1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2006 4 Free Software Foundation, Inc. 5 Written by Cygnus Support. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 22 23 /* 24 SECTION 25 Sections 26 27 The raw data contained within a BFD is maintained through the 28 section abstraction. A single BFD may have any number of 29 sections. It keeps hold of them by pointing to the first; 30 each one points to the next in the list. 31 32 Sections are supported in BFD in <<section.c>>. 33 34 @menu 35 @* Section Input:: 36 @* Section Output:: 37 @* typedef asection:: 38 @* section prototypes:: 39 @end menu 40 41 INODE 42 Section Input, Section Output, Sections, Sections 43 SUBSECTION 44 Section input 45 46 When a BFD is opened for reading, the section structures are 47 created and attached to the BFD. 48 49 Each section has a name which describes the section in the 50 outside world---for example, <<a.out>> would contain at least 51 three sections, called <<.text>>, <<.data>> and <<.bss>>. 52 53 Names need not be unique; for example a COFF file may have several 54 sections named <<.data>>. 55 56 Sometimes a BFD will contain more than the ``natural'' number of 57 sections. A back end may attach other sections containing 58 constructor data, or an application may add a section (using 59 <<bfd_make_section>>) to the sections attached to an already open 60 BFD. For example, the linker creates an extra section 61 <<COMMON>> for each input file's BFD to hold information about 62 common storage. 63 64 The raw data is not necessarily read in when 65 the section descriptor is created. Some targets may leave the 66 data in place until a <<bfd_get_section_contents>> call is 67 made. Other back ends may read in all the data at once. For 68 example, an S-record file has to be read once to determine the 69 size of the data. An IEEE-695 file doesn't contain raw data in 70 sections, but data and relocation expressions intermixed, so 71 the data area has to be parsed to get out the data and 72 relocations. 73 74 INODE 75 Section Output, typedef asection, Section Input, Sections 76 77 SUBSECTION 78 Section output 79 80 To write a new object style BFD, the various sections to be 81 written have to be created. They are attached to the BFD in 82 the same way as input sections; data is written to the 83 sections using <<bfd_set_section_contents>>. 84 85 Any program that creates or combines sections (e.g., the assembler 86 and linker) must use the <<asection>> fields <<output_section>> and 87 <<output_offset>> to indicate the file sections to which each 88 section must be written. (If the section is being created from 89 scratch, <<output_section>> should probably point to the section 90 itself and <<output_offset>> should probably be zero.) 91 92 The data to be written comes from input sections attached 93 (via <<output_section>> pointers) to 94 the output sections. The output section structure can be 95 considered a filter for the input section: the output section 96 determines the vma of the output data and the name, but the 97 input section determines the offset into the output section of 98 the data to be written. 99 100 E.g., to create a section "O", starting at 0x100, 0x123 long, 101 containing two subsections, "A" at offset 0x0 (i.e., at vma 102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 103 structures would look like: 104 105 | section name "A" 106 | output_offset 0x00 107 | size 0x20 108 | output_section -----------> section name "O" 109 | | vma 0x100 110 | section name "B" | size 0x123 111 | output_offset 0x20 | 112 | size 0x103 | 113 | output_section --------| 114 115 SUBSECTION 116 Link orders 117 118 The data within a section is stored in a @dfn{link_order}. 119 These are much like the fixups in <<gas>>. The link_order 120 abstraction allows a section to grow and shrink within itself. 121 122 A link_order knows how big it is, and which is the next 123 link_order and where the raw data for it is; it also points to 124 a list of relocations which apply to it. 125 126 The link_order is used by the linker to perform relaxing on 127 final code. The compiler creates code which is as big as 128 necessary to make it work without relaxing, and the user can 129 select whether to relax. Sometimes relaxing takes a lot of 130 time. The linker runs around the relocations to see if any 131 are attached to data which can be shrunk, if so it does it on 132 a link_order by link_order basis. 133 134 */ 135 136 #include "bfd.h" 137 #include "sysdep.h" 138 #include "libbfd.h" 139 #include "bfdlink.h" 140 141 /* 142 DOCDD 143 INODE 144 typedef asection, section prototypes, Section Output, Sections 145 SUBSECTION 146 typedef asection 147 148 Here is the section structure: 149 150 CODE_FRAGMENT 151 . 152 .typedef struct bfd_section 153 .{ 154 . {* The name of the section; the name isn't a copy, the pointer is 155 . the same as that passed to bfd_make_section. *} 156 . const char *name; 157 . 158 . {* A unique sequence number. *} 159 . int id; 160 . 161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 162 . int index; 163 . 164 . {* The next section in the list belonging to the BFD, or NULL. *} 165 . struct bfd_section *next; 166 . 167 . {* The previous section in the list belonging to the BFD, or NULL. *} 168 . struct bfd_section *prev; 169 . 170 . {* The field flags contains attributes of the section. Some 171 . flags are read in from the object file, and some are 172 . synthesized from other information. *} 173 . flagword flags; 174 . 175 .#define SEC_NO_FLAGS 0x000 176 . 177 . {* Tells the OS to allocate space for this section when loading. 178 . This is clear for a section containing debug information only. *} 179 .#define SEC_ALLOC 0x001 180 . 181 . {* Tells the OS to load the section from the file when loading. 182 . This is clear for a .bss section. *} 183 .#define SEC_LOAD 0x002 184 . 