1 /* Opcode table for the ARC. 2 Copyright 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2004, 2005 3 Free Software Foundation, Inc. 4 Contributed by Doug Evans (dje@cygnus.com). 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2, or (at your option) 9 any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software Foundation, 18 Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 19 20 #include "sysdep.h" 21 #include <stdio.h> 22 #include "ansidecl.h" 23 #include "bfd.h" 24 #include "opcode/arc.h" 25 #include "opintl.h" 26 27 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM}; 28 29 #define OPERANDS 3 30 31 enum operand ls_operand[OPERANDS]; 32 33 struct arc_opcode *arc_ext_opcodes; 34 struct arc_ext_operand_value *arc_ext_operands; 35 36 #define LS_VALUE 0 37 #define LS_DEST 0 38 #define LS_BASE 1 39 #define LS_OFFSET 2 40 41 /* Given a format letter, yields the index into `arc_operands'. 42 eg: arc_operand_map['a'] = REGA. */ 43 unsigned char arc_operand_map[256]; 44 45 /* Nonzero if we've seen an 'f' suffix (in certain insns). */ 46 static int flag_p; 47 48 /* Nonzero if we've finished processing the 'f' suffix. */ 49 static int flagshimm_handled_p; 50 51 /* Nonzero if we've seen a 'a' suffix (address writeback). */ 52 static int addrwb_p; 53 54 /* Nonzero if we've seen a 'q' suffix (condition code). */ 55 static int cond_p; 56 57 /* Nonzero if we've inserted a nullify condition. */ 58 static int nullify_p; 59 60 /* The value of the a nullify condition we inserted. */ 61 static int nullify; 62 63 /* Nonzero if we've inserted jumpflags. */ 64 static int jumpflags_p; 65 66 /* Nonzero if we've inserted a shimm. */ 67 static int shimm_p; 68 69 /* The value of the shimm we inserted (each insn only gets one but it can 70 appear multiple times). */ 71 static int shimm; 72 73 /* Nonzero if we've inserted a limm (during assembly) or seen a limm 74 (during disassembly). */ 75 static int limm_p; 76 77 /* The value of the limm we inserted. Each insn only gets one but it can 78 appear multiple times. */ 79 static long limm; 80 81 #define INSERT_FN(fn) \ 82 static arc_insn fn (arc_insn, const struct arc_operand *, \ 83 int, const struct arc_operand_value *, long, \ 84 const char **) 85 86 #define EXTRACT_FN(fn) \ 87 static long fn (arc_insn *, const struct arc_operand *, \ 88 int, const struct arc_operand_value **, int *) 89 90 INSERT_FN (insert_reg); 91 INSERT_FN (insert_shimmfinish); 92 INSERT_FN (insert_limmfinish); 93 INSERT_FN (insert_offset); 94 INSERT_FN (insert_base); 95 INSERT_FN (insert_st_syntax); 96 INSERT_FN (insert_ld_syntax); 97 INSERT_FN (insert_addr_wb); 98 INSERT_FN (insert_flag); 99 INSERT_FN (insert_nullify); 100 INSERT_FN (insert_flagfinish); 101 INSERT_FN (insert_cond); 102 INSERT_FN (insert_forcelimm); 103 INSERT_FN (insert_reladdr); 104 INSERT_FN (insert_absaddr); 105 INSERT_FN (insert_jumpflags); 106 INSERT_FN (insert_unopmacro); 107 108 EXTRACT_FN (extract_reg); 109 EXTRACT_FN (extract_ld_offset); 110 EXTRACT_FN (extract_ld_syntax); 111 EXTRACT_FN (extract_st_offset); 112 EXTRACT_FN (extract_st_syntax); 113 EXTRACT_FN (extract_flag); 114 EXTRACT_FN (extract_cond); 115 EXTRACT_FN (extract_reladdr); 116 EXTRACT_FN (extract_jumpflags); 117 EXTRACT_FN (extract_unopmacro); 118 119 /* Various types of ARC operands, including insn suffixes. */ 120 121 /* Insn format values: 122 123 'a' REGA register A field 124 'b' REGB register B field 125 'c' REGC register C field 126 'S' SHIMMFINISH finish inserting a shimm value 127 'L' LIMMFINISH finish inserting a limm value 128 'o' OFFSET offset in st insns 129 'O' OFFSET offset in ld insns 130 '0' SYNTAX_ST_NE enforce store insn syntax, no errors 131 '1' SYNTAX_LD_NE enforce load insn syntax, no errors 132 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only 133 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only 134 's' BASE base in st insn 135 'f' FLAG F flag 136 'F' FLAGFINISH finish inserting the F flag 137 'G' FLAGINSN insert F flag in "flag" insn 138 'n' DELAY N field (nullify field) 139 'q' COND condition code field 140 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm 141 'B' BRANCH branch address (22 bit pc relative) 142 'J' JUMP jump address (26 bit absolute) 143 'j' JUMPFLAGS optional high order bits of 'J' 144 'z' SIZE1 size field in ld a,[b,c] 145 'Z' SIZE10 size field in ld a,[b,shimm] 146 'y' SIZE22 size field in st c,[b,shimm] 147 'x' SIGN0 sign extend field ld a,[b,c] 148 'X' SIGN9 sign extend field ld a,[b,shimm] 149 'w' ADDRESS3 write-back field in ld a,[b,c] 150 'W' ADDRESS12 write-back field in ld a,[b,shimm] 151 'v' ADDRESS24 write-back field in st c,[b,shimm] 152 'e' CACHEBYPASS5 cache bypass in ld a,[b,c] 153 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm] 154 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm] 155 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros 156 157 The following modifiers may appear between the % and char (eg: %.f): 158 159 '.' MODDOT '.' prefix must be present 160 'r' REG generic register value, for register table 161 'A' AUXREG auxiliary register in lr a,[b], sr c,[b] 162 163 Fields are: 164 165 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */ 166 167 const struct arc_operand arc_operands[] = 168 { 169 /* Place holder (??? not sure if needed). */ 170 #define UNUSED 0 171 { 0, 0, 0, 0, 0, 0 }, 172 173 /* Register A or shimm/limm indicator. */ 174 #define REGA (UNUSED + 1) 175 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg }, 176 177 /* Register B or shimm/limm indicator. */ 178 #define REGB (REGA + 1) 179 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg }, 180 181 /* Register C or shimm/limm indicator. */ 182 #define REGC (REGB + 1) 183 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg }, 184 185 /* Fake operand used to insert shimm value into most instructions. */ 186 #define SHIMMFINISH (REGC + 1) 187 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 }, 188 189 /* Fake operand used to insert limm value into most instructions. */ 190 #define LIMMFINISH (SHIMMFINISH + 1) 191 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 }, 192 193 /* Shimm operand when there is no reg indicator (st). */ 194 #define ST_OFFSET (LIMMFINISH + 1) 195 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset }, 196 197 /* Shimm operand when there is no reg indicator (ld). */ 198 #define LD_OFFSET (ST_OFFSET + 1) 199 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset }, 200 201 /* Operand for base. */ 202 #define BASE (LD_OFFSET + 1) 203 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg}, 204 205 /* 0 enforce syntax for st insns. */ 206 #define SYNTAX_ST_NE (BASE + 1) 207 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax }, 208 209 /* 1 enforce syntax for ld insns. */ 210 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1) 