ~1; 2225 else 2226 { 2227 bfd_put_64 (output_bfd, relocation, 2228 base_got->contents + off); 2229 2230 if (info->shared) 2231 { 2232 asection *s; 2233 Elf_Internal_Rela outrel; 2234 bfd_byte *loc; 2235 2236 /* We need to generate a R_X86_64_RELATIVE reloc 2237 for the dynamic linker. */ 2238 s = htab->srelgot; 2239 if (s == NULL) 2240 abort (); 2241 2242 outrel.r_offset = (base_got->output_section->vma 2243 + base_got->output_offset 2244 + off); 2245 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE); 2246 outrel.r_addend = relocation; 2247 loc = s->contents; 2248 loc += s->reloc_count++ * sizeof (Elf64_External_Rela); 2249 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2250 } 2251 2252 local_got_offsets[r_symndx] |= 1; 2253 } 2254 } 2255 2256 if (off >= (bfd_vma) -2) 2257 abort (); 2258 2259 relocation = base_got->output_section->vma 2260 + base_got->output_offset + off; 2261 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64) 2262 relocation -= htab->sgotplt->output_section->vma 2263 - htab->sgotplt->output_offset; 2264 2265 break; 2266 2267 case R_X86_64_GOTOFF64: 2268 /* Relocation is relative to the start of the global offset 2269 table. */ 2270 2271 /* Check to make sure it isn't a protected function symbol 2272 for shared library since it may not be local when used 2273 as function address. */ 2274 if (info->shared 2275 && h 2276 && h->def_regular 2277 && h->type == STT_FUNC 2278 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 2279 { 2280 (*_bfd_error_handler) 2281 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"), 2282 input_bfd, h->root.root.string); 2283 bfd_set_error (bfd_error_bad_value); 2284 return FALSE; 2285 } 2286 2287 /* Note that sgot is not involved in this 2288 calculation. We always want the start of .got.plt. If we 2289 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is 2290 permitted by the ABI, we might have to change this 2291 calculation. */ 2292 relocation -= htab->sgotplt->output_section->vma 2293 + htab->sgotplt->output_offset; 2294 break; 2295 2296 case R_X86_64_GOTPC32: 2297 case R_X86_64_GOTPC64: 2298 /* Use global offset table as symbol value. */ 2299 relocation = htab->sgotplt->output_section->vma 2300 + htab->sgotplt->output_offset; 2301 unresolved_reloc = FALSE; 2302 break; 2303 2304 case R_X86_64_PLTOFF64: 2305 /* Relocation is PLT entry relative to GOT. For local 2306 symbols it's the symbol itself relative to GOT. */ 2307 if (h != NULL 2308 /* See PLT32 handling. */ 2309 && h->plt.offset != (bfd_vma) -1 2310 && htab->splt != NULL) 2311 { 2312 relocation = (htab->splt->output_section->vma 2313 + htab->splt->output_offset 2314 + h->plt.offset); 2315 unresolved_reloc = FALSE; 2316 } 2317 2318 relocation -= htab->sgotplt->output_section->vma 2319 + htab->sgotplt->output_offset; 2320 break; 2321 2322 case R_X86_64_PLT32: 2323 /* Relocation is to the entry for this symbol in the 2324 procedure linkage table. */ 2325 2326 /* Resolve a PLT32 reloc against a local symbol directly, 2327 without using the procedure linkage table. */ 2328 if (h == NULL) 2329 break; 2330 2331 if (h->plt.offset == (bfd_vma) -1 2332 || htab->splt == NULL) 2333 { 2334 /* We didn't make a PLT entry for this symbol. This 2335 happens when statically linking PIC code, or when 2336 using -Bsymbolic. */ 2337 break; 2338 } 2339 2340 relocation = (htab->splt->output_section->vma 2341 + htab->splt->output_offset 2342 + h->plt.offset); 2343 unresolved_reloc = FALSE; 2344 break; 2345 2346 case R_X86_64_PC8: 2347 case R_X86_64_PC16: 2348 case R_X86_64_PC32: 2349 if (info->shared 2350 && !SYMBOL_REFERENCES_LOCAL (info, h) 2351 && (input_section->flags & SEC_ALLOC) != 0 2352 && (input_section->flags & SEC_READONLY) != 0 2353 && (!h->def_regular 2354 || r_type != R_X86_64_PC32 2355 || h->type != STT_FUNC 2356 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED 2357 || !is_32bit_relative_branch (contents, 2358 rel->r_offset))) 2359 { 2360 if (h->def_regular 2361 && r_type == R_X86_64_PC32 2362 && h->type == STT_FUNC 2363 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 2364 (*_bfd_error_handler) 2365 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"), 2366 input_bfd, h->root.root.string); 2367 else 2368 (*_bfd_error_handler) 2369 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 2370 input_bfd, x86_64_elf_howto_table[r_type].name, 2371 h->root.root.string); 2372 bfd_set_error (bfd_error_bad_value); 2373 return FALSE; 2374 } 2375 /* Fall through. */ 2376 2377 case R_X86_64_8: 2378 case R_X86_64_16: 2379 case R_X86_64_32: 2380 case R_X86_64_PC64: 2381 case R_X86_64_64: 2382 /* FIXME: The ABI says the linker should make sure the value is 2383 the same when it's zeroextended to 64 bit. */ 2384 2385 /* r_symndx will be zero only for relocs against symbols 2386 from removed linkonce sections, or sections discarded by 2387 a linker script. */ 2388 if (r_symndx == 0 2389 || (input_section->flags & SEC_ALLOC) == 0) 2390 break; 2391 2392 if ((info->shared 2393 && (h == NULL 2394 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2395 || h->root.type != bfd_link_hash_undefweak) 2396 && ((r_type != R_X86_64_PC8 2397 && r_type != R_X86_64_PC16 2398 && r_type != R_X86_64_PC32 2399 && r_type != R_X86_64_PC64) 2400 || !SYMBOL_CALLS_LOCAL (info, h))) 2401 || (ELIMINATE_COPY_RELOCS 2402 && !info->shared 2403 && h != NULL 2404 && h->dynindx != -1 2405 && !h->non_got_ref 2406 && ((h->def_dynamic 2407 && !h->def_regular) 2408 || h->root.type == bfd_link_hash_undefweak 2409 || h->root.type == bfd_link_hash_undefined))) 2410 { 2411 Elf_Internal_Rela outrel; 2412 bfd_byte *loc; 2413 bfd_boolean skip, relocate; 2414 asection *sreloc; 2415 2416 /* When generating a shared object, these