185 . {* The section contains data still to be relocated, so there is 186 . some relocation information too. *} 187 .#define SEC_RELOC 0x004 188 . 189 . {* A signal to the OS that the section contains read only data. *} 190 .#define SEC_READONLY 0x008 191 . 192 . {* The section contains code only. *} 193 .#define SEC_CODE 0x010 194 . 195 . {* The section contains data only. *} 196 .#define SEC_DATA 0x020 197 . 198 . {* The section will reside in ROM. *} 199 .#define SEC_ROM 0x040 200 . 201 . {* The section contains constructor information. This section 202 . type is used by the linker to create lists of constructors and 203 . destructors used by <<g++>>. When a back end sees a symbol 204 . which should be used in a constructor list, it creates a new 205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 206 . the symbol to it, and builds a relocation. To build the lists 207 . of constructors, all the linker has to do is catenate all the 208 . sections called <<__CTOR_LIST__>> and relocate the data 209 . contained within - exactly the operations it would peform on 210 . standard data. *} 211 .#define SEC_CONSTRUCTOR 0x080 212 . 213 . {* The section has contents - a data section could be 214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 215 . <<SEC_HAS_CONTENTS>> *} 216 .#define SEC_HAS_CONTENTS 0x100 217 . 218 . {* An instruction to the linker to not output the section 219 . even if it has information which would normally be written. *} 220 .#define SEC_NEVER_LOAD 0x200 221 . 222 . {* The section contains thread local data. *} 223 .#define SEC_THREAD_LOCAL 0x400 224 . 225 . {* The section has GOT references. This flag is only for the 226 . linker, and is currently only used by the elf32-hppa back end. 227 . It will be set if global offset table references were detected 228 . in this section, which indicate to the linker that the section 229 . contains PIC code, and must be handled specially when doing a 230 . static link. *} 231 .#define SEC_HAS_GOT_REF 0x800 232 . 233 . {* The section contains common symbols (symbols may be defined 234 . multiple times, the value of a symbol is the amount of 235 . space it requires, and the largest symbol value is the one 236 . used). Most targets have exactly one of these (which we 237 . translate to bfd_com_section_ptr), but ECOFF has two. *} 238 .#define SEC_IS_COMMON 0x1000 239 . 240 . {* The section contains only debugging information. For 241 . example, this is set for ELF .debug and .stab sections. 242 . strip tests this flag to see if a section can be 243 . discarded. *} 244 .#define SEC_DEBUGGING 0x2000 245 . 246 . {* The contents of this section are held in memory pointed to 247 . by the contents field. This is checked by bfd_get_section_contents, 248 . and the data is retrieved from memory if appropriate. *} 249 .#define SEC_IN_MEMORY 0x4000 250 . 251 . {* The contents of this section are to be excluded by the 252 . linker for executable and shared objects unless those 253 . objects are to be further relocated. *} 254 .#define SEC_EXCLUDE 0x8000 255 . 256 . {* The contents of this section are to be sorted based on the sum of 257 . the symbol and addend values specified by the associated relocation 258 . entries. Entries without associated relocation entries will be 259 . appended to the end of the section in an unspecified order. *} 260 .#define SEC_SORT_ENTRIES 0x10000 261 . 262 . {* When linking, duplicate sections of the same name should be 263 . discarded, rather than being combined into a single section as 264 . is usually done. This is similar to how common symbols are 265 . handled. See SEC_LINK_DUPLICATES below. *} 266 .#define SEC_LINK_ONCE 0x20000 267 . 268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 269 . should handle duplicate sections. *} 270 .#define SEC_LINK_DUPLICATES 0x40000 271 . 272 . {* This value for SEC_LINK_DUPLICATES means that duplicate 273 . sections with the same name should simply be discarded. *} 274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 275 . 276 . {* This value for SEC_LINK_DUPLICATES means that the linker 277 . should warn if there are any duplicate sections, although 278 . it should still only link one copy. *} 279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000 280 . 281 . {* This value for SEC_LINK_DUPLICATES means that the linker 282 . should warn if any duplicate sections are a different size. *} 283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000 284 . 285 . {* This value for SEC_LINK_DUPLICATES means that the linker 286 . should warn if any duplicate sections contain different 287 . contents. *} 288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 290 . 291 . {* This section was created by the linker as part of dynamic 292 . relocation or other arcane processing. It is skipped when 293 . going through the first-pass output, trusting that someone 294 . else up the line will take care of it later. *} 295 .#define SEC_LINKER_CREATED 0x200000 296 . 297 . {* This section should not be subject to garbage collection. *} 298 .#define SEC_KEEP 0x400000 299 . 300 . {* This section contains "short" data, and should be placed 301 . "near" the GP. *} 302 .#define SEC_SMALL_DATA 0x800000 303 . 304 . {* Attempt to merge identical entities in the section. 305 . Entity size is given in the entsize field. *} 306 .#define SEC_MERGE 0x1000000 307 . 308 . {* If given with SEC_MERGE, entities to merge are zero terminated 309 . strings where entsize specifies character size instead of fixed 310 . size entries. *} 311 .#define SEC_STRINGS 0x2000000 312 . 313 . {* This section contains data about section groups. *} 314 .#define SEC_GROUP 0x4000000 315 . 