xref: /openbsd/gnu/usr.bin/binutils/bfd/elf32-hppa.c (revision b55d4692)
1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3    Free Software Foundation, Inc.
4 
5    Original code by
6 	Center for Software Science
7 	Department of Computer Science
8 	University of Utah
9    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 
11 This file is part of BFD, the Binary File Descriptor library.
12 
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17 
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 GNU General Public License for more details.
22 
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
26 
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE		32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37 
38 /* In order to gain some understanding of code in this file without
39    knowing all the intricate details of the linker, note the
40    following:
41 
42    Functions named elf32_hppa_* are called by external routines, other
43    functions are only called locally.  elf32_hppa_* functions appear
44    in this file more or less in the order in which they are called
45    from external routines.  eg. elf32_hppa_check_relocs is called
46    early in the link process, elf32_hppa_finish_dynamic_sections is
47    one of the last functions.  */
48 
49 /* We use two hash tables to hold information for linking PA ELF objects.
50 
51    The first is the elf32_hppa_link_hash_table which is derived
52    from the standard ELF linker hash table.  We use this as a place to
53    attach other hash tables and static information.
54 
55    The second is the stub hash table which is derived from the
56    base BFD hash table.  The stub hash table holds the information
57    necessary to build the linker stubs during a link.
58 
59    There are a number of different stubs generated by the linker.
60 
61    Long branch stub:
62    :		ldil LR'X,%r1
63    :		be,n RR'X(%sr4,%r1)
64 
65    PIC long branch stub:
66    :		b,l .+8,%r1
67    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
68    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69 
70    Import stub to call shared library routine from normal object file
71    (single sub-space version)
72    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
73    :		ldw RR'lt_ptr+ltoff(%r1),%r21
74    :            bv %r0(%r21)
75    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
76 
77    Import stub to call shared library routine from shared library
78    (single sub-space version)
79    :		addil LR'ltoff,%r19		; get procedure entry point
80    :		ldw RR'ltoff(%r1),%r21
81    :            bv %r0(%r21)
82    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
83 
84    Import stub to call shared library routine from normal object file
85    (multiple sub-space support)
86    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
87    :		ldw RR'lt_ptr+ltoff(%r1),%r21
88    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
89    :		ldsid (%r21),%r1
90    :		mtsp %r1,%sr0
91    :		be 0(%sr0,%r21)			; branch to target
92    :		stw %rp,-24(%sp)		; save rp
93 
94    Import stub to call shared library routine from shared library
95    (multiple sub-space support)
96    :		addil LR'ltoff,%r19		; get procedure entry point
97    :		ldw RR'ltoff(%r1),%r21
98    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
99    :		ldsid (%r21),%r1
100    :		mtsp %r1,%sr0
101    :		be 0(%sr0,%r21)			; branch to target
102    :		stw %rp,-24(%sp)		; save rp
103 
104    Export stub to return from shared lib routine (multiple sub-space support)
105    One of these is created for each exported procedure in a shared
106    library (and stored in the shared lib).  Shared lib routines are
107    called via the first instruction in the export stub so that we can
108    do an inter-space return.  Not required for single sub-space.
109    :		bl,n X,%rp			; trap the return
110    :		nop
111    :		ldw -24(%sp),%rp		; restore the original rp
112    :		ldsid (%rp),%r1
113    :		mtsp %r1,%sr0
114    :		be,n 0(%sr0,%rp)		; inter-space return  */
115 
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 
121 static const bfd_byte plt_stub[] =
122 {
123   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
124   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
125   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
126 #define PLT_STUB_ENTRY (3*4)
127   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
128   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
129   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
130   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
131 };
132 
133 /* Section name for stubs is the associated section name plus this
134    string.  */
135 #define STUB_SUFFIX ".stub"
136 
137 /* Setting the following non-zero makes all long branch stubs
138    generated during a shared link of the PIC variety.  This saves on
139    relocs, but costs one extra instruction per stub.  */
140 #ifndef LONG_BRANCH_PIC_IN_SHLIB
141 #define LONG_BRANCH_PIC_IN_SHLIB 1
142 #endif
143 
144 /* Set this non-zero to use import stubs instead of long branch stubs
145    where a .plt entry exists for the symbol.  This is a fairly useless
146    option as import stubs are bigger than PIC long branch stubs.  */
147 #ifndef LONG_BRANCH_VIA_PLT
148 #define LONG_BRANCH_VIA_PLT 0
149 #endif
150 
151 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
152    shared object's dynamic section.  */
153 #ifndef RELATIVE_DYNAMIC_RELOCS
154 #define RELATIVE_DYNAMIC_RELOCS 0
155 #endif
156 
157 enum elf32_hppa_stub_type {
158   hppa_stub_long_branch,
159   hppa_stub_long_branch_shared,
160   hppa_stub_import,
161   hppa_stub_import_shared,
162   hppa_stub_export,
163   hppa_stub_none
164 };
165 