relocations 2417 are copied into the output file to be resolved at run 2418 time. */ 2419 skip = FALSE; 2420 relocate = FALSE; 2421 2422 outrel.r_offset = 2423 _bfd_elf_section_offset (output_bfd, info, input_section, 2424 rel->r_offset); 2425 if (outrel.r_offset == (bfd_vma) -1) 2426 skip = TRUE; 2427 else if (outrel.r_offset == (bfd_vma) -2) 2428 skip = TRUE, relocate = TRUE; 2429 2430 outrel.r_offset += (input_section->output_section->vma 2431 + input_section->output_offset); 2432 2433 if (skip) 2434 memset (&outrel, 0, sizeof outrel); 2435 2436 /* h->dynindx may be -1 if this symbol was marked to 2437 become local. */ 2438 else if (h != NULL 2439 && h->dynindx != -1 2440 && (r_type == R_X86_64_PC8 2441 || r_type == R_X86_64_PC16 2442 || r_type == R_X86_64_PC32 2443 || r_type == R_X86_64_PC64 2444 || !info->shared 2445 || !info->symbolic 2446 || !h->def_regular)) 2447 { 2448 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type); 2449 outrel.r_addend = rel->r_addend; 2450 } 2451 else 2452 { 2453 /* This symbol is local, or marked to become local. */ 2454 if (r_type == R_X86_64_64) 2455 { 2456 relocate = TRUE; 2457 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE); 2458 outrel.r_addend = relocation + rel->r_addend; 2459 } 2460 else 2461 { 2462 long sindx; 2463 2464 if (bfd_is_abs_section (sec)) 2465 sindx = 0; 2466 else if (sec == NULL || sec->owner == NULL) 2467 { 2468 bfd_set_error (bfd_error_bad_value); 2469 return FALSE; 2470 } 2471 else 2472 { 2473 asection *osec; 2474 2475 osec = sec->output_section; 2476 sindx = elf_section_data (osec)->dynindx; 2477 BFD_ASSERT (sindx > 0); 2478 } 2479 2480 outrel.r_info = ELF64_R_INFO (sindx, r_type); 2481 outrel.r_addend = relocation + rel->r_addend; 2482 } 2483 } 2484 2485 sreloc = elf_section_data (input_section)->sreloc; 2486 if (sreloc == NULL) 2487 abort (); 2488 2489 loc = sreloc->contents; 2490 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); 2491 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2492 2493 /* If this reloc is against an external symbol, we do 2494 not want to fiddle with the addend. Otherwise, we 2495 need to include the symbol value so that it becomes 2496 an addend for the dynamic reloc. */ 2497 if (! relocate) 2498 continue; 2499 } 2500 2501 break; 2502 2503 case R_X86_64_TLSGD: 2504 case R_X86_64_GOTPC32_TLSDESC: 2505 case R_X86_64_TLSDESC_CALL: 2506 case R_X86_64_GOTTPOFF: 2507 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL); 2508 tls_type = GOT_UNKNOWN; 2509 if (h == NULL && local_got_offsets) 2510 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx]; 2511 else if (h != NULL) 2512 { 2513 tls_type = elf64_x86_64_hash_entry (h)->tls_type; 2514 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE) 2515 r_type = R_X86_64_TPOFF32; 2516 } 2517 if (r_type == R_X86_64_TLSGD 2518 || r_type == R_X86_64_GOTPC32_TLSDESC 2519 || r_type == R_X86_64_TLSDESC_CALL) 2520 { 2521 if (tls_type == GOT_TLS_IE) 2522 r_type = R_X86_64_GOTTPOFF; 2523 } 2524 2525 if (r_type == R_X86_64_TPOFF32) 2526 { 2527 BFD_ASSERT (! unresolved_reloc); 2528 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD) 2529 { 2530 unsigned int i; 2531 static unsigned char tlsgd[8] 2532 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 }; 2533 2534 /* GD->LE transition. 2535 .byte 0x66; leaq foo@tlsgd(%rip), %rdi 2536 .word 0x6666; rex64; call __tls_get_addr@plt 2537 Change it into: 2538 movq %fs:0, %rax 2539 leaq foo@tpoff(%rax), %rax */ 2540 BFD_ASSERT (rel->r_offset >= 4); 2541 for (i = 0; i < 4; i++) 2542 BFD_ASSERT (bfd_get_8 (input_bfd, 2543 contents + rel->r_offset - 4 + i) 2544 == tlsgd[i]); 2545 BFD_ASSERT (rel->r_offset + 12 <= input_section->size); 2546 for (i = 0; i < 4; i++) 2547 BFD_ASSERT (bfd_get_8 (input_bfd, 2548 contents + rel->r_offset + 4 + i) 2549 == tlsgd[i+4]); 2550 BFD_ASSERT (rel + 1 < relend); 2551 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32); 2552 memcpy (contents + rel->r_offset - 4, 2553 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0", 2554 16); 2555 bfd_put_32 (output_bfd, tpoff (info, relocation), 2556 contents + rel->r_offset + 8); 2557 /* Skip R_X86_64_PLT32. */ 2558 rel++; 2559 continue; 2560 } 2561 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) 2562 { 2563 /* GDesc -> LE transition. 2564 It's originally something like: 2565 leaq x@tlsdesc(%rip), %rax 2566 2567 Change it to: 2568 movl $x@tpoff, %rax 2569 2570 Registers other than %rax may be set up here. */ 2571 2572 unsigned int val, type, type2; 2573 bfd_vma roff; 2574 2575 /* First, make sure it's a leaq adding rip to a 2576 32-bit offset into any register, although it's 2577 probably almost always going to be rax. */ 2578 roff = rel->r_offset; 2579 BFD_ASSERT (roff >= 3); 2580 type = bfd_get_8 (input_bfd, contents + roff - 3); 2581 BFD_ASSERT ((type & 0xfb) == 0x48); 2582 type2 = bfd_get_8 (input_bfd, contents + roff - 2); 2583 BFD_ASSERT (type2 == 0x8d); 2584 val = bfd_get_8 (input_bfd, contents + roff - 1); 2585 BFD_ASSERT ((val & 0xc7) == 0x05); 2586 BFD_ASSERT (roff + 4 <= input_section->size); 2587 2588 /* Now modify the instruction as appropriate. */ 2589 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1), 2590 contents + roff - 3); 2591 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2); 2592 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), 2593 contents + roff - 1); 2594 bfd_put_32 (output_bfd, tpoff (info, relocation), 2595 contents + roff); 2596 continue; 2597 } 2598 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) 2599 { 2600 /* GDesc -> LE transition. 