316 . {* The section is a COFF shared library section. This flag is 317 . only for the linker. If this type of section appears in 318 . the input file, the linker must copy it to the output file 319 . without changing the vma or size. FIXME: Although this 320 . was originally intended to be general, it really is COFF 321 . specific (and the flag was renamed to indicate this). It 322 . might be cleaner to have some more general mechanism to 323 . allow the back end to control what the linker does with 324 . sections. *} 325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000 326 . 327 . {* This section contains data which may be shared with other 328 . executables or shared objects. This is for COFF only. *} 329 .#define SEC_COFF_SHARED 0x20000000 330 . 331 . {* When a section with this flag is being linked, then if the size of 332 . the input section is less than a page, it should not cross a page 333 . boundary. If the size of the input section is one page or more, 334 . it should be aligned on a page boundary. This is for TI 335 . TMS320C54X only. *} 336 .#define SEC_TIC54X_BLOCK 0x40000000 337 . 338 . {* Conditionally link this section; do not link if there are no 339 . references found to any symbol in the section. This is for TI 340 . TMS320C54X only. *} 341 .#define SEC_TIC54X_CLINK 0x80000000 342 . 343 . {* End of section flags. *} 344 . 345 . {* Some internal packed boolean fields. *} 346 . 347 . {* See the vma field. *} 348 . unsigned int user_set_vma : 1; 349 . 350 . {* A mark flag used by some of the linker backends. *} 351 . unsigned int linker_mark : 1; 352 . 353 . {* Another mark flag used by some of the linker backends. Set for 354 . output sections that have an input section. *} 355 . unsigned int linker_has_input : 1; 356 . 357 . {* Mark flags used by some linker backends for garbage collection. *} 358 . unsigned int gc_mark : 1; 359 . unsigned int gc_mark_from_eh : 1; 360 . 361 . {* The following flags are used by the ELF linker. *} 362 . 363 . {* Mark sections which have been allocated to segments. *} 364 . unsigned int segment_mark : 1; 365 . 366 . {* Type of sec_info information. *} 367 . unsigned int sec_info_type:3; 368 .#define ELF_INFO_TYPE_NONE 0 369 .#define ELF_INFO_TYPE_STABS 1 370 .#define ELF_INFO_TYPE_MERGE 2 371 .#define ELF_INFO_TYPE_EH_FRAME 3 372 .#define ELF_INFO_TYPE_JUST_SYMS 4 373 . 374 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 375 . unsigned int use_rela_p:1; 376 . 377 . {* Bits used by various backends. The generic code doesn't touch 378 . these fields. *} 379 . 380 . {* Nonzero if this section has TLS related relocations. *} 381 . unsigned int has_tls_reloc:1; 382 . 383 . {* Nonzero if this section has a gp reloc. *} 384 . unsigned int has_gp_reloc:1; 385 . 386 . {* Nonzero if this section needs the relax finalize pass. *} 387 . unsigned int need_finalize_relax:1; 388 . 389 . {* Whether relocations have been processed. *} 390 . unsigned int reloc_done : 1; 391 . 392 . {* End of internal packed boolean fields. *} 393 . 394 . {* The virtual memory address of the section - where it will be 395 . at run time. The symbols are relocated against this. The 396 . user_set_vma flag is maintained by bfd; if it's not set, the 397 . backend can assign addresses (for example, in <<a.out>>, where 398 . the default address for <<.data>> is dependent on the specific 399 . target and various flags). *} 400 . bfd_vma vma; 401 . 402 . {* The load address of the section - where it would be in a 403 . rom image; really only used for writing section header 404 . information. *} 405 . bfd_vma lma; 406 . 407 . {* The size of the section in octets, as it will be output. 408 . Contains a value even if the section has no contents (e.g., the 409 . size of <<.bss>>). *} 410 . bfd_size_type size; 411 . 412 . {* For input sections, the original size on disk of the section, in 413 . octets. This field is used by the linker relaxation code. It is 414 . currently only set for sections where the linker relaxation scheme 415 . doesn't cache altered section and reloc contents (stabs, eh_frame, 416 . SEC_MERGE, some coff relaxing targets), and thus the original size 417 . needs to be kept to read the section multiple times. 418 . For output sections, rawsize holds the section size calculated on 419 . a previous linker relaxation pass. *} 420 . bfd_size_type rawsize; 421 . 422 . {* If this section is going to be output, then this value is the 423 . offset in *bytes* into the output section of the first byte in the 424 . input section (byte ==> smallest addressable unit on the 425 . target). In most cases, if this was going to start at the 426 . 100th octet (8-bit quantity) in the output section, this value 427 . would be 100. However, if the target byte size is 16 bits 428 . (bfd_octets_per_byte is "2"), this value would be 50. *} 429 . bfd_vma output_offset; 430 . 431 . {* The output section through which to map on output. *} 432 . struct bfd_section *output_section; 433 . 434 . {* The alignment requirement of the section, as an exponent of 2 - 435 . e.g., 3 aligns to 2^3 (or 8). *} 436 . unsigned int alignment_power; 437 . 438 . {* If an input section, a pointer to a vector of relocation 439 . records for the data in this section. *} 440 . struct reloc_cache_entry *relocation; 441 . 442 . {* If an output section, a pointer to a vector of pointers to 443 . relocation records for the data in this section. *} 444 . struct reloc_cache_entry **orelocation; 445 . 446 . {* The number of relocation records in one of the above. *} 447 . unsigned reloc_count; 448 . 449 . {* Information below is back end specific - and not always used 450 . or updated. *} 451 . 452 . {* File position of section data. *} 453 . file_ptr filepos; 454 . 455 . {* File position of relocation info. *} 456 . file_ptr rel_filepos; 457 . 458 . {* File position of line data. *} 459 . file_ptr line_filepos; 460 . 461 . {* Pointer to data for applications. *} 462 . void *userdata; 463 . 464 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 465 . contents. *} 466 . unsigned char *contents; 467 . 