166 struct elf32_hppa_stub_hash_entry {
167 
168   /* Base hash table entry structure.  */
169   struct bfd_hash_entry root;
170 
171   /* The stub section.  */
172   asection *stub_sec;
173 
174 #if ! LONG_BRANCH_PIC_IN_SHLIB
175   /* It's associated reloc section.  */
176   asection *reloc_sec;
177 #endif
178 
179   /* Offset within stub_sec of the beginning of this stub.  */
180   bfd_vma stub_offset;
181 
182   /* Given the symbol's value and its section we can determine its final
183      value when building the stubs (so the stub knows where to jump.  */
184   bfd_vma target_value;
185   asection *target_section;
186 
187   enum elf32_hppa_stub_type stub_type;
188 
189   /* The symbol table entry, if any, that this was derived from.  */
190   struct elf32_hppa_link_hash_entry *h;
191 
192   /* Where this stub is being called from, or, in the case of combined
193      stub sections, the first input section in the group.  */
194   asection *id_sec;
195 };
196 
197 struct elf32_hppa_link_hash_entry {
198 
199   struct elf_link_hash_entry elf;
200 
201   /* A pointer to the most recently used stub hash entry against this
202      symbol.  */
203   struct elf32_hppa_stub_hash_entry *stub_cache;
204 
205 #if ! LONG_BRANCH_PIC_IN_SHLIB
206   /* Used to track whether we have allocated space for a long branch
207      stub relocation for this symbol in the given section.  */
208   asection *stub_reloc_sec;
209 #endif
210 
211 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
212   /* Used to count relocations for delayed sizing of relocation
213      sections.  */
214   struct elf32_hppa_dyn_reloc_entry {
215 
216     /* Next relocation in the chain.  */
217     struct elf32_hppa_dyn_reloc_entry *next;
218 
219     /* The section in dynobj.  */
220     asection *section;
221 
222     /* Number of relocs copied in this section.  */
223     bfd_size_type count;
224   } *reloc_entries;
225 #endif
226 
227   /* Set during a static link if we detect a function is PIC.  */
228   unsigned int maybe_pic_call:1;
229 
230   /* Set if the only reason we need a .plt entry is for a non-PIC to
231      PIC function call.  */
232   unsigned int pic_call:1;
233 
234   /* Set if this symbol is used by a plabel reloc.  */
235   unsigned int plabel:1;
236 
237   /* Set if this symbol is an init or fini function and thus should
238      use an absolute reloc.  */
239   unsigned int plt_abs:1;
240 };
241 
242 struct elf32_hppa_link_hash_table {
243 
244   /* The main hash table.  */
245   struct elf_link_hash_table root;
246 
247   /* The stub hash table.  */
248   struct bfd_hash_table stub_hash_table;
249 
250   /* Linker stub bfd.  */
251   bfd *stub_bfd;
252 
253   /* Linker call-backs.  */
254   asection * (*add_stub_section) PARAMS ((const char *, asection *));
255   void (*layout_sections_again) PARAMS ((void));
256 
257   /* Array to keep track of which stub sections have been created, and
258      information on stub grouping.  */
259   struct map_stub {
260     /* This is the section to which stubs in the group will be
261        attached.  */
262     asection *link_sec;
263     /* The stub section.  */
264     asection *stub_sec;
265 #if ! LONG_BRANCH_PIC_IN_SHLIB
266     /* The stub section's reloc section.  */
267     asection *reloc_sec;
268 #endif
269   } *stub_group;
270 
271   /* Short-cuts to get to dynamic linker sections.  */
272   asection *sgot;
273   asection *srelgot;
274   asection *splt;
275   asection *srelplt;
276   asection *sdynbss;
277   asection *srelbss;
278 
279   /* Used during a final link to store the base of the text and data
280      segments so that we can perform SEGREL relocations.  */
281   bfd_vma text_segment_base;
282   bfd_vma data_segment_base;
283 
284   /* Whether we support multiple sub-spaces for shared libs.  */
285   unsigned int multi_subspace:1;
286 
287   /* Flags set when PCREL12F and PCREL17F branches detected.  Used to
288      select suitable defaults for the stub group size.  */
289   unsigned int has_12bit_branch:1;
290   unsigned int has_17bit_branch:1;
291 
292   /* Set if we need a .plt stub to support lazy dynamic linking.  */
293   unsigned int need_plt_stub:1;
294 };
295 
296 /* Various hash macros and functions.  */
297 #define hppa_link_hash_table(p) \
298   ((struct elf32_hppa_link_hash_table *) ((p)->hash))
299 
300 #define hppa_stub_hash_lookup(table, string, create, copy) \
301   ((struct elf32_hppa_stub_hash_entry *) \
302    bfd_hash_lookup ((table), (string), (create), (copy)))
303 
304 static struct bfd_hash_entry *stub_hash_newfunc
305   PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
306 
307 static struct bfd_hash_entry *hppa_link_hash_newfunc
308   PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
309 
310 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
311   PARAMS ((bfd *));
312 
313 /* Stub handling functions.  */
314 static char *hppa_stub_name
315   PARAMS ((const asection *, const asection *,
316 	   const struct elf32_hppa_link_hash_entry *,
317 	   const Elf_Internal_Rela *));
318 
319 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
320   PARAMS ((const asection *, const asection *,
321 	   struct elf32_hppa_link_hash_entry *,
322 	   const Elf_Internal_Rela *,
323 	   struct elf32_hppa_link_hash_table *));
324 
325 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
326   PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
327 
328 static enum elf32_hppa_stub_type hppa_type_of_stub
329   PARAMS ((asection *, const Elf_Internal_Rela *,
330 	   struct elf32_hppa_link_hash_entry *, bfd_vma));
331 
332 static boolean hppa_build_one_stub
333   PARAMS ((struct bfd_hash_entry *, PTR));
334 
335 static boolean hppa_size_one_stub
336   PARAMS ((struct bfd_hash_entry *, PTR));