211 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax }, 212 213 /* 0 enforce syntax for st insns. */ 214 #define SYNTAX_ST (SYNTAX_LD_NE + 1) 215 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax }, 216 217 /* 0 enforce syntax for ld insns. */ 218 #define SYNTAX_LD (SYNTAX_ST + 1) 219 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax }, 220 221 /* Flag update bit (insertion is defered until we know how). */ 222 #define FLAG (SYNTAX_LD + 1) 223 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag }, 224 225 /* Fake utility operand to finish 'f' suffix handling. */ 226 #define FLAGFINISH (FLAG + 1) 227 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 }, 228 229 /* Fake utility operand to set the 'f' flag for the "flag" insn. */ 230 #define FLAGINSN (FLAGFINISH + 1) 231 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 }, 232 233 /* Branch delay types. */ 234 #define DELAY (FLAGINSN + 1) 235 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 }, 236 237 /* Conditions. */ 238 #define COND (DELAY + 1) 239 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond }, 240 241 /* Set `cond_p' to 1 to ensure a constant is treated as a limm. */ 242 #define FORCELIMM (COND + 1) 243 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 }, 244 245 /* Branch address; b, bl, and lp insns. */ 246 #define BRANCH (FORCELIMM + 1) 247 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr }, 248 249 /* Jump address; j insn (this is basically the same as 'L' except that the 250 value is right shifted by 2). */ 251 #define JUMP (BRANCH + 1) 252 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 }, 253 254 /* Jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */ 255 #define JUMPFLAGS (JUMP + 1) 256 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags }, 257 258 /* Size field, stored in bit 1,2. */ 259 #define SIZE1 (JUMPFLAGS + 1) 260 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 }, 261 262 /* Size field, stored in bit 10,11. */ 263 #define SIZE10 (SIZE1 + 1) 264 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 }, 265 266 /* Size field, stored in bit 22,23. */ 267 #define SIZE22 (SIZE10 + 1) 268 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 }, 269 270 /* Sign extend field, stored in bit 0. */ 271 #define SIGN0 (SIZE22 + 1) 272 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 }, 273 274 /* Sign extend field, stored in bit 9. */ 275 #define SIGN9 (SIGN0 + 1) 276 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 }, 277 278 /* Address write back, stored in bit 3. */ 279 #define ADDRESS3 (SIGN9 + 1) 280 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0}, 281 282 /* Address write back, stored in bit 12. */ 283 #define ADDRESS12 (ADDRESS3 + 1) 284 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0}, 285 286 /* Address write back, stored in bit 24. */ 287 #define ADDRESS24 (ADDRESS12 + 1) 288 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0}, 289 290 /* Cache bypass, stored in bit 5. */ 291 #define CACHEBYPASS5 (ADDRESS24 + 1) 292 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 }, 293 294 /* Cache bypass, stored in bit 14. */ 295 #define CACHEBYPASS14 (CACHEBYPASS5 + 1) 296 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 }, 297 298 /* Cache bypass, stored in bit 26. */ 299 #define CACHEBYPASS26 (CACHEBYPASS14 + 1) 300 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 }, 301 302 /* Unop macro, used to copy REGB to REGC. */ 303 #define UNOPMACRO (CACHEBYPASS26 + 1) 304 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro }, 305 306 /* '.' modifier ('.' required). */ 307 #define MODDOT (UNOPMACRO + 1) 308 { '.', 1, 0, ARC_MOD_DOT, 0, 0 }, 309 310 /* Dummy 'r' modifier for the register table. 311 It's called a "dummy" because there's no point in inserting an 'r' into all 312 the %a/%b/%c occurrences in the insn table. */ 313 #define REG (MODDOT + 1) 314 { 'r', 6, 0, ARC_MOD_REG, 0, 0 }, 315 316 /* Known auxiliary register modifier (stored in shimm field). */ 317 #define AUXREG (REG + 1) 318 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 }, 319 320 /* End of list place holder. */ 321 { 0, 0, 0, 0, 0, 0 } 322 }; 323 324 /* Insert a value into a register field. 325 If REG is NULL, then this is actually a constant. 326 327 We must also handle auxiliary registers for lr/sr insns. */ 328 329 static arc_insn 330 insert_reg (arc_insn insn, 331 const struct arc_operand *operand, 332 int mods, 333 const struct arc_operand_value *reg, 334 long value, 335 const char **errmsg) 336 { 337 static char buf[100]; 338 enum operand op_type = OP_NONE; 339 340 if (reg == NULL) 341 { 342 /* We have a constant that also requires a value stored in a register 343 field. Handle these by updating the register field and saving the 344 value for later handling by either %S (shimm) or %L (limm). */ 345 346 /* Try to use a shimm value before a limm one. */ 347 if (ARC_SHIMM_CONST_P (value) 348 /* If we've seen a conditional suffix we have to use a limm. */ 349 && !cond_p 350 /* If we already have a shimm value that is different than ours 351 we have to use a limm. */ 352 && (!shimm_p || shimm == value)) 353 { 354 int marker; 355 356 op_type = OP_SHIMM; 357 /* Forget about shimm as dest mlm. */ 358 359 if ('a' != operand->fmt) 360 { 361 shimm_p = 1; 362 shimm = value; 363 flagshimm_handled_p = 1; 364 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM; 365 } 366 else 367 { 368 /* Don't request flag setting on shimm as dest. */ 369 marker = ARC_REG_SHIMM; 370 } 371 insn |= marker << operand->shift; 372 /* insn |= value & 511; - done later. */ 373 } 374 /* We have to use a limm. If we've already seen one they must match. */ 375 else if (!limm_p || limm == value) 376 { 377 op_type = OP_LIMM; 378 limm_p = 1; 379 limm = value; 380 insn |= ARC_REG_LIMM << operand->shift; 381 /* The constant is stored later. */ 382 } 383 else 384 *errmsg = _("unable to fit different valued constants into instruction"); 385 } 386 else 387 { 388 /* We have to handle both normal and auxiliary registers. */ 389 390 if (reg->type == AUXREG) 391 { 392 if (!