468 . {* Attached line number information. *} 469 . alent *lineno; 470 . 471 . {* Number of line number records. *} 472 . unsigned int lineno_count; 473 . 474 . {* Entity size for merging purposes. *} 475 . unsigned int entsize; 476 . 477 . {* Points to the kept section if this section is a link-once section, 478 . and is discarded. *} 479 . struct bfd_section *kept_section; 480 . 481 . {* When a section is being output, this value changes as more 482 . linenumbers are written out. *} 483 . file_ptr moving_line_filepos; 484 . 485 . {* What the section number is in the target world. *} 486 . int target_index; 487 . 488 . void *used_by_bfd; 489 . 490 . {* If this is a constructor section then here is a list of the 491 . relocations created to relocate items within it. *} 492 . struct relent_chain *constructor_chain; 493 . 494 . {* The BFD which owns the section. *} 495 . bfd *owner; 496 . 497 . {* A symbol which points at this section only. *} 498 . struct bfd_symbol *symbol; 499 . struct bfd_symbol **symbol_ptr_ptr; 500 . 501 . {* Early in the link process, map_head and map_tail are used to build 502 . a list of input sections attached to an output section. Later, 503 . output sections use these fields for a list of bfd_link_order 504 . structs. *} 505 . union { 506 . struct bfd_link_order *link_order; 507 . struct bfd_section *s; 508 . } map_head, map_tail; 509 .} asection; 510 . 511 .{* These sections are global, and are managed by BFD. The application 512 . and target back end are not permitted to change the values in 513 . these sections. New code should use the section_ptr macros rather 514 . than referring directly to the const sections. The const sections 515 . may eventually vanish. *} 516 .#define BFD_ABS_SECTION_NAME "*ABS*" 517 .#define BFD_UND_SECTION_NAME "*UND*" 518 .#define BFD_COM_SECTION_NAME "*COM*" 519 .#define BFD_IND_SECTION_NAME "*IND*" 520 . 521 .{* The absolute section. *} 522 .extern asection bfd_abs_section; 523 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section) 524 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 525 .{* Pointer to the undefined section. *} 526 .extern asection bfd_und_section; 527 .#define bfd_und_section_ptr ((asection *) &bfd_und_section) 528 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 529 .{* Pointer to the common section. *} 530 .extern asection bfd_com_section; 531 .#define bfd_com_section_ptr ((asection *) &bfd_com_section) 532 .{* Pointer to the indirect section. *} 533 .extern asection bfd_ind_section; 534 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section) 535 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 536 . 537 .#define bfd_is_const_section(SEC) \ 538 . ( ((SEC) == bfd_abs_section_ptr) \ 539 . || ((SEC) == bfd_und_section_ptr) \ 540 . || ((SEC) == bfd_com_section_ptr) \ 541 . || ((SEC) == bfd_ind_section_ptr)) 542 . 543 .extern const struct bfd_symbol * const bfd_abs_symbol; 544 .extern const struct bfd_symbol * const bfd_com_symbol; 545 .extern const struct bfd_symbol * const bfd_und_symbol; 546 .extern const struct bfd_symbol * const bfd_ind_symbol; 547 . 548 .{* Macros to handle insertion and deletion of a bfd's sections. These 549 . only handle the list pointers, ie. do not adjust section_count, 550 . target_index etc. *} 551 .#define bfd_section_list_remove(ABFD, S) \ 552 . do \ 553 . { \ 554 . asection *_s = S; \ 555 . asection *_next = _s->next; \ 556 . asection *_prev = _s->prev; \ 557 . if (_prev) \ 558 . _prev->next = _next; \ 559 . else \ 560 . (ABFD)->sections = _next; \ 561 . if (_next) \ 562 . _next->prev = _prev; \ 563 . else \ 564 . (ABFD)->section_last = _prev; \ 565 . } \ 566 . while (0) 567 .#define bfd_section_list_append(ABFD, S) \ 568 . do \ 569 . { \ 570 . asection *_s = S; \ 571 . bfd *_abfd = ABFD; \ 572 . _s->next = NULL; \ 573 . if (_abfd->section_last) \ 574 . { \ 575 . _s->prev = _abfd->section_last; \ 576 . _abfd->section_last->next = _s; \ 577 . } \ 578 . else \ 579 . { \ 580 . _s->prev = NULL; \ 581 . _abfd->sections = _s; \ 582 . } \ 583 . _abfd->section_last = _s; \ 584 . } \ 585 . while (0) 586 .#define bfd_section_list_prepend(ABFD, S) \ 587 . do \ 588 . { \ 589 . asection *_s = S; \ 590 . bfd *_abfd = ABFD; \ 591 . _s->prev = NULL; \ 592 . if (_abfd->sections) \ 593 . { \ 594 . _s->next = _abfd->sections; \ 595 . _abfd->sections->prev = _s; \ 596 . } \ 597 . else \ 598 . { \ 599 . _s->next = NULL; \ 600 . _abfd->section_last = _s; \ 601 . } \ 602 . _abfd->sections = _s; \ 603 . } \ 604 . while (0) 605 .#define bfd_section_list_insert_after(ABFD, A, S) \ 606 . do \ 607 . { \ 608 . asection *_a = A; \ 609 . asection *_s = S; \ 610 . asection *_next = _a->next; \ 611 . _s->next = _next; \ 612 . _s->prev = _a; \ 613 . _a->next = _s; \ 614 . if (_next) \ 615 . _next->prev = _s; \ 616 . else \ 617 . (ABFD)->section_last = _s; \ 618 . } \ 619 . while (0) 620 .#define bfd_section_list_insert_before(ABFD, B, S) \ 621 . do \ 622 . { \ 623 . asection *_b = B; \ 624 . asection *_s = S; \ 625 . asection *_prev = _b->prev; \ 626 . _s->prev = _prev; \ 627 . _s->next = _b; \ 628 . _b->prev = _s; \ 629 . if (_prev) \ 630 . _prev->next = _s; \ 631 . else \ 632 . (ABFD)->sections = _s; \ 633 . } \ 634 . while (0) 635 .#define bfd_section_removed_from_list(ABFD, S) \ 636 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 637 . 638 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, SYM_PTR, NAME, IDX) \ 639 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 640 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 641 . \ 642 . {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, *} \ 643 . 0, 0, 1, 0, \ 644 . \ 645 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \ 646 . 0, 0, 0, 0, \ 647 . \ 648 . {* has_gp_reloc, need_finalize_relax, reloc_done, *} \ 649 . 0, 0, 0, \ 650 . \ 651 . {* vma, lma, size, rawsize *} \ 652 . 