337 
338 /* BFD and elf backend functions.  */
339 static boolean elf32_hppa_object_p PARAMS ((bfd *));
340 
341 static boolean elf32_hppa_add_symbol_hook
342   PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 	   const char **, flagword *, asection **, bfd_vma *));
344 
345 static boolean elf32_hppa_create_dynamic_sections
346   PARAMS ((bfd *, struct bfd_link_info *));
347 
348 static boolean elf32_hppa_check_relocs
349   PARAMS ((bfd *, struct bfd_link_info *,
350 	   asection *, const Elf_Internal_Rela *));
351 
352 static asection *elf32_hppa_gc_mark_hook
353   PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
355 
356 static boolean elf32_hppa_gc_sweep_hook
357   PARAMS ((bfd *, struct bfd_link_info *,
358 	   asection *, const Elf_Internal_Rela *));
359 
360 static void elf32_hppa_hide_symbol
361   PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362 
363 static boolean elf32_hppa_adjust_dynamic_symbol
364   PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365 
366 static boolean hppa_handle_PIC_calls
367   PARAMS ((struct elf_link_hash_entry *, PTR));
368 
369 static boolean allocate_plt_and_got
370   PARAMS ((struct elf_link_hash_entry *, PTR));
371 
372 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
373      || RELATIVE_DYNAMIC_RELOCS)
374 static boolean hppa_discard_copies
375   PARAMS ((struct elf_link_hash_entry *, PTR));
376 #endif
377 
378 static boolean clobber_millicode_symbols
379   PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
380 
381 static boolean elf32_hppa_size_dynamic_sections
382   PARAMS ((bfd *, struct bfd_link_info *));
383 
384 static boolean elf32_hppa_final_link
385   PARAMS ((bfd *, struct bfd_link_info *));
386 
387 static void hppa_record_segment_addr
388   PARAMS ((bfd *, asection *, PTR));
389 
390 static bfd_reloc_status_type final_link_relocate
391   PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
392 	   bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
393 	   struct elf32_hppa_link_hash_entry *));
394 
395 static boolean elf32_hppa_relocate_section
396   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
397 	   bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
398 
399 static int hppa_unwind_entry_compare
400   PARAMS ((const PTR, const PTR));
401 
402 static boolean elf32_hppa_finish_dynamic_symbol
403   PARAMS ((bfd *, struct bfd_link_info *,
404 	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
405 
406 static boolean elf32_hppa_finish_dynamic_sections
407   PARAMS ((bfd *, struct bfd_link_info *));
408 
409 static void elf32_hppa_post_process_headers
410   PARAMS ((bfd *, struct bfd_link_info *));
411 
412 static int elf32_hppa_elf_get_symbol_type
413   PARAMS ((Elf_Internal_Sym *, int));
414 
415 /* Assorted hash table functions.  */
416 
417 /* Initialize an entry in the stub hash table.  */
418 
419 static struct bfd_hash_entry *
420 stub_hash_newfunc (entry, table, string)
421      struct bfd_hash_entry *entry;
422      struct bfd_hash_table *table;
423      const char *string;
424 {
425   struct elf32_hppa_stub_hash_entry *ret;
426 
427   ret = (struct elf32_hppa_stub_hash_entry *) entry;
428 
429   /* Allocate the structure if it has not already been allocated by a
430      subclass.  */
431   if (ret == NULL)
432     {
433       ret = ((struct elf32_hppa_stub_hash_entry *)
434 	     bfd_hash_allocate (table,
435 				sizeof (struct elf32_hppa_stub_hash_entry)));
436       if (ret == NULL)
437 	return NULL;
438     }
439 
440   /* Call the allocation method of the superclass.  */
441   ret = ((struct elf32_hppa_stub_hash_entry *)
442 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
443 
444   if (ret)
445     {
446       /* Initialize the local fields.  */
447       ret->stub_sec = NULL;
448 #if ! LONG_BRANCH_PIC_IN_SHLIB
449       ret->reloc_sec = NULL;
450 #endif
451       ret->stub_offset = 0;
452       ret->target_value = 0;
453       ret->target_section = NULL;
454       ret->stub_type = hppa_stub_long_branch;
455       ret->h = NULL;
456       ret->id_sec = NULL;
457     }
458 
459   return (struct bfd_hash_entry *) ret;
460 }
461 
462 /* Initialize an entry in the link hash table.  */
463 
464 static struct bfd_hash_entry *
465 hppa_link_hash_newfunc (entry, table, string)
466      struct bfd_hash_entry *entry;
467      struct bfd_hash_table *table;
468      const char *string;
469 {
470   struct elf32_hppa_link_hash_entry *ret;
471 
472   ret = (struct elf32_hppa_link_hash_entry *) entry;
473 
474   /* Allocate the structure if it has not already been allocated by a
475      subclass.  */
476   if (ret == NULL)
477     {
478       ret = ((struct elf32_hppa_link_hash_entry *)
479 	     bfd_hash_allocate (table,
480 				sizeof (struct elf32_hppa_link_hash_entry)));
481       if (ret == NULL)
482 	return NULL;
483     }
484 
485   /* Call the allocation method of the superclass.  */
486   ret = ((struct elf32_hppa_link_hash_entry *)
487 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
488 				     table, string));
489 
490   if (ret)
491     {
492       /* Initialize the local fields.  */
493 #if ! LONG_BRANCH_PIC_IN_SHLIB
494       ret->stub_reloc_sec = NULL;
495 #endif
496       ret->stub_cache = NULL;
497 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
498       ret->reloc_entries = NULL;
499 #endif
500       ret->maybe_pic_call = 0;
501       ret->pic_call = 0;
502       ret->plabel = 0;
503       ret->plt_abs = 0;
504     }
505 
506   return (struct bfd_hash_entry *) ret;
507 }
508 
509 /* Create the derived linker hash table.  The PA ELF port uses the derived
510    hash table to keep information specific to the PA ELF linker (without
511    using static variables).  */
512 
513 static struct bfd_link_hash_table *