2601 It's originally: 2602 call *(%rax) 2603 Turn it into: 2604 nop; nop. */ 2605 2606 unsigned int val, type; 2607 bfd_vma roff; 2608 2609 /* First, make sure it's a call *(%rax). */ 2610 roff = rel->r_offset; 2611 BFD_ASSERT (roff + 2 <= input_section->size); 2612 type = bfd_get_8 (input_bfd, contents + roff); 2613 BFD_ASSERT (type == 0xff); 2614 val = bfd_get_8 (input_bfd, contents + roff + 1); 2615 BFD_ASSERT (val == 0x10); 2616 2617 /* Now modify the instruction as appropriate. */ 2618 bfd_put_8 (output_bfd, 0x90, contents + roff); 2619 bfd_put_8 (output_bfd, 0x90, contents + roff + 1); 2620 continue; 2621 } 2622 else 2623 { 2624 unsigned int val, type, reg; 2625 2626 /* IE->LE transition: 2627 Originally it can be one of: 2628 movq foo@gottpoff(%rip), %reg 2629 addq foo@gottpoff(%rip), %reg 2630 We change it into: 2631 movq $foo, %reg 2632 leaq foo(%reg), %reg 2633 addq $foo, %reg. */ 2634 BFD_ASSERT (rel->r_offset >= 3); 2635 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3); 2636 BFD_ASSERT (val == 0x48 || val == 0x4c); 2637 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); 2638 BFD_ASSERT (type == 0x8b || type == 0x03); 2639 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); 2640 BFD_ASSERT ((reg & 0xc7) == 5); 2641 reg >>= 3; 2642 BFD_ASSERT (rel->r_offset + 4 <= input_section->size); 2643 if (type == 0x8b) 2644 { 2645 /* movq */ 2646 if (val == 0x4c) 2647 bfd_put_8 (output_bfd, 0x49, 2648 contents + rel->r_offset - 3); 2649 bfd_put_8 (output_bfd, 0xc7, 2650 contents + rel->r_offset - 2); 2651 bfd_put_8 (output_bfd, 0xc0 | reg, 2652 contents + rel->r_offset - 1); 2653 } 2654 else if (reg == 4) 2655 { 2656 /* addq -> addq - addressing with %rsp/%r12 is 2657 special */ 2658 if (val == 0x4c) 2659 bfd_put_8 (output_bfd, 0x49, 2660 contents + rel->r_offset - 3); 2661 bfd_put_8 (output_bfd, 0x81, 2662 contents + rel->r_offset - 2); 2663 bfd_put_8 (output_bfd, 0xc0 | reg, 2664 contents + rel->r_offset - 1); 2665 } 2666 else 2667 { 2668 /* addq -> leaq */ 2669 if (val == 0x4c) 2670 bfd_put_8 (output_bfd, 0x4d, 2671 contents + rel->r_offset - 3); 2672 bfd_put_8 (output_bfd, 0x8d, 2673 contents + rel->r_offset - 2); 2674 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3), 2675 contents + rel->r_offset - 1); 2676 } 2677 bfd_put_32 (output_bfd, tpoff (info, relocation), 2678 contents + rel->r_offset); 2679 continue; 2680 } 2681 } 2682 2683 if (htab->sgot == NULL) 2684 abort (); 2685 2686 if (h != NULL) 2687 { 2688 off = h->got.offset; 2689 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got; 2690 } 2691 else 2692 { 2693 if (local_got_offsets == NULL) 2694 abort (); 2695 2696 off = local_got_offsets[r_symndx]; 2697 offplt = local_tlsdesc_gotents[r_symndx]; 2698 } 2699 2700 if ((off & 1) != 0) 2701 off &= ~1; 2702 else 2703 { 2704 Elf_Internal_Rela outrel; 2705 bfd_byte *loc; 2706 int dr_type, indx; 2707 asection *sreloc; 2708 2709 if (htab->srelgot == NULL) 2710 abort (); 2711 2712 indx = h && h->dynindx != -1 ? h->dynindx : 0; 2713 2714 if (GOT_TLS_GDESC_P (tls_type)) 2715 { 2716 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC); 2717 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt 2718 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size); 2719 outrel.r_offset = (htab->sgotplt->output_section->vma 2720 + htab->sgotplt->output_offset 2721 + offplt 2722 + htab->sgotplt_jump_table_size); 2723 sreloc = htab->srelplt; 2724 loc = sreloc->contents; 2725 loc += sreloc->reloc_count++ 2726 * sizeof (Elf64_External_Rela); 2727 BFD_ASSERT (loc + sizeof (Elf64_External_Rela) 2728 <= sreloc->contents + sreloc->size); 2729 if (indx == 0) 2730 outrel.r_addend = relocation - dtpoff_base (info); 2731 else 2732 outrel.r_addend = 0; 2733 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2734 } 2735 2736 sreloc = htab->srelgot; 2737 2738 outrel.r_offset = (htab->sgot->output_section->vma 2739 + htab->sgot->output_offset + off); 2740 2741 if (GOT_TLS_GD_P (tls_type)) 2742 dr_type = R_X86_64_DTPMOD64; 2743 else if (GOT_TLS_GDESC_P (tls_type)) 2744 goto dr_done; 2745 else 2746 dr_type = R_X86_64_TPOFF64; 2747 2748 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off); 2749 outrel.r_addend = 0; 2750 if ((dr_type == R_X86_64_TPOFF64 2751 || dr_type == R_X86_64_TLSDESC) && indx == 0) 2752 outrel.r_addend = relocation - dtpoff_base (info); 2753 outrel.r_info = ELF64_R_INFO (indx, dr_type); 2754 2755 loc = sreloc->contents; 2756 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); 2757 BFD_ASSERT (loc + sizeof (Elf64_External_Rela) 2758 <= sreloc->contents + sreloc->size); 2759 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2760 2761 if (GOT_TLS_GD_P (tls_type)) 2762 { 2763 if (indx == 0) 2764 { 2765 BFD_ASSERT (! unresolved_reloc); 2766 bfd_put_64 (output_bfd, 2767 relocation - dtpoff_base (info), 2768 htab->sgot->contents + off + GOT_ENTRY_SIZE); 2769 } 2770 else 2771 { 2772 bfd_put_64 (output_bfd, 0, 2773 htab->sgot->contents + off + GOT_ENTRY_SIZE); 2774 outrel.r_info = ELF64_R_INFO (indx, 2775 R_X86_64_DTPOFF64); 2776 outrel.r_offset += GOT_ENTRY_SIZE; 2777 sreloc->reloc_count++; 2778 loc += sizeof (Elf64_External_Rela); 2779 BFD_ASSERT (loc + sizeof (Elf64_External_Rela) 2780 <= sreloc->contents + sreloc->size); 2781 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2782 } 2783 } 2784 2785 dr_done: 2786 if (h != NULL) 2787 h->got.offset |= 1; 2788 else 2789 local_got_offsets[r_symndx] |= 1; 2790 } 2791 2792 if (off >= (bfd_vma) -2 2793 && ! GOT_TLS_GDESC_P (tls_type)) 2794 abort (); 2795 if (r_type == ELF64_R_TYPE (rel->r_info)) 2796 { 2797 if (r_type == R_X86_64_GOTPC32_TLSDESC 2798 || r_type == R_X86_64_TLSDESC_CALL) 2799 relocation = htab->sgotplt->output_section->vma 2800 + htab->sgotplt->output_offset 2801 + offplt + htab->sgotplt_jump_table_size; 2802 else 2803 relocation = htab->sgot->output_section->vma 2804 + htab->sgot->output_offset + off; 2805 unresolved_reloc = FALSE; 2806 } 2807 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD) 2808 { 2809 unsigned int i; 2810 static unsigned char tlsgd[8] 2811 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 }; 2812 2813 /* GD->IE transition. 