(mods & ARC_MOD_AUXREG)) 393 *errmsg = _("auxiliary register not allowed here"); 394 else 395 { 396 if ((insn & I(-1)) == I(2)) /* Check for use validity. */ 397 { 398 if (reg->flags & ARC_REGISTER_READONLY) 399 *errmsg = _("attempt to set readonly register"); 400 } 401 else 402 { 403 if (reg->flags & ARC_REGISTER_WRITEONLY) 404 *errmsg = _("attempt to read writeonly register"); 405 } 406 insn |= ARC_REG_SHIMM << operand->shift; 407 insn |= reg->value << arc_operands[reg->type].shift; 408 } 409 } 410 else 411 { 412 /* check for use validity. */ 413 if ('a' == operand->fmt || ((insn & I(-1)) < I(2))) 414 { 415 if (reg->flags & ARC_REGISTER_READONLY) 416 *errmsg = _("attempt to set readonly register"); 417 } 418 if ('a' != operand->fmt) 419 { 420 if (reg->flags & ARC_REGISTER_WRITEONLY) 421 *errmsg = _("attempt to read writeonly register"); 422 } 423 /* We should never get an invalid register number here. */ 424 if ((unsigned int) reg->value > 60) 425 { 426 sprintf (buf, _("invalid register number `%d'"), reg->value); 427 *errmsg = buf; 428 } 429 insn |= reg->value << operand->shift; 430 op_type = OP_REG; 431 } 432 } 433 434 switch (operand->fmt) 435 { 436 case 'a': 437 ls_operand[LS_DEST] = op_type; 438 break; 439 case 's': 440 ls_operand[LS_BASE] = op_type; 441 break; 442 case 'c': 443 if ((insn & I(-1)) == I(2)) 444 ls_operand[LS_VALUE] = op_type; 445 else 446 ls_operand[LS_OFFSET] = op_type; 447 break; 448 case 'o': case 'O': 449 ls_operand[LS_OFFSET] = op_type; 450 break; 451 } 452 453 return insn; 454 } 455 456 /* Called when we see an 'f' flag. */ 457 458 static arc_insn 459 insert_flag (arc_insn insn, 460 const struct arc_operand *operand ATTRIBUTE_UNUSED, 461 int mods ATTRIBUTE_UNUSED, 462 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 463 long value ATTRIBUTE_UNUSED, 464 const char **errmsg ATTRIBUTE_UNUSED) 465 { 466 /* We can't store anything in the insn until we've parsed the registers. 467 Just record the fact that we've got this flag. `insert_reg' will use it 468 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */ 469 flag_p = 1; 470 return insn; 471 } 472 473 /* Called when we see an nullify condition. */ 474 475 static arc_insn 476 insert_nullify (arc_insn insn, 477 const struct arc_operand *operand, 478 int mods ATTRIBUTE_UNUSED, 479 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 480 long value, 481 const char **errmsg ATTRIBUTE_UNUSED) 482 { 483 nullify_p = 1; 484 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift; 485 nullify = value; 486 return insn; 487 } 488 489 /* Called after completely building an insn to ensure the 'f' flag gets set 490 properly. This is needed because we don't know how to set this flag until 491 we've parsed the registers. */ 492 493 static arc_insn 494 insert_flagfinish (arc_insn insn, 495 const struct arc_operand *operand, 496 int mods ATTRIBUTE_UNUSED, 497 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 498 long value ATTRIBUTE_UNUSED, 499 const char **errmsg ATTRIBUTE_UNUSED) 500 { 501 if (flag_p && !flagshimm_handled_p) 502 { 503 if (shimm_p) 504 abort (); 505 flagshimm_handled_p = 1; 506 insn |= (1 << operand->shift); 507 } 508 return insn; 509 } 510 511 /* Called when we see a conditional flag (eg: .eq). */ 512 513 static arc_insn 514 insert_cond (arc_insn insn, 515 const struct arc_operand *operand, 516 int mods ATTRIBUTE_UNUSED, 517 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 518 long value, 519 const char **errmsg ATTRIBUTE_UNUSED) 520 { 521 cond_p = 1; 522 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift; 523 return insn; 524 } 525 526 /* Used in the "j" instruction to prevent constants from being interpreted as 527 shimm values (which the jump insn doesn't accept). This can also be used 528 to force the use of limm values in other situations (eg: ld r0,[foo] uses 529 this). 530 ??? The mechanism is sound. Access to it is a bit klunky right now. */ 531 532 static arc_insn 533 insert_forcelimm (arc_insn insn, 534 const struct arc_operand *operand ATTRIBUTE_UNUSED, 535 int mods ATTRIBUTE_UNUSED, 536 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 537 long value ATTRIBUTE_UNUSED, 538 const char **errmsg ATTRIBUTE_UNUSED) 539 { 540 cond_p = 1; 541 return insn; 542 } 543 544 static arc_insn 545 insert_addr_wb (arc_insn insn, 546 const struct arc_operand *operand, 547 int mods ATTRIBUTE_UNUSED, 548 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 549 long value ATTRIBUTE_UNUSED, 550 const char **errmsg ATTRIBUTE_UNUSED) 551 { 552 addrwb_p = 1 << operand->shift; 553 return insn; 554 } 555 556 static arc_insn 557 insert_base (arc_insn insn, 558 const struct arc_operand *operand, 559 int mods, 560 const struct arc_operand_value *reg, 561 long value, 562 const char **errmsg) 563 { 564 if (reg != NULL) 565 { 566 arc_insn myinsn; 567 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift; 568 insn |= B(myinsn); 569 ls_operand[LS_BASE] = OP_REG; 570 } 571 else if (ARC_SHIMM_CONST_P (value) && !cond_p) 572 { 573 if (shimm_p && value != shimm) 574 { 575 /* Convert the previous shimm operand to a limm. */ 576 limm_p = 1; 577 limm = shimm; 578 insn &= ~C(-1); /* We know where the value is in insn. */ 579 insn |= C(ARC_REG_LIMM); 580 ls_operand[LS_VALUE] = OP_LIMM; 581 } 582 insn |= ARC_REG_SHIMM << operand->shift; 583 shimm_p = 1; 584 shimm = value; 585 ls_operand[LS_BASE] = OP_SHIMM; 586 ls_operand[LS_OFFSET] = OP_SHIMM; 587 } 588 else 589 { 590 if (limm_p && value != limm) 591 { 592 *errmsg = _("too many long constants"); 593 return insn; 594 } 595 limm_p = 1; 596 limm = value; 597 insn |= B(ARC_REG_LIMM); 598 ls_operand[LS_BASE] = OP_LIMM; 599 } 600 601 return insn; 602 } 603 604 /* Used in ld/st insns to handle the offset field. We don't try to 605 match operand syntax here. we catch bad combinations later. */ 606 607 static arc_insn 608 insert_offset (arc_insn insn, 609 const struct arc_operand *operand, 610 int mods, 611 const struct arc_operand_value *reg, 612 long value, 613 const char **errmsg) 614 { 615 long minval, maxval; 616 617 if (reg != NULL) 618 { 619 arc_insn myinsn; 620 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift; 621 ls_operand[LS_OFFSET] = OP_REG; 622 if (operand->flags & ARC_OPERAND_LOAD) /* Not if store, catch it later. */ 623 if ((insn & I(-1)) != I(1)) /* Not if opcode == 1, catch it later. */ 624 insn |= C (myinsn); 625 } 626 else 627 { 628 /* This is *way* more general than necessary, but maybe some day it'll 629 be useful. */ 630 if (operand->flags & ARC_OPERAND_SIGNED) 631 { 632 minval = -(1 << (operand->bits - 1)); 633 maxval = (1 << (operand->bits - 1)) - 1; 634 } 635 else 636 { 637 minval = 0; 638 maxval = (1 << operand->bits) - 1; 639 } 640 if ((cond_p && !limm_p) || (value < minval || value > maxval)) 641 { 642 if (limm_p && value != limm) 643 *errmsg = _("too many long constants"); 644 645 else 646 { 647 limm_p = 1; 648 limm = value; 649 if (operand->flags & ARC_OPERAND_STORE) 650 insn |= B(ARC_REG_LIMM); 651 if (operand->flags & ARC_OPERAND_LOAD) 652 insn |= C(ARC_REG_LIMM); 653 ls_operand[LS_OFFSET] = OP_LIMM; 654 } 655 } 656 else 657 { 658 if ((value < minval || value > maxval)) 659 *errmsg = "need too many limms"; 660 else if (shimm_p && value != shimm) 661 { 662 /* Check for bad operand combinations 663 before we lose info about them. */ 664 if ((insn & I(-1)) == I(1)) 665 { 666 *errmsg = _("to many shimms in load"); 667 goto out; 668 } 669 if (limm_p && operand->flags & ARC_OPERAND_LOAD) 670 { 671 *errmsg = _("too