514 elf32_hppa_link_hash_table_create (abfd)
515      bfd *abfd;
516 {
517   struct elf32_hppa_link_hash_table *ret;
518 
519   ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
520   if (ret == NULL)
521     return NULL;
522 
523   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
524     {
525       bfd_release (abfd, ret);
526       return NULL;
527     }
528 
529   /* Init the stub hash table too.  */
530   if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
531     return NULL;
532 
533   ret->stub_bfd = NULL;
534   ret->add_stub_section = NULL;
535   ret->layout_sections_again = NULL;
536   ret->stub_group = NULL;
537   ret->sgot = NULL;
538   ret->srelgot = NULL;
539   ret->splt = NULL;
540   ret->srelplt = NULL;
541   ret->sdynbss = NULL;
542   ret->srelbss = NULL;
543   ret->text_segment_base = (bfd_vma) -1;
544   ret->data_segment_base = (bfd_vma) -1;
545   ret->multi_subspace = 0;
546   ret->has_12bit_branch = 0;
547   ret->has_17bit_branch = 0;
548   ret->need_plt_stub = 0;
549 
550   return &ret->root.root;
551 }
552 
553 /* Build a name for an entry in the stub hash table.  */
554 
555 static char *
556 hppa_stub_name (input_section, sym_sec, hash, rel)
557      const asection *input_section;
558      const asection *sym_sec;
559      const struct elf32_hppa_link_hash_entry *hash;
560      const Elf_Internal_Rela *rel;
561 {
562   char *stub_name;
563   size_t len;
564 
565   if (hash)
566     {
567       len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
568       stub_name = bfd_malloc (len);
569       if (stub_name != NULL)
570 	{
571 	  sprintf (stub_name, "%08x_%s+%x",
572 		   input_section->id & 0xffffffff,
573 		   hash->elf.root.root.string,
574 		   (int) rel->r_addend & 0xffffffff);
575 	}
576     }
577   else
578     {
579       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
580       stub_name = bfd_malloc (len);
581       if (stub_name != NULL)
582 	{
583 	  sprintf (stub_name, "%08x_%x:%x+%x",
584 		   input_section->id & 0xffffffff,
585 		   sym_sec->id & 0xffffffff,
586 		   (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
587 		   (int) rel->r_addend & 0xffffffff);
588 	}
589     }
590   return stub_name;
591 }
592 
593 /* Look up an entry in the stub hash.  Stub entries are cached because
594    creating the stub name takes a bit of time.  */
595 
596 static struct elf32_hppa_stub_hash_entry *
597 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
598      const asection *input_section;
599      const asection *sym_sec;
600      struct elf32_hppa_link_hash_entry *hash;
601      const Elf_Internal_Rela *rel;
602      struct elf32_hppa_link_hash_table *hplink;
603 {
604   struct elf32_hppa_stub_hash_entry *stub_entry;
605   const asection *id_sec;
606 
607   /* If this input section is part of a group of sections sharing one
608      stub section, then use the id of the first section in the group.
609      Stub names need to include a section id, as there may well be
610      more than one stub used to reach say, printf, and we need to
611      distinguish between them.  */
612   id_sec = hplink->stub_group[input_section->id].link_sec;
613 
614   if (hash != NULL && hash->stub_cache != NULL
615       && hash->stub_cache->h == hash
616       && hash->stub_cache->id_sec == id_sec)
617     {
618       stub_entry = hash->stub_cache;
619     }
620   else
621     {
622       char *stub_name;
623 
624       stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
625       if (stub_name == NULL)
626 	return NULL;
627 
628       stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
629 					  stub_name, false, false);
630       if (stub_entry == NULL)
631 	{
632 	  if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
633 	    (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
634 				   bfd_get_filename (input_section->owner),
635 				   input_section->name,
636 				   (long) rel->r_offset,
637 				   stub_name);
638 	}
639       else
640 	{
641 	  if (hash != NULL)
642 	    hash->stub_cache = stub_entry;
643 	}
644 
645       free (stub_name);
646     }
647 
648   return stub_entry;
649 }
650 
651 /* Add a new stub entry to the stub hash.  Not all fields of the new
652    stub entry are initialised.  */
653 
654 static struct elf32_hppa_stub_hash_entry *
655 hppa_add_stub (stub_name, section, hplink)
656      const char *stub_name;
657      asection *section;
658      struct elf32_hppa_link_hash_table *hplink;
659 {
660   asection *link_sec;
661   asection *stub_sec;
662   struct elf32_hppa_stub_hash_entry *stub_entry;
663 
664   link_sec = hplink->stub_group[section->id].link_sec;
665   stub_sec = hplink->stub_group[section->id].stub_sec;
666   if (stub_sec == NULL)
667     {
668       stub_sec = hplink->stub_group[link_sec->id].stub_sec;
669       if (stub_sec == NULL)
670 	{
671 	  size_t len;
672 	  char *s_name;
673 
674 	  len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
675 	  s_name = bfd_alloc (hplink->stub_bfd, len);
676 	  if (s_name == NULL)
677 	    return NULL;
678 
679 	  strcpy (s_name, link_sec->name);
680 	  strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
681 	  stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
682 	  if (stub_sec == NULL)
683 	    return NULL;
684 	  hplink->stub_group[link_sec->id].stub_sec = stub_sec;
685 	}
686       hplink->stub_group[section->id].stub_sec = stub_sec;
687     }
688 
689   /* Enter this entry into the linker stub hash table.  */
690   stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
691 				      true, false);
692   if (stub_entry == NULL)
693     {
694       (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
695 			     bfd_get_filename (section->owner),
696 			     stub_name);