2814 .byte 0x66; leaq foo@tlsgd(%rip), %rdi 2815 .word 0x6666; rex64; call __tls_get_addr@plt 2816 Change it into: 2817 movq %fs:0, %rax 2818 addq foo@gottpoff(%rip), %rax */ 2819 BFD_ASSERT (rel->r_offset >= 4); 2820 for (i = 0; i < 4; i++) 2821 BFD_ASSERT (bfd_get_8 (input_bfd, 2822 contents + rel->r_offset - 4 + i) 2823 == tlsgd[i]); 2824 BFD_ASSERT (rel->r_offset + 12 <= input_section->size); 2825 for (i = 0; i < 4; i++) 2826 BFD_ASSERT (bfd_get_8 (input_bfd, 2827 contents + rel->r_offset + 4 + i) 2828 == tlsgd[i+4]); 2829 BFD_ASSERT (rel + 1 < relend); 2830 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32); 2831 memcpy (contents + rel->r_offset - 4, 2832 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0", 2833 16); 2834 2835 relocation = (htab->sgot->output_section->vma 2836 + htab->sgot->output_offset + off 2837 - rel->r_offset 2838 - input_section->output_section->vma 2839 - input_section->output_offset 2840 - 12); 2841 bfd_put_32 (output_bfd, relocation, 2842 contents + rel->r_offset + 8); 2843 /* Skip R_X86_64_PLT32. */ 2844 rel++; 2845 continue; 2846 } 2847 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) 2848 { 2849 /* GDesc -> IE transition. 2850 It's originally something like: 2851 leaq x@tlsdesc(%rip), %rax 2852 2853 Change it to: 2854 movq x@gottpoff(%rip), %rax # before nop; nop 2855 2856 Registers other than %rax may be set up here. */ 2857 2858 unsigned int val, type, type2; 2859 bfd_vma roff; 2860 2861 /* First, make sure it's a leaq adding rip to a 32-bit 2862 offset into any register, although it's probably 2863 almost always going to be rax. */ 2864 roff = rel->r_offset; 2865 BFD_ASSERT (roff >= 3); 2866 type = bfd_get_8 (input_bfd, contents + roff - 3); 2867 BFD_ASSERT ((type & 0xfb) == 0x48); 2868 type2 = bfd_get_8 (input_bfd, contents + roff - 2); 2869 BFD_ASSERT (type2 == 0x8d); 2870 val = bfd_get_8 (input_bfd, contents + roff - 1); 2871 BFD_ASSERT ((val & 0xc7) == 0x05); 2872 BFD_ASSERT (roff + 4 <= input_section->size); 2873 2874 /* Now modify the instruction as appropriate. */ 2875 /* To turn a leaq into a movq in the form we use it, it 2876 suffices to change the second byte from 0x8d to 2877 0x8b. */ 2878 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2); 2879 2880 bfd_put_32 (output_bfd, 2881 htab->sgot->output_section->vma 2882 + htab->sgot->output_offset + off 2883 - rel->r_offset 2884 - input_section->output_section->vma 2885 - input_section->output_offset 2886 - 4, 2887 contents + roff); 2888 continue; 2889 } 2890 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) 2891 { 2892 /* GDesc -> IE transition. 2893 It's originally: 2894 call *(%rax) 2895 2896 Change it to: 2897 nop; nop. */ 2898 2899 unsigned int val, type; 2900 bfd_vma roff; 2901 2902 /* First, make sure it's a call *(%eax). */ 2903 roff = rel->r_offset; 2904 BFD_ASSERT (roff + 2 <= input_section->size); 2905 type = bfd_get_8 (input_bfd, contents + roff); 2906 BFD_ASSERT (type == 0xff); 2907 val = bfd_get_8 (input_bfd, contents + roff + 1); 2908 BFD_ASSERT (val == 0x10); 2909 2910 /* Now modify the instruction as appropriate. */ 2911 bfd_put_8 (output_bfd, 0x90, contents + roff); 2912 bfd_put_8 (output_bfd, 0x90, contents + roff + 1); 2913 2914 continue; 2915 } 2916 else 2917 BFD_ASSERT (FALSE); 2918 break; 2919 2920 case R_X86_64_TLSLD: 2921 if (! info->shared) 2922 { 2923 /* LD->LE transition: 2924 Ensure it is: 2925 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt. 2926 We change it into: 2927 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */ 2928 BFD_ASSERT (rel->r_offset >= 3); 2929 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3) 2930 == 0x48); 2931 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2) 2932 == 0x8d); 2933 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1) 2934 == 0x3d); 2935 BFD_ASSERT (rel->r_offset + 9 <= input_section->size); 2936 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4) 2937 == 0xe8); 2938 BFD_ASSERT (rel + 1 < relend); 2939 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32); 2940 memcpy (contents + rel->r_offset - 3, 2941 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12); 2942 /* Skip R_X86_64_PLT32. */ 2943 rel++; 2944 continue; 2945 } 2946 2947 if (htab->sgot == NULL) 2948 abort (); 2949 2950 off = htab->tls_ld_got.offset; 2951 if (off & 1) 2952 off &= ~1; 2953 else 2954 { 2955 Elf_Internal_Rela outrel; 2956 bfd_byte *loc; 2957 2958 if (htab->srelgot == NULL) 2959 abort (); 2960 2961 outrel.r_offset = (htab->sgot->output_section->vma 2962 + htab->sgot->output_offset + off); 2963 2964 bfd_put_64 (output_bfd, 0, 2965 htab->sgot->contents + off); 2966 bfd_put_64 (output_bfd, 0, 2967 htab->sgot->contents + off + GOT_ENTRY_SIZE); 2968 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64); 2969 outrel.r_addend = 0; 2970 loc = htab->srelgot->contents; 2971 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela); 2972 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2973 htab->tls_ld_got.offset |= 1; 2974 } 2975 relocation = htab->sgot->output_section->vma 2976 + htab->sgot->output_offset + off; 2977 unresolved_reloc = FALSE; 2978 break; 2979 2980 case R_X86_64_DTPOFF32: 2981 if ((info->shared && !info->executable) 2982 || (input_section->flags & SEC_CODE) == 0) 2983 relocation -= dtpoff_base (info); 2984 else 2985 relocation = tpoff (info, relocation); 2986 break; 2987 2988 case R_X86_64_TPOFF32: 2989 BFD_ASSERT (! info->shared || info->executable); 2990 relocation = tpoff (info, relocation); 2991 break; 2992 2993 default: 2994 break; 2995 } 2996 2997 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 2998 because such sections are not SEC_ALLOC and thus ld.so will 2999 not process them. */ 3000 if (unresolved_reloc 3001 && !