many long constants"); 672 goto out; 673 } 674 /* Convert what we thought was a shimm to a limm. */ 675 limm_p = 1; 676 limm = shimm; 677 if (ls_operand[LS_VALUE] == OP_SHIMM 678 && operand->flags & ARC_OPERAND_STORE) 679 { 680 insn &= ~C(-1); 681 insn |= C(ARC_REG_LIMM); 682 ls_operand[LS_VALUE] = OP_LIMM; 683 } 684 if (ls_operand[LS_BASE] == OP_SHIMM 685 && operand->flags & ARC_OPERAND_STORE) 686 { 687 insn &= ~B(-1); 688 insn |= B(ARC_REG_LIMM); 689 ls_operand[LS_BASE] = OP_LIMM; 690 } 691 } 692 shimm = value; 693 shimm_p = 1; 694 ls_operand[LS_OFFSET] = OP_SHIMM; 695 } 696 } 697 out: 698 return insn; 699 } 700 701 /* Used in st insns to do final disasemble syntax check. */ 702 703 static long 704 extract_st_syntax (arc_insn *insn, 705 const struct arc_operand *operand ATTRIBUTE_UNUSED, 706 int mods ATTRIBUTE_UNUSED, 707 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 708 int *invalid) 709 { 710 #define ST_SYNTAX(V,B,O) \ 711 ((ls_operand[LS_VALUE] == (V) && \ 712 ls_operand[LS_BASE] == (B) && \ 713 ls_operand[LS_OFFSET] == (O))) 714 715 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0) 716 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE) 717 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0) 718 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0) 719 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE) 720 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM) 721 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM) 722 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0) 723 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM) 724 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM) 725 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM) 726 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM) 727 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE) 728 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM))) 729 *invalid = 1; 730 return 0; 731 } 732 733 int 734 arc_limm_fixup_adjust (arc_insn insn) 735 { 736 int retval = 0; 737 738 /* Check for st shimm,[limm]. */ 739 if ((insn & (I(-1) | C(-1) | B(-1))) == 740 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM))) 741 { 742 retval = insn & 0x1ff; 743 if (retval & 0x100) /* Sign extend 9 bit offset. */ 744 retval |= ~0x1ff; 745 } 746 return -retval; /* Negate offset for return. */ 747 } 748 749 /* Used in st insns to do final syntax check. */ 750 751 static arc_insn 752 insert_st_syntax (arc_insn insn, 753 const struct arc_operand *operand ATTRIBUTE_UNUSED, 754 int mods ATTRIBUTE_UNUSED, 755 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 756 long value ATTRIBUTE_UNUSED, 757 const char **errmsg) 758 { 759 if (ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE) && shimm != 0) 760 { 761 /* Change an illegal insn into a legal one, it's easier to 762 do it here than to try to handle it during operand scan. */ 763 limm_p = 1; 764 limm = shimm; 765 shimm_p = 0; 766 shimm = 0; 767 insn = insn & ~(C(-1) | 511); 768 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC; 769 ls_operand[LS_VALUE] = OP_LIMM; 770 } 771 772 if (ST_SYNTAX (OP_REG, OP_SHIMM, OP_NONE) 773 || ST_SYNTAX (OP_LIMM, OP_SHIMM, OP_NONE)) 774 { 775 /* Try to salvage this syntax. */ 776 if (shimm & 0x1) /* Odd shimms won't work. */ 777 { 778 if (limm_p) /* Do we have a limm already? */ 779 *errmsg = _("impossible store"); 780 781 limm_p = 1; 782 limm = shimm; 783 shimm = 0; 784 shimm_p = 0; 785 insn = insn & ~(B(-1) | 511); 786 insn |= B(ARC_REG_LIMM); 787 ls_operand[LS_BASE] = OP_LIMM; 788 } 789 else 790 { 791 shimm >>= 1; 792 insn = insn & ~511; 793 insn |= shimm; 794 ls_operand[LS_OFFSET] = OP_SHIMM; 795 } 796 } 797 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)) 798 limm += arc_limm_fixup_adjust(insn); 799 800 if (! (ST_SYNTAX (OP_REG,OP_REG,OP_NONE) 801 || ST_SYNTAX (OP_REG,OP_LIMM,OP_NONE) 802 || ST_SYNTAX (OP_REG,OP_REG,OP_SHIMM) 803 || ST_SYNTAX (OP_REG,OP_SHIMM,OP_SHIMM) 804 || (ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0)) 805 || ST_SYNTAX (OP_SHIMM,OP_LIMM,OP_NONE) 806 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE) 807 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_SHIMM) 808 || ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_SHIMM) 809 || ST_SYNTAX (OP_LIMM,OP_SHIMM,OP_SHIMM) 810 || ST_SYNTAX (OP_LIMM,OP_REG,OP_NONE) 811 || ST_SYNTAX (OP_LIMM,OP_REG,OP_SHIMM))) 812 *errmsg = _("st operand error"); 813 if (addrwb_p) 814 { 815 if (ls_operand[LS_BASE] != OP_REG) 816 *errmsg = _("address writeback not allowed"); 817 insn |= addrwb_p; 818 } 819 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm) 820 *errmsg = _("store value must be zero"); 821 return insn; 822 } 823 824 /* Used in ld insns to do final syntax check. */ 825 826 static arc_insn 827 insert_ld_syntax (arc_insn insn, 828 const struct arc_operand *operand ATTRIBUTE_UNUSED, 829 int mods ATTRIBUTE_UNUSED, 830 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 831 long value ATTRIBUTE_UNUSED, 832 const char **errmsg) 833 { 834 #define LD_SYNTAX(D, B, O) \ 835 ( (ls_operand[LS_DEST] == (D) \ 836 && ls_operand[LS_BASE] == (B) \ 837 && ls_operand[LS_OFFSET] == (O))) 838 839 int test = insn & I (-1); 840 841 if (!(test == I (1))) 842 { 843 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM 844 || ls_operand[LS_OFFSET] == OP_SHIMM)) 845 *errmsg = _("invalid load/shimm insn"); 846 } 847 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE) 848 || LD_SYNTAX(OP_REG,OP_REG,OP_REG) 849 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM) 850 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1))) 851 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1))) 852 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM) 853 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1))))) 854 *errmsg = _("ld operand error"); 855 if (addrwb_p) 856 { 857 if (ls_operand[LS_BASE] != OP_REG) 858 *errmsg = _("address writeback not allowed"); 859 insn |= addrwb_p; 860 } 861 return insn; 862 } 863 864 /* Used in ld insns to do final syntax check. */ 865 866 static long 867 extract_ld_syntax (arc_insn *insn, 868 const struct arc_operand *operand ATTRIBUTE_UNUSED, 869 int mods ATTRIBUTE_UNUSED, 870 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 871 int *invalid) 872 { 873 int test = insn[0] & I(-1); 874 875 if (!(test == I(1))) 876 { 877 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM 878 || ls_operand[LS_OFFSET] == OP_SHIMM)) 879 *invalid = 1; 880 } 881 if (!( (LD_SYNTAX (OP_REG, OP_REG, OP_NONE) && (test == I(1))) 882 || LD_SYNTAX (OP_REG, OP_REG, OP_REG) 883 || LD_SYNTAX (OP_REG, OP_REG, OP_SHIMM) 884 || (LD_SYNTAX (OP_REG, OP_REG, OP_LIMM) && !(test == I(1))) 885 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_REG) && !