697       return NULL;
698     }
699 
700   stub_entry->stub_sec = stub_sec;
701 #if ! LONG_BRANCH_PIC_IN_SHLIB
702   stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
703 #endif
704   stub_entry->stub_offset = 0;
705   stub_entry->id_sec = link_sec;
706   return stub_entry;
707 }
708 
709 /* Determine the type of stub needed, if any, for a call.  */
710 
711 static enum elf32_hppa_stub_type
712 hppa_type_of_stub (input_sec, rel, hash, destination)
713      asection *input_sec;
714      const Elf_Internal_Rela *rel;
715      struct elf32_hppa_link_hash_entry *hash;
716      bfd_vma destination;
717 {
718   bfd_vma location;
719   bfd_vma branch_offset;
720   bfd_vma max_branch_offset;
721   unsigned int r_type;
722 
723   if (hash != NULL
724       && (((hash->elf.root.type == bfd_link_hash_defined
725 	    || hash->elf.root.type == bfd_link_hash_defweak)
726 	   && hash->elf.root.u.def.section->output_section == NULL)
727 	  || (hash->elf.root.type == bfd_link_hash_defweak
728 	      && hash->elf.dynindx != -1
729 	      && hash->elf.plt.offset != (bfd_vma) -1)
730 	  || hash->elf.root.type == bfd_link_hash_undefweak
731 	  || hash->elf.root.type == bfd_link_hash_undefined
732 	  || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
733     {
734       /* If output_section is NULL, then it's a symbol defined in a
735 	 shared library.  We will need an import stub.  Decide between
736 	 hppa_stub_import and hppa_stub_import_shared later.  For
737 	 shared links we need stubs for undefined or weak syms too;
738 	 They will presumably be resolved by the dynamic linker.  */
739       return hppa_stub_import;
740     }
741 
742   /* Determine where the call point is.  */
743   location = (input_sec->output_offset
744 	      + input_sec->output_section->vma
745 	      + rel->r_offset);
746 
747   branch_offset = destination - location - 8;
748   r_type = ELF32_R_TYPE (rel->r_info);
749 
750   /* Determine if a long branch stub is needed.  parisc branch offsets
751      are relative to the second instruction past the branch, ie. +8
752      bytes on from the branch instruction location.  The offset is
753      signed and counts in units of 4 bytes.  */
754   if (r_type == (unsigned int) R_PARISC_PCREL17F)
755     {
756       max_branch_offset = (1 << (17-1)) << 2;
757     }
758   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
759     {
760       max_branch_offset = (1 << (12-1)) << 2;
761     }
762   else /* R_PARISC_PCREL22F.  */
763     {
764       max_branch_offset = (1 << (22-1)) << 2;
765     }
766 
767   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
768     {
769 #if LONG_BRANCH_VIA_PLT
770       if (hash != NULL
771 	  && hash->elf.dynindx != -1
772 	  && hash->elf.plt.offset != (bfd_vma) -1
773 	  && hash->elf.type != STT_PARISC_MILLI)
774 	{
775 	  /* If we are doing a shared link and find we need a long
776 	     branch stub, then go via the .plt if possible.  */
777 	  return hppa_stub_import;
778 	}
779       else
780 #endif
781 	return hppa_stub_long_branch;
782     }
783   return hppa_stub_none;
784 }
785 
786 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
787    IN_ARG contains the link info pointer.  */
788 
789 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
790 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
791 
792 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
793 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
794 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
795 
796 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
797 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
798 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
799 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
800 
801 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
802 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
803 
804 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
805 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
806 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
807 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
808 
809 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
810 #define NOP		0x08000240	/* nop				*/
811 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
812 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
813 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
814 
815 #ifndef R19_STUBS
816 #define R19_STUBS 1
817 #endif
818 
819 #if R19_STUBS
820 #define LDW_R1_DLT	LDW_R1_R19
821 #else
822 #define LDW_R1_DLT	LDW_R1_DP
823 #endif
824 
825 static boolean
826 hppa_build_one_stub (gen_entry, in_arg)
827      struct bfd_hash_entry *gen_entry;
828      PTR in_arg;
829 {
830   struct elf32_hppa_stub_hash_entry *stub_entry;
831   struct bfd_link_info *info;
832   struct elf32_hppa_link_hash_table *hplink;
833   asection *stub_sec;
834   bfd *stub_bfd;
835   bfd_byte *loc;
836   bfd_vma sym_value;
837   bfd_vma insn;
838   bfd_vma off;
839   int val;
840   int size;
841 
842   /* Massage our args to the form they really have.  */
843   stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
844   info = (struct bfd_link_info *) in_arg;
845 
846   hplink = hppa_link_hash_table (info);
847   stub_sec = stub_entry->stub_sec;
848 
849   /* Make a note of the offset within the stubs for this entry.  */
850   stub_entry->stub_offset = stub_sec->_raw_size;
851   loc = stub_sec->contents + stub_entry->stub_offset;
852 
853   stub_bfd = stub_sec->owner;
854 
855   switch (stub_entry->stub_type)
856     {
857     case hppa_stub_long_branch:
858       /* Create the long branch.  A long branch is formed with "ldil"
859 	 loading the upper bits of the target address into a register,
860 	 then branching with "be" which adds in the lower bits.