((input_section->flags & SEC_DEBUGGING) != 0 3002 && h->def_dynamic)) 3003 (*_bfd_error_handler) 3004 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 3005 input_bfd, 3006 input_section, 3007 (long) rel->r_offset, 3008 howto->name, 3009 h->root.root.string); 3010 3011 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 3012 contents, rel->r_offset, 3013 relocation, rel->r_addend); 3014 3015 if (r != bfd_reloc_ok) 3016 { 3017 const char *name; 3018 3019 if (h != NULL) 3020 name = h->root.root.string; 3021 else 3022 { 3023 name = bfd_elf_string_from_elf_section (input_bfd, 3024 symtab_hdr->sh_link, 3025 sym->st_name); 3026 if (name == NULL) 3027 return FALSE; 3028 if (*name == '\0') 3029 name = bfd_section_name (input_bfd, sec); 3030 } 3031 3032 if (r == bfd_reloc_overflow) 3033 { 3034 if (h != NULL 3035 && h->root.type == bfd_link_hash_undefweak 3036 && howto->pc_relative) 3037 /* Ignore reloc overflow on branches to undefweak syms. */ 3038 continue; 3039 3040 if (! ((*info->callbacks->reloc_overflow) 3041 (info, (h ? &h->root : NULL), name, howto->name, 3042 (bfd_vma) 0, input_bfd, input_section, 3043 rel->r_offset))) 3044 return FALSE; 3045 } 3046 else 3047 { 3048 (*_bfd_error_handler) 3049 (_("%B(%A+0x%lx): reloc against `%s': error %d"), 3050 input_bfd, input_section, 3051 (long) rel->r_offset, name, (int) r); 3052 return FALSE; 3053 } 3054 } 3055 } 3056 3057 return TRUE; 3058 } 3059 3060 /* Finish up dynamic symbol handling. We set the contents of various 3061 dynamic sections here. */ 3062 3063 static bfd_boolean 3064 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd, 3065 struct bfd_link_info *info, 3066 struct elf_link_hash_entry *h, 3067 Elf_Internal_Sym *sym) 3068 { 3069 struct elf64_x86_64_link_hash_table *htab; 3070 3071 htab = elf64_x86_64_hash_table (info); 3072 3073 if (h->plt.offset != (bfd_vma) -1) 3074 { 3075 bfd_vma plt_index; 3076 bfd_vma got_offset; 3077 Elf_Internal_Rela rela; 3078 bfd_byte *loc; 3079 3080 /* This symbol has an entry in the procedure linkage table. Set 3081 it up. */ 3082 if (h->dynindx == -1 3083 || htab->splt == NULL 3084 || htab->sgotplt == NULL 3085 || htab->srelplt == NULL) 3086 abort (); 3087 3088 /* Get the index in the procedure linkage table which 3089 corresponds to this symbol. This is the index of this symbol 3090 in all the symbols for which we are making plt entries. The 3091 first entry in the procedure linkage table is reserved. */ 3092 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; 3093 3094 /* Get the offset into the .got table of the entry that 3095 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE 3096 bytes. The first three are reserved for the dynamic linker. */ 3097 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; 3098 3099 /* Fill in the entry in the procedure linkage table. */ 3100 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry, 3101 PLT_ENTRY_SIZE); 3102 3103 /* Insert the relocation positions of the plt section. The magic 3104 numbers at the end of the statements are the positions of the 3105 relocations in the plt section. */ 3106 /* Put offset for jmp *name@GOTPCREL(%rip), since the 3107 instruction uses 6 bytes, subtract this value. */ 3108 bfd_put_32 (output_bfd, 3109 (htab->sgotplt->output_section->vma 3110 + htab->sgotplt->output_offset 3111 + got_offset 3112 - htab->splt->output_section->vma 3113 - htab->splt->output_offset 3114 - h->plt.offset 3115 - 6), 3116 htab->splt->contents + h->plt.offset + 2); 3117 /* Put relocation index. */ 3118 bfd_put_32 (output_bfd, plt_index, 3119 htab->splt->contents + h->plt.offset + 7); 3120 /* Put offset for jmp .PLT0. */ 3121 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE), 3122 htab->splt->contents + h->plt.offset + 12); 3123 3124 /* Fill in the entry in the global offset table, initially this 3125 points to the pushq instruction in the PLT which is at offset 6. */ 3126 bfd_put_64 (output_bfd, (htab->splt->output_section->vma 3127 + htab->splt->output_offset 3128 + h->plt.offset + 6), 3129 htab->sgotplt->contents + got_offset); 3130 3131 /* Fill in the entry in the .rela.plt section. */ 3132 rela.r_offset = (htab->sgotplt->output_section->vma 3133 + htab->sgotplt->output_offset 3134 + got_offset); 3135 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT); 3136 rela.r_addend = 0; 3137 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela); 3138 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 3139 3140 if (!h->def_regular) 3141 { 3142 /* Mark the symbol as undefined, rather than as defined in 3143 the .plt section. Leave the value if there were any 3144 relocations where pointer equality matters (this is a clue 3145 for the dynamic linker, to make function pointer 3146 comparisons work between an application and shared 3147 library), otherwise set it to zero. If a function is only 3148 called from a binary, there is no need to slow down 3149 shared libraries because of that. */ 3150 sym->st_shndx = SHN_UNDEF; 3151 if (!h->pointer_equality_needed) 3152 sym->st_value = 0; 3153 } 3154 } 3155 3156 if (h->got.offset != (bfd_vma) -1 3157 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type) 3158 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE) 3159 { 3160 Elf_Internal_Rela rela; 3161 bfd_byte *loc; 3162 3163 /* This symbol has an entry in the global offset table. Set it 3164 up. */ 3165 if (htab->sgot == NULL || htab->srelgot == NULL) 3166 abort (); 3167 3168 rela.r_offset = (htab->sgot->output_section->vma 3169 + htab->sgot->output_offset 3170 + (h->got.offset &~ (bfd_vma) 1)); 3171 3172 /* If this is a static link, or it is a -Bsymbolic link and the 3173 symbol is defined locally or was forced to be local because 3174 of a version file, we just want to emit a RELATIVE reloc. 