(test == I(1))) 886 || (LD_SYNTAX (OP_REG, OP_SHIMM, OP_NONE) && (shimm == 0)) 887 || LD_SYNTAX (OP_REG, OP_SHIMM, OP_SHIMM) 888 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_NONE) && (test == I(1))))) 889 *invalid = 1; 890 return 0; 891 } 892 893 /* Called at the end of processing normal insns (eg: add) to insert a shimm 894 value (if present) into the insn. */ 895 896 static arc_insn 897 insert_shimmfinish (arc_insn insn, 898 const struct arc_operand *operand, 899 int mods ATTRIBUTE_UNUSED, 900 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 901 long value ATTRIBUTE_UNUSED, 902 const char **errmsg ATTRIBUTE_UNUSED) 903 { 904 if (shimm_p) 905 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift; 906 return insn; 907 } 908 909 /* Called at the end of processing normal insns (eg: add) to insert a limm 910 value (if present) into the insn. 911 912 Note that this function is only intended to handle instructions (with 4 byte 913 immediate operands). It is not intended to handle data. */ 914 915 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the 916 caller must do that. The extract fns take a pointer to two words. The 917 insert fns could be converted and then we could do something useful, but 918 then the reloc handlers would have to know to work on the second word of 919 a 2 word quantity. That's too much so we don't handle them. */ 920 921 static arc_insn 922 insert_limmfinish (arc_insn insn, 923 const struct arc_operand *operand ATTRIBUTE_UNUSED, 924 int mods ATTRIBUTE_UNUSED, 925 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 926 long value ATTRIBUTE_UNUSED, 927 const char **errmsg ATTRIBUTE_UNUSED) 928 { 929 return insn; 930 } 931 932 static arc_insn 933 insert_jumpflags (arc_insn insn, 934 const struct arc_operand *operand, 935 int mods ATTRIBUTE_UNUSED, 936 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 937 long value, 938 const char **errmsg) 939 { 940 if (!flag_p) 941 *errmsg = _("jump flags, but no .f seen"); 942 943 else if (!limm_p) 944 *errmsg = _("jump flags, but no limm addr"); 945 946 else if (limm & 0xfc000000) 947 *errmsg = _("flag bits of jump address limm lost"); 948 949 else if (limm & 0x03000000) 950 *errmsg = _("attempt to set HR bits"); 951 952 else if ((value & ((1 << operand->bits) - 1)) != value) 953 *errmsg = _("bad jump flags value"); 954 955 jumpflags_p = 1; 956 limm = ((limm & ((1 << operand->shift) - 1)) 957 | ((value & ((1 << operand->bits) - 1)) << operand->shift)); 958 return insn; 959 } 960 961 /* Called at the end of unary operand macros to copy the B field to C. */ 962 963 static arc_insn 964 insert_unopmacro (arc_insn insn, 965 const struct arc_operand *operand, 966 int mods ATTRIBUTE_UNUSED, 967 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 968 long value ATTRIBUTE_UNUSED, 969 const char **errmsg ATTRIBUTE_UNUSED) 970 { 971 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift; 972 return insn; 973 } 974 975 /* Insert a relative address for a branch insn (b, bl, or lp). */ 976 977 static arc_insn 978 insert_reladdr (arc_insn insn, 979 const struct arc_operand *operand, 980 int mods ATTRIBUTE_UNUSED, 981 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 982 long value, 983 const char **errmsg) 984 { 985 if (value & 3) 986 *errmsg = _("branch address not on 4 byte boundary"); 987 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift; 988 return insn; 989 } 990 991 /* Insert a limm value as a 26 bit address right shifted 2 into the insn. 992 993 Note that this function is only intended to handle instructions (with 4 byte 994 immediate operands). It is not intended to handle data. */ 995 996 /* ??? Actually, there's little for us to do as we can't call frag_more, the 997 caller must do that. The extract fns take a pointer to two words. The 998 insert fns could be converted and then we could do something useful, but 999 then the reloc handlers would have to know to work on the second word of 1000 a 2 word quantity. That's too much so we don't handle them. 1001 1002 We do check for correct usage of the nullify suffix, or we 1003 set the default correctly, though. */ 1004 1005 static arc_insn 1006 insert_absaddr (arc_insn insn, 1007 const struct arc_operand *operand ATTRIBUTE_UNUSED, 1008 int mods ATTRIBUTE_UNUSED, 1009 const struct arc_operand_value *reg ATTRIBUTE_UNUSED, 1010 long value ATTRIBUTE_UNUSED, 1011 const char **errmsg) 1012 { 1013 if (limm_p) 1014 { 1015 /* If it is a jump and link, .jd must be specified. */ 1016 if (insn & R (-1, 9, 1)) 1017 { 1018 if (!nullify_p) 1019 insn |= 0x02 << 5; /* Default nullify to .jd. */ 1020 1021 else if (nullify != 0x02) 1022 *errmsg = _("must specify .jd or no nullify suffix"); 1023 } 1024 } 1025 return insn; 1026 } 1027 1028 /* Extraction functions. 1029 1030 The suffix extraction functions' return value is redundant since it can be 1031 obtained from (*OPVAL)->value. However, the boolean suffixes don't have 1032 a suffix table entry for the "false" case, so values of zero must be 1033 obtained from the return value (*OPVAL == NULL). */ 1034 1035 /* Called by the disassembler before printing an instruction. */ 1036 1037 void 1038 arc_opcode_init_extract (void) 1039 { 1040 arc_opcode_init_insert (); 1041 } 1042 1043 static const struct arc_operand_value * 1044 lookup_register (int type, long regno) 1045 { 1046 const struct arc_operand_value *r,*end; 1047 struct arc_ext_operand_value *ext_oper = arc_ext_operands; 1048 1049 while (ext_oper) 1050 { 1051 if (ext_oper->operand.type == type && ext_oper->operand.value == regno) 1052 return (&ext_oper->operand); 1053 ext_oper = ext_oper->next; 1054 } 1055 1056 if (type == REG) 1057 return &arc_reg_names[regno]; 1058 1059 /* ??? This is a little slow and can be speeded up. */ 1060 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count; 1061 r < end; ++r) 1062 if (type == r->type && regno == r->value) 1063 return r; 1064 return 0; 1065 } 1066 1067 /* As we're extracting registers, keep an eye out for the 'f' indicator 1068 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker, 1069 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register. 