861 	 The "be" has its delay slot nullified.  */
862       sym_value = (stub_entry->target_value
863 		   + stub_entry->target_section->output_offset
864 		   + stub_entry->target_section->output_section->vma);
865 
866       val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
867       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
868       bfd_put_32 (stub_bfd, insn, loc);
869 
870       val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
871       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
872       bfd_put_32 (stub_bfd, insn, loc + 4);
873 
874 #if ! LONG_BRANCH_PIC_IN_SHLIB
875       if (info->shared)
876 	{
877 	  /* Output a dynamic relocation for this stub.  We only
878 	     output one PCREL21L reloc per stub, trusting that the
879 	     dynamic linker will also fix the implied PCREL17R for the
880 	     second instruction.  PCREL21L dynamic relocs had better
881 	     never be emitted for some other purpose...  */
882 	  asection *srel;
883 	  Elf_Internal_Rela outrel;
884 
885 	  if (stub_entry->h == NULL)
886 	    {
887 	      (*_bfd_error_handler)
888 		(_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
889 		 bfd_get_filename (stub_entry->target_section->owner),
890 		 stub_sec->name,
891 		 (long) stub_entry->stub_offset,
892 		 stub_entry->root.string);
893 	      bfd_set_error (bfd_error_bad_value);
894 	      return false;
895 	    }
896 
897 	  srel = stub_entry->reloc_sec;
898 	  if (srel == NULL)
899 	    {
900 	      (*_bfd_error_handler)
901 		(_("Could not find relocation section for %s"),
902 		 stub_sec->name);
903 	      bfd_set_error (bfd_error_bad_value);
904 	      return false;
905 	    }
906 
907 	  outrel.r_offset = (stub_entry->stub_offset
908 			     + stub_sec->output_offset
909 			     + stub_sec->output_section->vma);
910 	  outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
911 	  outrel.r_addend = sym_value;
912 	  bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
913 				     &outrel,
914 				     ((Elf32_External_Rela *)
915 				      srel->contents + srel->reloc_count));
916 	  ++srel->reloc_count;
917 	}
918 #endif
919       size = 8;
920       break;
921 
922     case hppa_stub_long_branch_shared:
923       /* Branches are relative.  This is where we are going to.  */
924       sym_value = (stub_entry->target_value
925 		   + stub_entry->target_section->output_offset
926 		   + stub_entry->target_section->output_section->vma);
927 
928       /* And this is where we are coming from, more or less.  */
929       sym_value -= (stub_entry->stub_offset
930 		    + stub_sec->output_offset
931 		    + stub_sec->output_section->vma);
932 
933       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
934       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
935       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
936       bfd_put_32 (stub_bfd, insn, loc + 4);
937 
938       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
939       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
940       bfd_put_32 (stub_bfd, insn, loc + 8);
941       size = 12;
942       break;
943 
944     case hppa_stub_import:
945     case hppa_stub_import_shared:
946       off = stub_entry->h->elf.plt.offset;
947       if (off >= (bfd_vma) -2)
948 	abort ();
949 
950       off &= ~ (bfd_vma) 1;
951       sym_value = (off
952 		   + hplink->splt->output_offset
953 		   + hplink->splt->output_section->vma
954 		   - elf_gp (hplink->splt->output_section->owner));
955 
956       insn = ADDIL_DP;
957 #if R19_STUBS
958       if (stub_entry->stub_type == hppa_stub_import_shared)
959 	insn = ADDIL_R19;
960 #endif
961       val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
962       insn = hppa_rebuild_insn ((int) insn, val, 21);
963       bfd_put_32 (stub_bfd, insn, loc);
964 
965       /* It is critical to use lrsel/rrsel here because we are using
966 	 two different offsets (+0 and +4) from sym_value.  If we use
967 	 lsel/rsel then with unfortunate sym_values we will round
968 	 sym_value+4 up to the next 2k block leading to a mis-match
969 	 between the lsel and rsel value.  */
970       val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
971       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
972       bfd_put_32 (stub_bfd, insn, loc + 4);
973 
974       if (hplink->multi_subspace)
975 	{
976 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
977 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
978 	  bfd_put_32 (stub_bfd, insn, loc + 8);
979 
980 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
981 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
982 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
983 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
984 
985 	  size = 28;
986 	}
987       else
988 	{
989 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
990 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
991 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
992 	  bfd_put_32 (stub_bfd, insn, loc + 12);
993 
994 	  size = 16;
995 	}
996 
997       if (!info->shared
998 	  && stub_entry->h != NULL
999 	  && stub_entry->h->pic_call)
1000 	{
1001 	  /* Build the .plt entry needed to call a PIC function from
1002 	     statically linked code.  We don't need any relocs.  */
1003 	  bfd *dynobj;
1004 	  struct elf32_hppa_link_hash_entry *eh;
1005 	  bfd_vma value;
1006 
1007 	  dynobj = hplink->root.dynobj;
1008 	  eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
1009 
1010 	  if (eh->elf.root.type != bfd_link_hash_defined
1011 	      && eh->elf.root.type != bfd_link_hash_defweak)
1012 	    abort ();
1013 
1014 	  value = (eh->elf.root.u.def.value
1015 		   + eh->elf.root.u.def.section->output_offset
1016 		   + eh->elf.root.u.def.section->output_section->vma);
1017 
1018 	  /* Fill in the entry in the procedure linkage table.
1019 
1020 	     The format of a plt entry is
1021 	     <funcaddr>
1022 	     <__gp>.  */
1023 
1024 	  bfd_put_32 (hplink->splt->owner, value,
1025 		      hplink->splt->contents + off);
1026 	  value = elf_gp (hplink->splt->output_section->owner);
1027 	  bfd_put_32 (hplink->splt->owner, value,
1028 		      hplink->splt->contents + off + 4);
1029 	}
1030       break;
1031 
1032     case hppa_stub_export:
1033       /* Branches are relative.  This is where we are going to.  */
1034       sym_value = (stub_entry->target_value
1035 		   + stub_entry->target_section->output_offset
1036 		   + stub_entry->target_section->output_section->vma);
1037 
1038       /* And this is where we are coming from.  */