3175 The entry in the global offset table will already have been 3176 initialized in the relocate_section function. */ 3177 if (info->shared 3178 && SYMBOL_REFERENCES_LOCAL (info, h)) 3179 { 3180 BFD_ASSERT((h->got.offset & 1) != 0); 3181 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE); 3182 rela.r_addend = (h->root.u.def.value 3183 + h->root.u.def.section->output_section->vma 3184 + h->root.u.def.section->output_offset); 3185 } 3186 else 3187 { 3188 BFD_ASSERT((h->got.offset & 1) == 0); 3189 bfd_put_64 (output_bfd, (bfd_vma) 0, 3190 htab->sgot->contents + h->got.offset); 3191 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT); 3192 rela.r_addend = 0; 3193 } 3194 3195 loc = htab->srelgot->contents; 3196 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela); 3197 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 3198 } 3199 3200 if (h->needs_copy) 3201 { 3202 Elf_Internal_Rela rela; 3203 bfd_byte *loc; 3204 3205 /* This symbol needs a copy reloc. Set it up. */ 3206 3207 if (h->dynindx == -1 3208 || (h->root.type != bfd_link_hash_defined 3209 && h->root.type != bfd_link_hash_defweak) 3210 || htab->srelbss == NULL) 3211 abort (); 3212 3213 rela.r_offset = (h->root.u.def.value 3214 + h->root.u.def.section->output_section->vma 3215 + h->root.u.def.section->output_offset); 3216 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY); 3217 rela.r_addend = 0; 3218 loc = htab->srelbss->contents; 3219 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela); 3220 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 3221 } 3222 3223 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 3224 if (strcmp (h->root.root.string, "_DYNAMIC") == 0 3225 || h == htab->elf.hgot) 3226 sym->st_shndx = SHN_ABS; 3227 3228 return TRUE; 3229 } 3230 3231 /* Used to decide how to sort relocs in an optimal manner for the 3232 dynamic linker, before writing them out. */ 3233 3234 static enum elf_reloc_type_class 3235 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela) 3236 { 3237 switch ((int) ELF64_R_TYPE (rela->r_info)) 3238 { 3239 case R_X86_64_RELATIVE: 3240 return reloc_class_relative; 3241 case R_X86_64_JUMP_SLOT: 3242 return reloc_class_plt; 3243 case R_X86_64_COPY: 3244 return reloc_class_copy; 3245 default: 3246 return reloc_class_normal; 3247 } 3248 } 3249 3250 /* Finish up the dynamic sections. */ 3251 3252 static bfd_boolean 3253 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 3254 { 3255 struct elf64_x86_64_link_hash_table *htab; 3256 bfd *dynobj; 3257 asection *sdyn; 3258 3259 htab = elf64_x86_64_hash_table (info); 3260 dynobj = htab->elf.dynobj; 3261 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 3262 3263 if (htab->elf.dynamic_sections_created) 3264 { 3265 Elf64_External_Dyn *dyncon, *dynconend; 3266 3267 if (sdyn == NULL || htab->sgot == NULL) 3268 abort (); 3269 3270 dyncon = (Elf64_External_Dyn *) sdyn->contents; 3271 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); 3272 for (; dyncon < dynconend; dyncon++) 3273 { 3274 Elf_Internal_Dyn dyn; 3275 asection *s; 3276 3277 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); 3278 3279 switch (dyn.d_tag) 3280 { 3281 default: 3282 continue; 3283 3284 case DT_PLTGOT: 3285 s = htab->sgotplt; 3286 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 3287 break; 3288 3289 case DT_JMPREL: 3290 dyn.d_un.d_ptr = htab->srelplt->output_section->vma; 3291 break; 3292 3293 case DT_PLTRELSZ: 3294 s = htab->srelplt->output_section; 3295 dyn.d_un.d_val = s->size; 3296 break; 3297 3298 case DT_RELASZ: 3299 /* The procedure linkage table relocs (DT_JMPREL) should 3300 not be included in the overall relocs (DT_RELA). 3301 Therefore, we override the DT_RELASZ entry here to 3302 make it not include the JMPREL relocs. Since the 3303 linker script arranges for .rela.plt to follow all 3304 other relocation sections, we don't have to worry 3305 about changing the DT_RELA entry. */ 3306 if (htab->srelplt != NULL) 3307 { 3308 s = htab->srelplt->output_section; 3309 dyn.d_un.d_val -= s->size; 3310 } 3311 break; 3312 3313 case DT_TLSDESC_PLT: 3314 s = htab->splt; 3315 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 3316 + htab->tlsdesc_plt; 3317 break; 3318 3319 case DT_TLSDESC_GOT: 3320 s = htab->sgot; 3321 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 3322 + htab->tlsdesc_got; 3323 break; 3324 } 3325 3326 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 3327 } 3328 3329 /* Fill in the special first entry in the procedure linkage table. */ 3330 if (htab->splt && htab->splt->size > 0) 3331 { 3332 /* Fill in the first entry in the procedure linkage table. */ 3333 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry, 3334 PLT_ENTRY_SIZE); 3335 /* Add offset for pushq GOT+8(%rip), since the instruction 3336 uses 6 bytes subtract this value. */ 3337 bfd_put_32 (output_bfd, 3338 (htab->sgotplt->output_section->vma 3339 + htab->sgotplt->output_offset 3340 + 8 3341 - htab->splt->output_section->vma 3342 - htab->splt->output_offset 3343 - 6), 3344 htab->splt->contents + 2); 3345 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to 3346 the end of the instruction. */ 3347 bfd_put_32 (output_bfd, 3348 (htab->sgotplt->output_section->vma 3349 + htab->sgotplt->output_offset 3350 + 16 3351 - htab->splt->output_section->vma 3352 - htab->splt->output_offset 3353 - 12), 3354 