0, 0, 0, 0, \ 653 . \ 654 . {* output_offset, output_section, alignment_power, *} \ 655 . 0, (struct bfd_section *) &SEC, 0, \ 656 . \ 657 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 658 . NULL, NULL, 0, 0, 0, \ 659 . \ 660 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 661 . 0, NULL, NULL, NULL, 0, \ 662 . \ 663 . {* entsize, kept_section, moving_line_filepos, *} \ 664 . 0, NULL, 0, \ 665 . \ 666 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 667 . 0, NULL, NULL, NULL, \ 668 . \ 669 . {* symbol, *} \ 670 . (struct bfd_symbol *) SYM, \ 671 . \ 672 . {* symbol_ptr_ptr, *} \ 673 . (struct bfd_symbol **) SYM_PTR, \ 674 . \ 675 . {* map_head, map_tail *} \ 676 . { NULL }, { NULL } \ 677 . } 678 . 679 */ 680 681 /* We use a macro to initialize the static asymbol structures because 682 traditional C does not permit us to initialize a union member while 683 gcc warns if we don't initialize it. */ 684 /* the_bfd, name, value, attr, section [, udata] */ 685 #ifdef __STDC__ 686 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 687 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }} 688 #else 689 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 690 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION } 691 #endif 692 693 /* These symbols are global, not specific to any BFD. Therefore, anything 694 that tries to change them is broken, and should be repaired. */ 695 696 static const asymbol global_syms[] = 697 { 698 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section), 699 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section), 700 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section), 701 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section) 702 }; 703 704 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 705 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \ 706 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], &SYM, \ 707 NAME, IDX) 708 709 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol, 710 BFD_COM_SECTION_NAME, 0); 711 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1); 712 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2); 713 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3); 714 #undef STD_SECTION 715 716 /* Initialize an entry in the section hash table. */ 717 718 struct bfd_hash_entry * 719 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 720 struct bfd_hash_table *table, 721 const char *string) 722 { 723 /* Allocate the structure if it has not already been allocated by a 724 subclass. */ 725 if (entry == NULL) 726 { 727 entry = (struct bfd_hash_entry *) 728 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 729 if (entry == NULL) 730 return entry; 731 } 732 733 /* Call the allocation method of the superclass. */ 734 entry = bfd_hash_newfunc (entry, table, string); 735 if (entry != NULL) 736 memset (&((struct section_hash_entry *) entry)->section, 0, 737 sizeof (asection)); 738 739 return entry; 740 } 741 742 #define section_hash_lookup(table, string, create, copy) \ 743 ((struct section_hash_entry *) \ 744 bfd_hash_lookup ((table), (string), (create), (copy))) 745 746 /* Initializes a new section. NEWSECT->NAME is already set. */ 747 748 static asection * 749 bfd_section_init (bfd *abfd, asection *newsect) 750 { 751 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 752 753 newsect->id = section_id; 754 newsect->index = abfd->section_count; 755 newsect->owner = abfd; 756 757 /* Create a symbol whose only job is to point to this section. This 758 is useful for things like relocs which are relative to the base 759 of a section. */ 760 newsect->symbol = bfd_make_empty_symbol (abfd); 761 if (newsect->symbol == NULL) 762 return NULL; 763 764 newsect->symbol->name = newsect->name; 765 newsect->symbol->value = 0; 766 newsect->symbol->section = newsect; 767 newsect->symbol->flags = BSF_SECTION_SYM; 768 769 newsect->symbol_ptr_ptr = &newsect->symbol; 770 771 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 772 return NULL; 773 774 section_id++; 775 abfd->section_count++; 776 bfd_section_list_append (abfd, newsect); 777 return newsect; 778 } 779 780 /* 781 DOCDD 782 INODE 783 section prototypes, , typedef asection, Sections 784 SUBSECTION 785 Section prototypes 786 787 These are the functions exported by the section handling part of BFD. 788 */ 789 790 /* 791 FUNCTION 792 bfd_section_list_clear 793 794 SYNOPSIS 795 void bfd_section_list_clear (bfd *); 796 797 DESCRIPTION 798 Clears the section list, and also resets the section count and 799 hash table entries. 800 */ 801 802 void 803 bfd_section_list_clear (bfd *abfd) 804 { 805 abfd->sections = NULL; 806 abfd->section_last = NULL; 807 abfd->section_count = 0; 808 memset (abfd->section_htab.table, 0, 809 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 810 } 811 812 /* 813 FUNCTION 814 bfd_get_section_by_name 815 816 SYNOPSIS 817 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 818 819 DESCRIPTION 820 Run through @var{abfd} and return the one of the 821 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>. 822 @xref{Sections}, for more information. 823 824 This should only be used in special cases; the normal way to process 825 all sections of a given name is to use <<bfd_map_over_sections>> and 826 <<strcmp>> on the name (or better yet, base it on the section flags 827 or something else) for each section. 828 */ 829 830 asection * 831 bfd_get_section_by_name (bfd *abfd, const char *name) 832 { 833 struct section_hash_entry *sh; 834 835 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 836 if (sh != NULL) 837 return &sh->section; 838 839 return NULL; 840 } 841 842 /* 843 FUNCTION 844 bfd_get_section_by_name_if 845 846 SYNOPSIS 847 asection *bfd_get_section_by_name_if 848 (bfd *abfd, 849 const char *name, 850 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 851 void *obj); 852 853 DESCRIPTION 854 Call the provided function @var{func} for each section 855 attached to the BFD @var{abfd} whose name matches @var{name}, 856 passing @var{obj} as an argument. The function will be called 857 as if by 858 859 | func (abfd, the_section, obj); 860 861 It returns the first section for which @var{func} returns true, 862 otherwise <<NULL>>. 