1039       sym_value -= (stub_entry->stub_offset
1040 		    + stub_sec->output_offset
1041 		    + stub_sec->output_section->vma);
1042 
1043       if (sym_value - 8 + 0x40000 >= 0x80000)
1044 	{
1045 	  (*_bfd_error_handler)
1046 	    (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1047 	     bfd_get_filename (stub_entry->target_section->owner),
1048 	     stub_sec->name,
1049 	     (long) stub_entry->stub_offset,
1050 	     stub_entry->root.string);
1051 	  bfd_set_error (bfd_error_bad_value);
1052 	  return false;
1053 	}
1054 
1055       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1056       insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1057       bfd_put_32 (stub_bfd, insn, loc);
1058 
1059       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
1060       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
1061       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1062       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
1063       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
1064 
1065       /* Point the function symbol at the stub.  */
1066       stub_entry->h->elf.root.u.def.section = stub_sec;
1067       stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1068 
1069       size = 24;
1070       break;
1071 
1072     default:
1073       BFD_FAIL ();
1074       return false;
1075     }
1076 
1077   stub_sec->_raw_size += size;
1078   return true;
1079 }
1080 
1081 #undef LDIL_R1
1082 #undef BE_SR4_R1
1083 #undef BL_R1
1084 #undef ADDIL_R1
1085 #undef DEPI_R1
1086 #undef ADDIL_DP
1087 #undef LDW_R1_R21
1088 #undef LDW_R1_DLT
1089 #undef LDW_R1_R19
1090 #undef ADDIL_R19
1091 #undef LDW_R1_DP
1092 #undef LDSID_R21_R1
1093 #undef MTSP_R1
1094 #undef BE_SR0_R21
1095 #undef STW_RP
1096 #undef BV_R0_R21
1097 #undef BL_RP
1098 #undef NOP
1099 #undef LDW_RP
1100 #undef LDSID_RP_R1
1101 #undef BE_SR0_RP
1102 
1103 /* As above, but don't actually build the stub.  Just bump offset so
1104    we know stub section sizes.  */
1105 
1106 static boolean
1107 hppa_size_one_stub (gen_entry, in_arg)
1108      struct bfd_hash_entry *gen_entry;
1109      PTR in_arg;
1110 {
1111   struct elf32_hppa_stub_hash_entry *stub_entry;
1112   struct elf32_hppa_link_hash_table *hplink;
1113   int size;
1114 
1115   /* Massage our args to the form they really have.  */
1116   stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1117   hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1118 
1119   if (stub_entry->stub_type == hppa_stub_long_branch)
1120     {
1121 #if ! LONG_BRANCH_PIC_IN_SHLIB
1122       if (stub_entry->reloc_sec != NULL)
1123 	stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1124 #endif
1125       size = 8;
1126     }
1127   else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1128     size = 12;
1129   else if (stub_entry->stub_type == hppa_stub_export)
1130     size = 24;
1131   else /* hppa_stub_import or hppa_stub_import_shared.  */
1132     {
1133       if (hplink->multi_subspace)
1134 	size = 28;
1135       else
1136 	size = 16;
1137     }
1138 
1139   stub_entry->stub_sec->_raw_size += size;
1140   return true;
1141 }
1142 
1143 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1144    Additionally we set the default architecture and machine.  */
1145 
1146 static boolean
1147 elf32_hppa_object_p (abfd)
1148      bfd *abfd;
1149 {
1150   Elf_Internal_Ehdr * i_ehdrp;
1151   unsigned int flags;
1152 
1153   i_ehdrp = elf_elfheader (abfd);
1154   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1155     {
1156       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1157 	return false;
1158     }
1159   else
1160     {
1161       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1162 	return false;
1163     }
1164 
1165   flags = i_ehdrp->e_flags;
1166   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1167     {
1168     case EFA_PARISC_1_0:
1169       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1170     case EFA_PARISC_1_1:
1171       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1172     case EFA_PARISC_2_0:
1173       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1174     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1175       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1176     }
1177   return true;
1178 }
1179 
1180 /* Undo the generic ELF code's subtraction of section->vma from the
1181    value of each external symbol.  */
1182 
1183 static boolean
1184 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1185      bfd *abfd ATTRIBUTE_UNUSED;
1186      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1187      const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1188      const char **namep ATTRIBUTE_UNUSED;
1189      flagword *flagsp ATTRIBUTE_UNUSED;
1190      asection **secp;
1191      bfd_vma *valp;
1192 {
1193   *valp += (*secp)->vma;
1194   return true;
1195 }
1196 
1197 /* Create the .plt and .got sections, and set up our hash table
1198    short-cuts to various dynamic sections.  */
1199 
1200 static boolean
1201 elf32_hppa_create_dynamic_sections (abfd, info)
1202      bfd *abfd;
1203      struct bfd_link_info *info;
1204 {
1205   struct elf32_hppa_link_hash_table *hplink;
1206 
1207   /* Don't try to create the .plt and .got twice.  */
1208   hplink = hppa_link_hash_table (info);
1209   if (hplink->splt != NULL)
1210     return true;
1211 
1212   /* Call the generic code to do most of the work.  */
1213   if (! _bfd_elf_create_dynamic_sections (abfd, info))
1214     return false;
1215 
1216   hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1217   hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1218 
1219   hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1220   hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1221   if (hplink->srelgot == NULL
1222       || ! bfd_set_section_flags (abfd, hplink->srelgot,
1223 				  (SEC_ALLOC
1224 				   | SEC_LOAD
1225 				   | SEC_HAS_CONTENTS
1226 				   | SEC_IN_MEMORY
1227 				   | SEC_LINKER_CREATED
1228 				   | SEC_READONLY))
1229       || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1230     return false;
1231 
1232   hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1233   hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1234 
1235   return true;
1236 }
1237 
1238 /* Look through the relocs for a section during the first phase, and
1239    allocate space in the global offset table or procedure linkage
1240    table.  At this point we haven't necessarily read all the input
1241    files.  */
1242 
1243 static boolean
1244 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1245      bfd *abfd;