htab->splt->contents + 8); 3355 3356 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 3357 PLT_ENTRY_SIZE; 3358 3359 if (htab->tlsdesc_plt) 3360 { 3361 bfd_put_64 (output_bfd, (bfd_vma) 0, 3362 htab->sgot->contents + htab->tlsdesc_got); 3363 3364 memcpy (htab->splt->contents + htab->tlsdesc_plt, 3365 elf64_x86_64_plt0_entry, 3366 PLT_ENTRY_SIZE); 3367 3368 /* Add offset for pushq GOT+8(%rip), since the 3369 instruction uses 6 bytes subtract this value. */ 3370 bfd_put_32 (output_bfd, 3371 (htab->sgotplt->output_section->vma 3372 + htab->sgotplt->output_offset 3373 + 8 3374 - htab->splt->output_section->vma 3375 - htab->splt->output_offset 3376 - htab->tlsdesc_plt 3377 - 6), 3378 htab->splt->contents + htab->tlsdesc_plt + 2); 3379 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for 3380 htab->tlsdesc_got. The 12 is the offset to the end of 3381 the instruction. */ 3382 bfd_put_32 (output_bfd, 3383 (htab->sgot->output_section->vma 3384 + htab->sgot->output_offset 3385 + htab->tlsdesc_got 3386 - htab->splt->output_section->vma 3387 - htab->splt->output_offset 3388 - htab->tlsdesc_plt 3389 - 12), 3390 htab->splt->contents + htab->tlsdesc_plt + 8); 3391 } 3392 } 3393 } 3394 3395 if (htab->sgotplt) 3396 { 3397 /* Fill in the first three entries in the global offset table. */ 3398 if (htab->sgotplt->size > 0) 3399 { 3400 /* Set the first entry in the global offset table to the address of 3401 the dynamic section. */ 3402 if (sdyn == NULL) 3403 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents); 3404 else 3405 bfd_put_64 (output_bfd, 3406 sdyn->output_section->vma + sdyn->output_offset, 3407 htab->sgotplt->contents); 3408 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ 3409 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE); 3410 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2); 3411 } 3412 3413 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 3414 GOT_ENTRY_SIZE; 3415 } 3416 3417 if (htab->sgot && htab->sgot->size > 0) 3418 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize 3419 = GOT_ENTRY_SIZE; 3420 3421 return TRUE; 3422 } 3423 3424 /* Return address for Ith PLT stub in section PLT, for relocation REL 3425 or (bfd_vma) -1 if it should not be included. */ 3426 3427 static bfd_vma 3428 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt, 3429 const arelent *rel ATTRIBUTE_UNUSED) 3430 { 3431 return plt->vma + (i + 1) * PLT_ENTRY_SIZE; 3432 } 3433 3434 /* Handle an x86-64 specific section when reading an object file. This 3435 is called when elfcode.h finds a section with an unknown type. */ 3436 3437 static bfd_boolean 3438 elf64_x86_64_section_from_shdr (bfd *abfd, 3439 Elf_Internal_Shdr *hdr, 3440 const char *name, 3441 int shindex) 3442 { 3443 if (hdr->sh_type != SHT_X86_64_UNWIND) 3444 return FALSE; 3445 3446 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 3447 return FALSE; 3448 3449 return TRUE; 3450 } 3451 3452 /* Hook called by the linker routine which adds symbols from an object 3453 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead 3454 of .bss. */ 3455 3456 static bfd_boolean 3457 elf64_x86_64_add_symbol_hook (bfd *abfd, 3458 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3459 Elf_Internal_Sym *sym, 3460 const char **namep ATTRIBUTE_UNUSED, 3461 flagword *flagsp ATTRIBUTE_UNUSED, 3462 asection **secp, bfd_vma *valp) 3463 { 3464 asection *lcomm; 3465 3466 switch (sym->st_shndx) 3467 { 3468 case SHN_X86_64_LCOMMON: 3469 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON"); 3470 if (lcomm == NULL) 3471 { 3472 lcomm = bfd_make_section_with_flags (abfd, 3473 "LARGE_COMMON", 3474 (SEC_ALLOC 3475 | SEC_IS_COMMON 3476 | SEC_LINKER_CREATED)); 3477 if (lcomm == NULL) 3478 return FALSE; 3479 elf_section_flags (lcomm) |= SHF_X86_64_LARGE; 3480 } 3481 *secp = lcomm; 3482 *valp = sym->st_size; 3483 break; 3484 } 3485 return TRUE; 3486 } 3487 3488 3489 /* Given a BFD section, try to locate the corresponding ELF section 3490 index. */ 3491 3492 static bfd_boolean 3493 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 3494 asection *sec, int *index) 3495 { 3496 if (sec == &_bfd_elf_large_com_section) 3497 { 3498 *index = SHN_X86_64_LCOMMON; 3499 return TRUE; 3500 } 3501 return FALSE; 3502 } 3503 3504 /* Process a symbol. */ 3505 3506 static void 3507 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, 3508 asymbol *asym) 3509 { 3510 elf_symbol_type *elfsym = (elf_symbol_type *) asym; 3511 3512 switch (elfsym->internal_elf_sym.st_shndx) 3513 { 3514 case SHN_X86_64_LCOMMON: 3515 asym->section = &_bfd_elf_large_com_section; 3516 asym->value = elfsym->internal_elf_sym.st_size; 3517 /* Common symbol doesn't set BSF_GLOBAL. */ 3518 asym->flags &= ~BSF_GLOBAL; 3519 break; 3520 } 3521 } 3522 3523 static bfd_boolean 3524 elf64_x86_64_common_definition (Elf_Internal_Sym *sym) 3525 { 3526 return (sym->st_shndx == SHN_COMMON 3527 || sym->st_shndx == SHN_X86_64_LCOMMON); 3528 } 3529 3530 static unsigned int 3531 elf64_x86_64_common_section_index (asection *sec) 3532 { 3533 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) 3534 return SHN_COMMON; 3535 else 3536 return SHN_X86_64_LCOMMON; 3537 } 3538 3539 static asection * 3540 elf64_x86_64_common_section (asection *sec) 3541 { 3542 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) 3543 return bfd_com_section_ptr; 3544 else 3545 return &_bfd_elf_large_com_section; 3546 } 3547 3548 static bfd_boolean 3549 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3550 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED, 3551 struct elf_link_hash_entry *h, 3552 Elf_Internal_Sym *sym, 3553 asection **psec, 3554 bfd_vma *pvalue ATTRIBUTE_UNUSED, 3555 unsigned int *pold_alignment ATTRIBUTE_UNUSED, 3556 bfd_boolean *skip ATTRIBUTE_UNUSED, 3557 bfd_boolean *override ATTRIBUTE_UNUSED, 3558 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED, 3559 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED, 3560 bfd_boolean *newdef ATTRIBUTE_UNUSED, 3561 bfd_boolean *newdyn, 3562 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED, 3563 bfd_boolean *newweak ATTRIBUTE_UNUSED, 3564 bfd *abfd ATTRIBUTE_UNUSED, 3565 asection **sec, 3566 bfd_boolean *olddef ATTRIBUTE_UNUSED, 3567 bfd_boolean *olddyn, 3568 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED, 3569 bfd_boolean *oldweak ATTRIBUTE_UNUSED, 3570 bfd *oldbfd, 3571 asection **oldsec) 3572 { 3573 /* A normal common symbol and a large common symbol result in a 3574 normal common symbol. We turn the large common symbol into a 3575 normal one. */ 3576 if (!