863 864 */ 865 866 asection * 867 bfd_get_section_by_name_if (bfd *abfd, const char *name, 868 bfd_boolean (*operation) (bfd *, 869 asection *, 870 void *), 871 void *user_storage) 872 { 873 struct section_hash_entry *sh; 874 unsigned long hash; 875 876 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 877 if (sh == NULL) 878 return NULL; 879 880 hash = sh->root.hash; 881 do 882 { 883 if ((*operation) (abfd, &sh->section, user_storage)) 884 return &sh->section; 885 sh = (struct section_hash_entry *) sh->root.next; 886 } 887 while (sh != NULL && sh->root.hash == hash 888 && strcmp (sh->root.string, name) == 0); 889 890 return NULL; 891 } 892 893 /* 894 FUNCTION 895 bfd_get_unique_section_name 896 897 SYNOPSIS 898 char *bfd_get_unique_section_name 899 (bfd *abfd, const char *templat, int *count); 900 901 DESCRIPTION 902 Invent a section name that is unique in @var{abfd} by tacking 903 a dot and a digit suffix onto the original @var{templat}. If 904 @var{count} is non-NULL, then it specifies the first number 905 tried as a suffix to generate a unique name. The value 906 pointed to by @var{count} will be incremented in this case. 907 */ 908 909 char * 910 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 911 { 912 int num; 913 unsigned int len; 914 char *sname; 915 916 len = strlen (templat); 917 sname = bfd_malloc (len + 8); 918 if (sname == NULL) 919 return NULL; 920 memcpy (sname, templat, len); 921 num = 1; 922 if (count != NULL) 923 num = *count; 924 925 do 926 { 927 /* If we have a million sections, something is badly wrong. */ 928 if (num > 999999) 929 abort (); 930 sprintf (sname + len, ".%d", num++); 931 } 932 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 933 934 if (count != NULL) 935 *count = num; 936 return sname; 937 } 938 939 /* 940 FUNCTION 941 bfd_make_section_old_way 942 943 SYNOPSIS 944 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 945 946 DESCRIPTION 947 Create a new empty section called @var{name} 948 and attach it to the end of the chain of sections for the 949 BFD @var{abfd}. An attempt to create a section with a name which 950 is already in use returns its pointer without changing the 951 section chain. 952 953 It has the funny name since this is the way it used to be 954 before it was rewritten.... 955 956 Possible errors are: 957 o <<bfd_error_invalid_operation>> - 958 If output has already started for this BFD. 959 o <<bfd_error_no_memory>> - 960 If memory allocation fails. 961 962 */ 963 964 asection * 965 bfd_make_section_old_way (bfd *abfd, const char *name) 966 { 967 struct section_hash_entry *sh; 968 asection *newsect; 969 970 if (abfd->output_has_begun) 971 { 972 bfd_set_error (bfd_error_invalid_operation); 973 return NULL; 974 } 975 976 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 977 return bfd_abs_section_ptr; 978 979 if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 980 return bfd_com_section_ptr; 981 982 if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 983 return bfd_und_section_ptr; 984 985 if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 986 return bfd_ind_section_ptr; 987 988 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 989 if (sh == NULL) 990 return NULL; 991 992 newsect = &sh->section; 993 if (newsect->name != NULL) 994 { 995 /* Section already exists. */ 996 return newsect; 997 } 998 999 newsect->name = name; 1000 return bfd_section_init (abfd, newsect); 1001 } 1002 1003 /* 1004 FUNCTION 1005 bfd_make_section_anyway_with_flags 1006 1007 SYNOPSIS 1008 asection *bfd_make_section_anyway_with_flags 1009 (bfd *abfd, const char *name, flagword flags); 1010 1011 DESCRIPTION 1012 Create a new empty section called @var{name} and attach it to the end of 1013 the chain of sections for @var{abfd}. Create a new section even if there 1014 is already a section with that name. Also set the attributes of the 1015 new section to the value @var{flags}. 1016 1017 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1018 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1019 o <<bfd_error_no_memory>> - If memory allocation fails. 1020 */ 1021 1022 sec_ptr 1023 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1024 flagword flags) 1025 { 1026 struct section_hash_entry *sh; 1027 asection *newsect; 1028 1029 if (abfd->output_has_begun) 1030 { 1031 bfd_set_error (bfd_error_invalid_operation); 1032 return NULL; 1033 } 1034 1035 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1036 if (sh == NULL) 1037 return NULL; 1038 1039 newsect = &sh->section; 1040 if (newsect->name != NULL) 1041 { 1042 /* We are making a section of the same name. Put it in the 1043 section hash table. Even though we can't find it directly by a 1044 hash lookup, we'll be able to find the section by traversing 1045 sh->root.next quicker than looking at all the bfd sections. */ 1046 struct section_hash_entry *new_sh; 1047 new_sh = (struct section_hash_entry *) 1048 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1049 if (new_sh == NULL) 1050 return NULL; 1051 1052 new_sh->root = sh->root; 1053 sh->root.next = &new_sh->root; 1054 newsect = &new_sh->section; 1055 } 1056 1057 newsect->flags = flags; 1058 newsect->name = name; 1059 return bfd_section_init (abfd, newsect); 1060 } 1061 1062 /* 1063 FUNCTION 1064 bfd_make_section_anyway 1065 1066 SYNOPSIS 1067 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1068 1069 DESCRIPTION 1070 Create a new empty section called @var{name} and attach it to the end of 1071 the chain of sections for @var{abfd}. Create a new section even if there 1072 is already a section with that name. 1073 1074 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1075 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1076 o <<bfd_error_no_memory>> - If memory allocation fails. 