1070 1071 We must also handle auxiliary registers for lr/sr insns. They are just 1072 constants with special names. */ 1073 1074 static long 1075 extract_reg (arc_insn *insn, 1076 const struct arc_operand *operand, 1077 int mods, 1078 const struct arc_operand_value **opval, 1079 int *invalid ATTRIBUTE_UNUSED) 1080 { 1081 int regno; 1082 long value; 1083 enum operand op_type; 1084 1085 /* Get the register number. */ 1086 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1); 1087 1088 /* Is it a constant marker? */ 1089 if (regno == ARC_REG_SHIMM) 1090 { 1091 op_type = OP_SHIMM; 1092 /* Always return zero if dest is a shimm mlm. */ 1093 1094 if ('a' != operand->fmt) 1095 { 1096 value = *insn & 511; 1097 if ((operand->flags & ARC_OPERAND_SIGNED) 1098 && (value & 256)) 1099 value -= 512; 1100 if (!flagshimm_handled_p) 1101 flag_p = 0; 1102 flagshimm_handled_p = 1; 1103 } 1104 else 1105 value = 0; 1106 } 1107 else if (regno == ARC_REG_SHIMM_UPDATE) 1108 { 1109 op_type = OP_SHIMM; 1110 1111 /* Always return zero if dest is a shimm mlm. */ 1112 if ('a' != operand->fmt) 1113 { 1114 value = *insn & 511; 1115 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256)) 1116 value -= 512; 1117 } 1118 else 1119 value = 0; 1120 1121 flag_p = 1; 1122 flagshimm_handled_p = 1; 1123 } 1124 else if (regno == ARC_REG_LIMM) 1125 { 1126 op_type = OP_LIMM; 1127 value = insn[1]; 1128 limm_p = 1; 1129 1130 /* If this is a jump instruction (j,jl), show new pc correctly. */ 1131 if (0x07 == ((*insn & I(-1)) >> 27)) 1132 value = (value & 0xffffff); 1133 } 1134 1135 /* It's a register, set OPVAL (that's the only way we distinguish registers 1136 from constants here). */ 1137 else 1138 { 1139 const struct arc_operand_value *reg = lookup_register (REG, regno); 1140 1141 op_type = OP_REG; 1142 1143 if (reg == NULL) 1144 abort (); 1145 if (opval != NULL) 1146 *opval = reg; 1147 value = regno; 1148 } 1149 1150 /* If this field takes an auxiliary register, see if it's a known one. */ 1151 if ((mods & ARC_MOD_AUXREG) 1152 && ARC_REG_CONSTANT_P (regno)) 1153 { 1154 const struct arc_operand_value *reg = lookup_register (AUXREG, value); 1155 1156 /* This is really a constant, but tell the caller it has a special 1157 name. */ 1158 if (reg != NULL && opval != NULL) 1159 *opval = reg; 1160 } 1161 1162 switch(operand->fmt) 1163 { 1164 case 'a': 1165 ls_operand[LS_DEST] = op_type; 1166 break; 1167 case 's': 1168 ls_operand[LS_BASE] = op_type; 1169 break; 1170 case 'c': 1171 if ((insn[0]& I(-1)) == I(2)) 1172 ls_operand[LS_VALUE] = op_type; 1173 else 1174 ls_operand[LS_OFFSET] = op_type; 1175 break; 1176 case 'o': case 'O': 1177 ls_operand[LS_OFFSET] = op_type; 1178 break; 1179 } 1180 1181 return value; 1182 } 1183 1184 /* Return the value of the "flag update" field for shimm insns. 1185 This value is actually stored in the register field. */ 1186 1187 static long 1188 extract_flag (arc_insn *insn, 1189 const struct arc_operand *operand, 1190 int mods ATTRIBUTE_UNUSED, 1191 const struct arc_operand_value **opval, 1192 int *invalid ATTRIBUTE_UNUSED) 1193 { 1194 int f; 1195 const struct arc_operand_value *val; 1196 1197 if (flagshimm_handled_p) 1198 f = flag_p != 0; 1199 else 1200 f = (*insn & (1 << operand->shift)) != 0; 1201 1202 /* There is no text for zero values. */ 1203 if (f == 0) 1204 return 0; 1205 flag_p = 1; 1206 val = arc_opcode_lookup_suffix (operand, 1); 1207 if (opval != NULL && val != NULL) 1208 *opval = val; 1209 return val->value; 1210 } 1211 1212 /* Extract the condition code (if it exists). 1213 If we've seen a shimm value in this insn (meaning that the insn can't have 1214 a condition code field), then we don't store anything in OPVAL and return 1215 zero. */ 1216 1217 static long 1218 extract_cond (arc_insn *insn, 1219 const struct arc_operand *operand, 1220 int mods ATTRIBUTE_UNUSED, 1221 const struct arc_operand_value **opval, 1222 int *invalid ATTRIBUTE_UNUSED) 1223 { 1224 long cond; 1225 const struct arc_operand_value *val; 1226 1227 if (flagshimm_handled_p) 1228 return 0; 1229 1230 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1); 1231 val = arc_opcode_lookup_suffix (operand, cond); 1232 1233 /* Ignore NULL values of `val'. Several condition code values are 1234 reserved for extensions. */ 1235 if (opval != NULL && val != NULL) 1236 *opval = val; 1237 return cond; 1238 } 1239 1240 /* Extract a branch address. 1241 We return the value as a real address (not right shifted by 2). */ 1242 1243 static long 1244 extract_reladdr (arc_insn *insn, 1245 const struct arc_operand *operand, 1246 int mods ATTRIBUTE_UNUSED, 1247 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 1248 int *invalid ATTRIBUTE_UNUSED) 1249 { 1250 long addr; 1251 1252 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1); 1253 if ((operand->flags & ARC_OPERAND_SIGNED) 1254 && (addr & (1 << (operand->bits - 1)))) 1255 addr -= 1 << operand->bits; 1256 return addr << 2; 1257 } 1258 1259 /* Extract the flags bits from a j or jl long immediate. */ 1260 1261 static long 1262 extract_jumpflags (arc_insn *insn, 1263 const struct arc_operand *operand, 1264 int mods ATTRIBUTE_UNUSED, 1265 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 1266 int *invalid) 1267 { 1268 if (!flag_p || !limm_p) 1269 *invalid = 1; 1270 return ((flag_p && limm_p) 1271 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0); 1272 } 1273 1274 /* Extract st insn's offset. */ 1275 1276 static long 1277 extract_st_offset (arc_insn *insn, 1278 const struct arc_operand *operand, 1279 int mods ATTRIBUTE_UNUSED, 1280 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 1281 int *invalid) 1282 { 1283 int value = 0; 1284 1285 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM) 1286 { 1287 value = insn[0] & 511; 1288 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256)) 1289 value -= 512; 1290 if (value) 1291 ls_operand[LS_OFFSET] = OP_SHIMM; 1292 } 1293 else 1294 *invalid = 1; 1295 1296 return value; 1297 } 1298 1299 /* Extract ld insn's offset. */ 1300 1301 static long 1302 extract_ld_offset (arc_insn *insn, 1303 const struct arc_operand *operand, 1304 int mods, 1305 const struct arc_operand_value **opval, 1306 int *invalid) 1307 { 1308 int test = insn[0] & I(-1); 1309 int value; 1310 1311 if (test) 1312 { 1313 value = insn[0] & 511; 1314 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256)) 1315 value -= 512; 1316 if (value) 1317 ls_operand[LS_OFFSET] = OP_SHIMM; 1318 1319 return value; 1320 } 1321 /* If it isn't in the insn, it's concealed behind reg 'c'. */ 1322 return extract_reg (insn, &arc_operands[arc_operand_map['c']], 1323 mods, opval, invalid); 1324 } 1325 1326 /* The only thing this does is set the `invalid' flag if B != C. 1327 This is needed because the "mov" macro appears before it's real insn "and" 1328 and we don't want the disassembler to confuse them. */ 1329 1330 static long 1331 extract_unopmacro (arc_insn *insn, 1332 const struct arc_operand *operand ATTRIBUTE_UNUSED, 1333 int mods ATTRIBUTE_UNUSED, 1334 const struct arc_operand_value **opval ATTRIBUTE_UNUSED, 1335 int *invalid) 1336 { 1337 /* This misses the case where B == ARC_REG_SHIMM_UPDATE && 1338 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get 1339 printed as "and"s. */ 1340 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) 1341 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG)) 1342 if (invalid != NULL) 1343 *invalid = 1; 1344 return 0; 1345 } 1346 1347 /* ARC instructions. 