*olddyn 3577 && h->root.type == bfd_link_hash_common 3578 && !*newdyn 3579 && bfd_is_com_section (*sec) 3580 && *oldsec != *sec) 3581 { 3582 if (sym->st_shndx == SHN_COMMON 3583 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0) 3584 { 3585 h->root.u.c.p->section 3586 = bfd_make_section_old_way (oldbfd, "COMMON"); 3587 h->root.u.c.p->section->flags = SEC_ALLOC; 3588 } 3589 else if (sym->st_shndx == SHN_X86_64_LCOMMON 3590 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0) 3591 *psec = *sec = bfd_com_section_ptr; 3592 } 3593 3594 return TRUE; 3595 } 3596 3597 static int 3598 elf64_x86_64_additional_program_headers (bfd *abfd) 3599 { 3600 asection *s; 3601 int count = 0; 3602 3603 /* Check to see if we need a large readonly segment. */ 3604 s = bfd_get_section_by_name (abfd, ".lrodata"); 3605 if (s && (s->flags & SEC_LOAD)) 3606 count++; 3607 3608 /* Check to see if we need a large data segment. Since .lbss sections 3609 is placed right after the .bss section, there should be no need for 3610 a large data segment just because of .lbss. */ 3611 s = bfd_get_section_by_name (abfd, ".ldata"); 3612 if (s && (s->flags & SEC_LOAD)) 3613 count++; 3614 3615 return count; 3616 } 3617 3618 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 3619 3620 static bfd_boolean 3621 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h) 3622 { 3623 if (h->plt.offset != (bfd_vma) -1 3624 && !h->def_regular 3625 && !h->pointer_equality_needed) 3626 return FALSE; 3627 3628 return _bfd_elf_hash_symbol (h); 3629 } 3630 3631 static const struct bfd_elf_special_section 3632 elf64_x86_64_special_sections[]= 3633 { 3634 { ".gnu.linkonce.lb", 16, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 3635 { ".gnu.linkonce.lr", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, 3636 { ".gnu.linkonce.lt", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE}, 3637 { ".lbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 3638 { ".ldata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 3639 { ".lrodata", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, 3640 { NULL, 0, 0, 0, 0 } 3641 }; 3642 3643 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec 3644 #define TARGET_LITTLE_NAME "elf64-x86-64" 3645 #define ELF_ARCH bfd_arch_i386 3646 #define ELF_MACHINE_CODE EM_X86_64 3647 #define ELF_MAXPAGESIZE 0x1000 3648 3649 #define elf_backend_can_gc_sections 1 3650 #define elf_backend_can_refcount 1 3651 #define elf_backend_want_got_plt 1 3652 #define elf_backend_plt_readonly 1 3653 #define elf_backend_want_plt_sym 0 3654 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3) 3655 #define elf_backend_rela_normal 1 3656 3657 #define elf_info_to_howto elf64_x86_64_info_to_howto 3658 3659 #define bfd_elf64_bfd_link_hash_table_create \ 3660 elf64_x86_64_link_hash_table_create 3661 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup 3662 3663 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol 3664 #define elf_backend_check_relocs elf64_x86_64_check_relocs 3665 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol 3666 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections 3667 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections 3668 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol 3669 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook 3670 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook 3671 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus 3672 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo 3673 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class 3674 #define elf_backend_relocate_section elf64_x86_64_relocate_section 3675 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections 3676 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections 3677 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val 3678 #define elf_backend_object_p elf64_x86_64_elf_object_p 3679 #define bfd_elf64_mkobject elf64_x86_64_mkobject 3680 3681 #define elf_backend_section_from_shdr \ 3682 elf64_x86_64_section_from_shdr 3683 3684 #define elf_backend_section_from_bfd_section \ 3685 elf64_x86_64_elf_section_from_bfd_section 3686 #define elf_backend_add_symbol_hook \ 3687 elf64_x86_64_add_symbol_hook 3688 #define elf_backend_symbol_processing \ 3689 elf64_x86_64_symbol_processing 3690 #define elf_backend_common_section_index \ 3691 elf64_x86_64_common_section_index 3692 #define elf_backend_common_section \ 3693 elf64_x86_64_common_section 3694 #define elf_backend_common_definition \ 3695 elf64_x86_64_common_definition 3696 #define elf_backend_merge_symbol \ 3697 elf64_x86_64_merge_symbol 3698 #define elf_backend_special_sections \ 3699 elf64_x86_64_special_sections 3700 #define elf_backend_additional_program_headers \ 3701 elf64_x86_64_additional_program_headers 3702 #define elf_backend_hash_symbol \ 3703 elf64_x86_64_hash_symbol 3704 3705 #include "elf64-target.h" 3706