1077 */ 1078 1079 sec_ptr 1080 bfd_make_section_anyway (bfd *abfd, const char *name) 1081 { 1082 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1083 } 1084 1085 /* 1086 FUNCTION 1087 bfd_make_section_with_flags 1088 1089 SYNOPSIS 1090 asection *bfd_make_section_with_flags 1091 (bfd *, const char *name, flagword flags); 1092 1093 DESCRIPTION 1094 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1095 bfd_set_error ()) without changing the section chain if there is already a 1096 section named @var{name}. Also set the attributes of the new section to 1097 the value @var{flags}. If there is an error, return <<NULL>> and set 1098 <<bfd_error>>. 1099 */ 1100 1101 asection * 1102 bfd_make_section_with_flags (bfd *abfd, const char *name, 1103 flagword flags) 1104 { 1105 struct section_hash_entry *sh; 1106 asection *newsect; 1107 1108 if (abfd->output_has_begun) 1109 { 1110 bfd_set_error (bfd_error_invalid_operation); 1111 return NULL; 1112 } 1113 1114 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1115 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1116 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1117 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1118 return NULL; 1119 1120 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1121 if (sh == NULL) 1122 return NULL; 1123 1124 newsect = &sh->section; 1125 if (newsect->name != NULL) 1126 { 1127 /* Section already exists. */ 1128 return NULL; 1129 } 1130 1131 newsect->name = name; 1132 newsect->flags = flags; 1133 return bfd_section_init (abfd, newsect); 1134 } 1135 1136 /* 1137 FUNCTION 1138 bfd_make_section 1139 1140 SYNOPSIS 1141 asection *bfd_make_section (bfd *, const char *name); 1142 1143 DESCRIPTION 1144 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1145 bfd_set_error ()) without changing the section chain if there is already a 1146 section named @var{name}. If there is an error, return <<NULL>> and set 1147 <<bfd_error>>. 1148 */ 1149 1150 asection * 1151 bfd_make_section (bfd *abfd, const char *name) 1152 { 1153 return bfd_make_section_with_flags (abfd, name, 0); 1154 } 1155 1156 /* 1157 FUNCTION 1158 bfd_set_section_flags 1159 1160 SYNOPSIS 1161 bfd_boolean bfd_set_section_flags 1162 (bfd *abfd, asection *sec, flagword flags); 1163 1164 DESCRIPTION 1165 Set the attributes of the section @var{sec} in the BFD 1166 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1167 <<FALSE>> on error. Possible error returns are: 1168 1169 o <<bfd_error_invalid_operation>> - 1170 The section cannot have one or more of the attributes 1171 requested. For example, a .bss section in <<a.out>> may not 1172 have the <<SEC_HAS_CONTENTS>> field set. 1173 1174 */ 1175 1176 bfd_boolean 1177 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1178 sec_ptr section, 1179 flagword flags) 1180 { 1181 section->flags = flags; 1182 return TRUE; 1183 } 1184 1185 /* 1186 FUNCTION 1187 bfd_map_over_sections 1188 1189 SYNOPSIS 1190 void bfd_map_over_sections 1191 (bfd *abfd, 1192 void (*func) (bfd *abfd, asection *sect, void *obj), 1193 void *obj); 1194 1195 DESCRIPTION 1196 Call the provided function @var{func} for each section 1197 attached to the BFD @var{abfd}, passing @var{obj} as an 1198 argument. The function will be called as if by 1199 1200 | func (abfd, the_section, obj); 1201 1202 This is the preferred method for iterating over sections; an 1203 alternative would be to use a loop: 1204 1205 | section *p; 1206 | for (p = abfd->sections; p != NULL; p = p->next) 1207 | func (abfd, p, ...) 1208 1209 */ 1210 1211 void 1212 bfd_map_over_sections (bfd *abfd, 1213 void (*operation) (bfd *, asection *, void *), 1214 void *user_storage) 1215 { 1216 asection *sect; 1217 unsigned int i = 0; 1218 1219 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1220 (*operation) (abfd, sect, user_storage); 1221 1222 if (i != abfd->section_count) /* Debugging */ 1223 abort (); 1224 } 1225 1226 /* 1227 FUNCTION 1228 bfd_sections_find_if 1229 1230 SYNOPSIS 1231 asection *bfd_sections_find_if 1232 (bfd *abfd, 1233 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1234 void *obj); 1235 1236 DESCRIPTION 1237 Call the provided function @var{operation} for each section 1238 attached to the BFD @var{abfd}, passing @var{obj} as an 1239 argument. The function will be called as if by 1240 1241 | operation (abfd, the_section, obj); 1242 1243 It returns the first section for which @var{operation} returns true. 1244 1245 */ 1246 1247 asection * 1248 bfd_sections_find_if (bfd *abfd, 1249 bfd_boolean (*operation) (bfd *, asection *, void *), 1250 void *user_storage) 1251 { 1252 asection *sect; 1253 1254 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1255 if ((*operation) (abfd, sect, user_storage)) 1256 break; 1257 1258 return sect; 1259 } 1260 1261 /* 1262 FUNCTION 1263 bfd_set_section_size 1264 1265 SYNOPSIS 1266 bfd_boolean bfd_set_section_size 1267 (bfd *abfd, asection *sec, bfd_size_type val); 1268 1269 DESCRIPTION 1270 Set @var{sec} to the size @var{val}. If the operation is 1271 ok, then <<TRUE>> is returned, else <<FALSE>>. 1272 1273 Possible error returns: 1274 o <<bfd_error_invalid_operation>> - 1275 Writing has started to the BFD, so setting the size is invalid. 