1348 1349 Longer versions of insns must appear before shorter ones (if gas sees 1350 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is 1351 junk). This isn't necessary for `ld' because of the trailing ']'. 1352 1353 Instructions that are really macros based on other insns must appear 1354 before the real insn so they're chosen when disassembling. Eg: The `mov' 1355 insn is really the `and' insn. */ 1356 1357 struct arc_opcode arc_opcodes[] = 1358 { 1359 /* Base case instruction set (core versions 5-8). */ 1360 1361 /* "mov" is really an "and". */ 1362 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 }, 1363 /* "asl" is really an "add". */ 1364 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 }, 1365 /* "lsl" is really an "add". */ 1366 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 }, 1367 /* "nop" is really an "xor". */ 1368 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 }, 1369 /* "rlc" is really an "adc". */ 1370 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 }, 1371 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 }, 1372 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 }, 1373 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 }, 1374 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 }, 1375 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 }, 1376 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1377 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1378 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 }, 1379 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 }, 1380 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 }, 1381 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 }, 1382 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 }, 1383 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 }, 1384 /* %Q: force cond_p=1 -> no shimm values. This insn allows an 1385 optional flags spec. */ 1386 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1387 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1388 /* This insn allows an optional flags spec. */ 1389 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1390 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 }, 1391 /* Put opcode 1 ld insns first so shimm gets prefered over limm. 1392 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */ 1393 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 }, 1394 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 }, 1395 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 }, 1396 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 }, 1397 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 }, 1398 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 }, 1399 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 }, 1400 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 }, 1401 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 }, 1402 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 }, 1403 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 }, 1404 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 }, 1405 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 }, 1406 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 }, 1407 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */ 1408 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 }, 1409 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 }, 1410 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 }, 1411 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 } 1412 }; 1413 1414 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]); 1415 1416 const struct arc_operand_value arc_reg_names[] = 1417 { 1418 /* Core register set r0-r63. */ 1419 1420 /* r0-r28 - general purpose registers. */ 1421 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 }, 1422 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 }, 1423 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 }, 1424 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 }, 1425 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 }, 1426 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 }, 1427 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 }, 1428 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 }, 1429 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 }, 1430 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 }, 1431 /* Maskable interrupt link register. */ 1432 { "ilink1", 29, REG, 0 }, 1433 /* Maskable interrupt link register. */ 1434 { "ilink2", 30, REG, 0 }, 1435 /* Branch-link register. */ 1436 { "blink", 31, REG, 0 }, 1437 1438 /* r32-r59 reserved for extensions. */ 1439 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 }, 1440 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 }, 1441 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 }, 1442 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 }, 1443 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 }, 1444 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 }, 1445 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 }, 1446 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 }, 1447 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 }, 1448 { "r59", 59, REG, 0 }, 1449 1450 /* Loop count register (24 bits). */ 1451 { "lp_count", 60, REG, 0 }, 1452 /* Short immediate data indicator setting flags. */ 1453 { "r61", 61, REG, ARC_REGISTER_READONLY }, 1454 /* Long immediate data indicator setting flags. */ 1455 { "r62", 62, REG, ARC_REGISTER_READONLY }, 1456 /* Short immediate data indicator not setting flags. */ 1457 { "r63", 63, REG, ARC_REGISTER_READONLY }, 1458 1459 /* Small-data base register. */ 1460 { "gp", 26, REG, 0 }, 1461 /* Frame pointer. */ 1462 { "fp", 27, REG, 0 }, 1463 /* Stack pointer. */ 1464 { "sp", 28, REG, 0 }, 1465 1466 { "r29", 29, REG, 0 }, 1467 { "r30", 30, REG, 0 }, 1468 { "r31", 31, REG, 0 }, 1469 { "r60", 60, REG, 0 }, 1470 1471 /* Auxiliary register set. */ 1472 1473 /* Auxiliary register address map: 1474 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation 1475 0xfffffeff-0x80000000 - customer limm allocation 1476 0x7fffffff-0x00000100 - ARC limm allocation 1477 0x000000ff-0x00000000 - ARC shimm allocation */ 1478 1479 /* Base case auxiliary registers (shimm address). */ 1480 { "status", 0x00, AUXREG, 0 }, 1481 { "semaphore", 0x01, AUXREG, 0 }, 1482 { "lp_start", 0x02, AUXREG, 0 }, 1483 { "lp_end", 0x03, AUXREG, 0 }, 1484 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY }, 1485 { "debug", 0x05, AUXREG, 0 }, 1486 }; 1487 1488 const int arc_reg_names_count = 1489 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]); 1490 1491 /* The suffix table. 