1276 1277 */ 1278 1279 bfd_boolean 1280 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1281 { 1282 /* Once you've started writing to any section you cannot create or change 1283 the size of any others. */ 1284 1285 if (abfd->output_has_begun) 1286 { 1287 bfd_set_error (bfd_error_invalid_operation); 1288 return FALSE; 1289 } 1290 1291 ptr->size = val; 1292 return TRUE; 1293 } 1294 1295 /* 1296 FUNCTION 1297 bfd_set_section_contents 1298 1299 SYNOPSIS 1300 bfd_boolean bfd_set_section_contents 1301 (bfd *abfd, asection *section, const void *data, 1302 file_ptr offset, bfd_size_type count); 1303 1304 DESCRIPTION 1305 Sets the contents of the section @var{section} in BFD 1306 @var{abfd} to the data starting in memory at @var{data}. The 1307 data is written to the output section starting at offset 1308 @var{offset} for @var{count} octets. 1309 1310 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1311 returns are: 1312 o <<bfd_error_no_contents>> - 1313 The output section does not have the <<SEC_HAS_CONTENTS>> 1314 attribute, so nothing can be written to it. 1315 o and some more too 1316 1317 This routine is front end to the back end function 1318 <<_bfd_set_section_contents>>. 1319 1320 */ 1321 1322 bfd_boolean 1323 bfd_set_section_contents (bfd *abfd, 1324 sec_ptr section, 1325 const void *location, 1326 file_ptr offset, 1327 bfd_size_type count) 1328 { 1329 bfd_size_type sz; 1330 1331 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1332 { 1333 bfd_set_error (bfd_error_no_contents); 1334 return FALSE; 1335 } 1336 1337 sz = section->size; 1338 if ((bfd_size_type) offset > sz 1339 || count > sz 1340 || offset + count > sz 1341 || count != (size_t) count) 1342 { 1343 bfd_set_error (bfd_error_bad_value); 1344 return FALSE; 1345 } 1346 1347 if (!bfd_write_p (abfd)) 1348 { 1349 bfd_set_error (bfd_error_invalid_operation); 1350 return FALSE; 1351 } 1352 1353 /* Record a copy of the data in memory if desired. */ 1354 if (section->contents 1355 && location != section->contents + offset) 1356 memcpy (section->contents + offset, location, (size_t) count); 1357 1358 if (BFD_SEND (abfd, _bfd_set_section_contents, 1359 (abfd, section, location, offset, count))) 1360 { 1361 abfd->output_has_begun = TRUE; 1362 return TRUE; 1363 } 1364 1365 return FALSE; 1366 } 1367 1368 /* 1369 FUNCTION 1370 bfd_get_section_contents 1371 1372 SYNOPSIS 1373 bfd_boolean bfd_get_section_contents 1374 (bfd *abfd, asection *section, void *location, file_ptr offset, 1375 bfd_size_type count); 1376 1377 DESCRIPTION 1378 Read data from @var{section} in BFD @var{abfd} 1379 into memory starting at @var{location}. The data is read at an 1380 offset of @var{offset} from the start of the input section, 1381 and is read for @var{count} bytes. 1382 1383 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1384 flag set are requested or if the section does not have the 1385 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1386 with zeroes. If no errors occur, <<TRUE>> is returned, else 1387 <<FALSE>>. 1388 1389 */ 1390 bfd_boolean 1391 bfd_get_section_contents (bfd *abfd, 1392 sec_ptr section, 1393 void *location, 1394 file_ptr offset, 1395 bfd_size_type count) 1396 { 1397 bfd_size_type sz; 1398 1399 if (section->flags & SEC_CONSTRUCTOR) 1400 { 1401 memset (location, 0, (size_t) count); 1402 return TRUE; 1403 } 1404 1405 sz = section->rawsize ? section->rawsize : section->size; 1406 if ((bfd_size_type) offset > sz 1407 || count > sz 1408 || offset + count > sz 1409 || count != (size_t) count) 1410 { 1411 bfd_set_error (bfd_error_bad_value); 1412 return FALSE; 1413 } 1414 1415 if (count == 0) 1416 /* Don't bother. */ 1417 return TRUE; 1418 1419 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1420 { 1421 memset (location, 0, (size_t) count); 1422 return TRUE; 1423 } 1424 1425 if ((section->flags & SEC_IN_MEMORY) != 0) 1426 { 1427 memcpy (location, section->contents + offset, (size_t) count); 1428 return TRUE; 1429 } 1430 1431 return BFD_SEND (abfd, _bfd_get_section_contents, 1432 (abfd, section, location, offset, count)); 1433 } 1434 1435 /* 1436 FUNCTION 1437 bfd_malloc_and_get_section 1438 1439 SYNOPSIS 1440 bfd_boolean bfd_malloc_and_get_section 1441 (bfd *abfd, asection *section, bfd_byte **buf); 1442 1443 DESCRIPTION 1444 Read all data from @var{section} in BFD @var{abfd} 1445 into a buffer, *@var{buf}, malloc'd by this function. 1446 */ 1447 1448 bfd_boolean 1449 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1450 { 1451 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size; 1452 bfd_byte *p = NULL; 1453 1454 *buf = p; 1455 if (sz == 0) 1456 return TRUE; 1457 1458 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size); 1459 if (p == NULL) 1460 return FALSE; 1461 *buf = p; 1462 1463 return bfd_get_section_contents (abfd, sec, p, 0, sz); 1464 } 1465 /* 1466 FUNCTION 1467 bfd_copy_private_section_data 1468 1469 SYNOPSIS 1470 bfd_boolean bfd_copy_private_section_data 1471 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1472 1473 DESCRIPTION 1474 Copy private section information from @var{isec} in the BFD 1475 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1476 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1477 returns are: 1478 1479 o <<bfd_error_no_memory>> - 1480 Not enough memory exists to create private data for @var{osec}. 1481 1482 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1483 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1484 . (ibfd, isection, obfd, osection)) 1485 */ 1486 1487 /* 1488 FUNCTION 1489 bfd_generic_is_group_section 1490 1491 SYNOPSIS 1492 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1493 1494 DESCRIPTION 1495 Returns TRUE if @var{sec} is a member of a group. 1496 */ 1497 1498 bfd_boolean 1499 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1500 const asection *sec ATTRIBUTE_UNUSED) 1501 { 1502 return FALSE; 1503 } 1504 1505 /* 1506 FUNCTION 1507 bfd_generic_discard_group 1508 1509 SYNOPSIS 1510 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1511 1512 DESCRIPTION 1513 Remove all members of @var{group} from the output. 1514 */ 1515 1516 bfd_boolean 1517 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1518 asection *group ATTRIBUTE_UNUSED) 1519 { 1520 return TRUE; 1521 } 1522