1492 Operands with the same name must be stored together. */ 1493 1494 const struct arc_operand_value arc_suffixes[] = 1495 { 1496 /* Entry 0 is special, default values aren't printed by the disassembler. */ 1497 { "", 0, -1, 0 }, 1498 1499 /* Base case condition codes. */ 1500 { "al", 0, COND, 0 }, 1501 { "ra", 0, COND, 0 }, 1502 { "eq", 1, COND, 0 }, 1503 { "z", 1, COND, 0 }, 1504 { "ne", 2, COND, 0 }, 1505 { "nz", 2, COND, 0 }, 1506 { "pl", 3, COND, 0 }, 1507 { "p", 3, COND, 0 }, 1508 { "mi", 4, COND, 0 }, 1509 { "n", 4, COND, 0 }, 1510 { "cs", 5, COND, 0 }, 1511 { "c", 5, COND, 0 }, 1512 { "lo", 5, COND, 0 }, 1513 { "cc", 6, COND, 0 }, 1514 { "nc", 6, COND, 0 }, 1515 { "hs", 6, COND, 0 }, 1516 { "vs", 7, COND, 0 }, 1517 { "v", 7, COND, 0 }, 1518 { "vc", 8, COND, 0 }, 1519 { "nv", 8, COND, 0 }, 1520 { "gt", 9, COND, 0 }, 1521 { "ge", 10, COND, 0 }, 1522 { "lt", 11, COND, 0 }, 1523 { "le", 12, COND, 0 }, 1524 { "hi", 13, COND, 0 }, 1525 { "ls", 14, COND, 0 }, 1526 { "pnz", 15, COND, 0 }, 1527 1528 /* Condition codes 16-31 reserved for extensions. */ 1529 1530 { "f", 1, FLAG, 0 }, 1531 1532 { "nd", ARC_DELAY_NONE, DELAY, 0 }, 1533 { "d", ARC_DELAY_NORMAL, DELAY, 0 }, 1534 { "jd", ARC_DELAY_JUMP, DELAY, 0 }, 1535 1536 { "b", 1, SIZE1, 0 }, 1537 { "b", 1, SIZE10, 0 }, 1538 { "b", 1, SIZE22, 0 }, 1539 { "w", 2, SIZE1, 0 }, 1540 { "w", 2, SIZE10, 0 }, 1541 { "w", 2, SIZE22, 0 }, 1542 { "x", 1, SIGN0, 0 }, 1543 { "x", 1, SIGN9, 0 }, 1544 { "a", 1, ADDRESS3, 0 }, 1545 { "a", 1, ADDRESS12, 0 }, 1546 { "a", 1, ADDRESS24, 0 }, 1547 1548 { "di", 1, CACHEBYPASS5, 0 }, 1549 { "di", 1, CACHEBYPASS14, 0 }, 1550 { "di", 1, CACHEBYPASS26, 0 }, 1551 }; 1552 1553 const int arc_suffixes_count = 1554 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]); 1555 1556 /* Indexed by first letter of opcode. Points to chain of opcodes with same 1557 first letter. */ 1558 static struct arc_opcode *opcode_map[26 + 1]; 1559 1560 /* Indexed by insn code. Points to chain of opcodes with same insn code. */ 1561 static struct arc_opcode *icode_map[32]; 1562 1563 /* Configuration flags. */ 1564 1565 /* Various ARC_HAVE_XXX bits. */ 1566 static int cpu_type; 1567 1568 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */ 1569 1570 int 1571 arc_get_opcode_mach (int bfd_mach, int big_p) 1572 { 1573 static int mach_type_map[] = 1574 { 1575 ARC_MACH_5, 1576 ARC_MACH_6, 1577 ARC_MACH_7, 1578 ARC_MACH_8 1579 }; 1580 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0); 1581 } 1582 1583 /* Initialize any tables that need it. 1584 Must be called once at start up (or when first needed). 1585 1586 FLAGS is a set of bits that say what version of the cpu we have, 1587 and in particular at least (one of) ARC_MACH_XXX. */ 1588 1589 void 1590 arc_opcode_init_tables (int flags) 1591 { 1592 static int init_p = 0; 1593 1594 cpu_type = flags; 1595 1596 /* We may be intentionally called more than once (for example gdb will call 1597 us each time the user switches cpu). These tables only need to be init'd 1598 once though. */ 1599 if (!init_p) 1600 { 1601 int i,n; 1602 1603 memset (arc_operand_map, 0, sizeof (arc_operand_map)); 1604 n = sizeof (arc_operands) / sizeof (arc_operands[0]); 1605 for (i = 0; i < n; ++i) 1606 arc_operand_map[arc_operands[i].fmt] = i; 1607 1608 memset (opcode_map, 0, sizeof (opcode_map)); 1609 memset (icode_map, 0, sizeof (icode_map)); 1610 /* Scan the table backwards so macros appear at the front. */ 1611 for (i = arc_opcodes_count - 1; i >= 0; --i) 1612 { 1613 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax); 1614 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value); 1615 1616 arc_opcodes[i].next_asm = opcode_map[opcode_hash]; 1617 opcode_map[opcode_hash] = &arc_opcodes[i]; 1618 1619 arc_opcodes[i].next_dis = icode_map[icode_hash]; 1620 icode_map[icode_hash] = &arc_opcodes[i]; 1621 } 1622 1623 init_p = 1; 1624 } 1625 } 1626 1627 /* Return non-zero if OPCODE is supported on the specified cpu. 1628 Cpu selection is made when calling `arc_opcode_init_tables'. */ 1629 1630 int 1631 arc_opcode_supported (const struct arc_opcode *opcode) 1632 { 1633 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type) 1634 return 1; 1635 return 0; 1636 } 1637 1638 /* Return the first insn in the chain for assembling INSN. */ 1639 1640 const struct arc_opcode * 1641 arc_opcode_lookup_asm (const char *insn) 1642 { 1643 return opcode_map[ARC_HASH_OPCODE (insn)]; 1644 } 1645 1646 /* Return the first insn in the chain for disassembling INSN. */ 1647 1648 const struct arc_opcode * 1649 arc_opcode_lookup_dis (unsigned int insn) 1650 { 1651 return icode_map[ARC_HASH_ICODE (insn)]; 1652 } 1653 1654 /* Called by the assembler before parsing an instruction. */ 1655 1656 void 1657 arc_opcode_init_insert (void) 1658 { 1659 int i; 1660 1661 for(i = 0; i < OPERANDS; i++) 1662 ls_operand[i] = OP_NONE; 1663 1664 flag_p = 0; 1665 flagshimm_handled_p = 0; 1666 cond_p = 0; 1667 addrwb_p = 0; 1668 shimm_p = 0; 1669 limm_p = 0; 1670 jumpflags_p = 0; 1671 nullify_p = 0; 1672 nullify = 0; /* The default is important. */ 1673 } 1674 1675 /* Called by the assembler to see if the insn has a limm operand. 1676 Also called by the disassembler to see if the insn contains a limm. */ 1677 1678 int 1679 arc_opcode_limm_p (long *limmp) 1680 { 1681 if (limmp) 1682 *limmp = limm; 1683 return limm_p; 1684 } 1685 1686 /* Utility for the extraction functions to return the index into 1687 `arc_suffixes'. */ 1688 1689 const struct arc_operand_value * 1690 arc_opcode_lookup_suffix (const struct arc_operand *type, int value) 1691 { 1692 const struct arc_operand_value *v,*end; 1693 struct arc_ext_operand_value *ext_oper = arc_ext_operands; 1694 1695 while (ext_oper) 1696 { 1697 if (type == &arc_operands[ext_oper->operand.type] 1698 && value == ext_oper->operand.value) 1699 return (&ext_oper->operand); 1700 ext_oper = ext_oper->next; 1701 } 1702 1703 /* ??? This is a little slow and can be speeded up. */ 1704 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v) 1705 if (type == &arc_operands[v->type] 1706 && value == v->value) 1707 return v; 1708 return 0; 1709 } 1710 1711 int 1712 arc_insn_is_j (arc_insn insn) 1713 { 1714 return (insn & (I(-1))) == I(0x7); 1715 } 1716 1717 int 1718 arc_insn_not_jl (arc_insn insn) 1719 { 1720 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1))) 1721 != (I(0x7) | R(-1,9,1))); 1722 } 1723 1724 int 1725 arc_operand_type (int opertype) 1726 { 1727 switch (opertype) 1728 { 1729 case 0: 1730 return COND; 1731 break; 1732 case 1: 1733 return REG; 1734 break; 1735 case 2: 1736 return AUXREG; 1737 break; 1738 } 1739 return -1; 1740 } 1741 1742 struct arc_operand_value * 1743 get_ext_suffix (char *s) 1744 { 1745 struct arc_ext_operand_value *suffix = arc_ext_operands; 1746 1747 while (suffix) 1748 { 1749 if ((COND == suffix->operand.type) 1750 && !strcmp(s,suffix->operand.name)) 1751 return(&suffix->operand); 1752 suffix = suffix->next; 1753 } 1754 return NULL; 1755 } 1756 1757 int 1758 arc_get_noshortcut_flag (void) 1759 { 1760 return ARC_REGISTER_NOSHORT_CUT; 1761 } 1762