1246      struct bfd_link_info *info;
1247      asection *sec;
1248      const Elf_Internal_Rela *relocs;
1249 {
1250   bfd *dynobj;
1251   Elf_Internal_Shdr *symtab_hdr;
1252   struct elf_link_hash_entry **sym_hashes;
1253   bfd_signed_vma *local_got_refcounts;
1254   const Elf_Internal_Rela *rel;
1255   const Elf_Internal_Rela *rel_end;
1256   struct elf32_hppa_link_hash_table *hplink;
1257   asection *sreloc;
1258   asection *stubreloc;
1259 
1260   if (info->relocateable)
1261     return true;
1262 
1263   hplink = hppa_link_hash_table (info);
1264   dynobj = hplink->root.dynobj;
1265   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1266   sym_hashes = elf_sym_hashes (abfd);
1267   local_got_refcounts = elf_local_got_refcounts (abfd);
1268   sreloc = NULL;
1269   stubreloc = NULL;
1270 
1271   rel_end = relocs + sec->reloc_count;
1272   for (rel = relocs; rel < rel_end; rel++)
1273     {
1274       enum {
1275 	NEED_GOT = 1,
1276 	NEED_PLT = 2,
1277 	NEED_DYNREL = 4,
1278 #if LONG_BRANCH_PIC_IN_SHLIB
1279 	NEED_STUBREL = 0,  /* We won't be needing them in this case.  */
1280 #else
1281 	NEED_STUBREL = 8,
1282 #endif
1283 	PLT_PLABEL = 16
1284       };
1285 
1286       unsigned int r_symndx, r_type;
1287       struct elf32_hppa_link_hash_entry *h;
1288       int need_entry;
1289 
1290       r_symndx = ELF32_R_SYM (rel->r_info);
1291 
1292       if (r_symndx < symtab_hdr->sh_info)
1293 	h = NULL;
1294       else
1295 	h = ((struct elf32_hppa_link_hash_entry *)
1296 	     sym_hashes[r_symndx - symtab_hdr->sh_info]);
1297 
1298       r_type = ELF32_R_TYPE (rel->r_info);
1299 
1300       switch (r_type)
1301 	{
1302 	case R_PARISC_DLTIND14F:
1303 	case R_PARISC_DLTIND14R:
1304 	case R_PARISC_DLTIND21L:
1305 	  /* This symbol requires a global offset table entry.  */
1306 	  need_entry = NEED_GOT;
1307 
1308 	  /* Mark this section as containing PIC code.  */
1309 	  sec->flags |= SEC_HAS_GOT_REF;
1310 	  break;
1311 
1312 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1313 	case R_PARISC_PLABEL21L:
1314 	case R_PARISC_PLABEL32:
1315 	  /* If the addend is non-zero, we break badly.  */
1316 	  if (rel->r_addend != 0)
1317 	    abort ();
1318 
1319 	  /* If we are creating a shared library, then we need to
1320 	     create a PLT entry for all PLABELs, because PLABELs with
1321 	     local symbols may be passed via a pointer to another
1322 	     object.  Additionally, output a dynamic relocation
1323 	     pointing to the PLT entry.
1324 	     For executables, the original 32-bit ABI allowed two
1325 	     different styles of PLABELs (function pointers):  For
1326 	     global functions, the PLABEL word points into the .plt
1327 	     two bytes past a (function address, gp) pair, and for
1328 	     local functions the PLABEL points directly at the
1329 	     function.  The magic +2 for the first type allows us to
1330 	     differentiate between the two.  As you can imagine, this
1331 	     is a real pain when it comes to generating code to call
1332 	     functions indirectly or to compare function pointers.
1333 	     We avoid the mess by always pointing a PLABEL into the
1334 	     .plt, even for local functions.  */
1335 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1336 	  break;
1337 
1338 	case R_PARISC_PCREL12F:
1339 	  hplink->has_12bit_branch = 1;
1340 	  /* Fall thru.  */
1341 	case R_PARISC_PCREL17C:
1342 	case R_PARISC_PCREL17F:
1343 	  hplink->has_17bit_branch = 1;
1344 	  /* Fall thru.  */
1345 	case R_PARISC_PCREL22F:
1346 	  /* Function calls might need to go through the .plt, and
1347 	     might require long branch stubs.  */
1348 	  if (h == NULL)
1349 	    {
1350 	      /* We know local syms won't need a .plt entry, and if
1351 		 they need a long branch stub we can't guarantee that
1352 		 we can reach the stub.  So just flag an error later
1353 		 if we're doing a shared link and find we need a long
1354 		 branch stub.  */
1355 	      continue;
1356 	    }
1357 	  else
1358 	    {
1359 	      /* Global symbols will need a .plt entry if they remain
1360 		 global, and in most cases won't need a long branch
1361 		 stub.  Unfortunately, we have to cater for the case
1362 		 where a symbol is forced local by versioning, or due
1363 		 to symbolic linking, and we lose the .plt entry.  */
1364 	      need_entry = NEED_PLT | NEED_STUBREL;
1365 	      if (h->elf.type == STT_PARISC_MILLI)
1366 		need_entry = NEED_STUBREL;
1367 	    }
1368 	  break;
1369 
1370 	case R_PARISC_SEGBASE: /* Used to set segment base.  */
1371 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1372 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1373 	case R_PARISC_PCREL14R:
1374 	case R_PARISC_PCREL17R: /* External branches.  */
1375 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1376 	  /* We don't need to propagate the relocation if linking a
1377 	     shared object since these are section relative.  */
1378 	  continue;
1379 
1380 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1381 	case R_PARISC_DPREL14R:
1382 	case R_PARISC_DPREL21L:
1383 	  if (info->shared)
1384 	    {
1385 	      (*_bfd_error_handler)
1386 		(_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1387 		 bfd_get_filename (abfd),
1388 		 elf_hppa_howto_table[r_type].name);
1389 	      bfd_set_error (bfd_error_bad_value);
1390 	      return false;
1391 	    }
1392 	  /* Fall through.  */
1393 
1394 	case R_PARISC_DIR17F: /* Used for external branches.  */
1395 	case R_PARISC_DIR17R:
1396 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1397 	case R_PARISC_DIR14R:
1398 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1399 #if 1
1400 	  /* Help debug shared library creation.  Any of the above
1401 	     relocs can be used in shared libs, but they may cause
1402 	     pages to become unshared.  */
1403 	  if (info->shared)
1404 	    {
1405 	      (*_bfd_error_handler)
1406 		(_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1407 		 bfd_get_filename (abfd),
1408 		 elf_hppa_howto_table[r_type].name);
1409 	    }
1410 	  /* Fall through.  */
1411 #endif
1412 
1413 	case R_PARISC_DIR32: /* .word relocs.  */
1414 	  /* We may want to output a dynamic relocation later.  */
1415 	  need_entry = NEED_DYNREL;
1416 	  break;
1417 
1418 	  /* This relocation describes the C++ object vtable hierarchy.
1419 	     Reconstruct it for later use during GC.  */
1420 	case R_PARISC_GNU_VTINHERIT:
1421 	  if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1422 					       &h->elf, rel->r_offset))
1423 	    return false;
1424 	  continue;
1425 
1426 	  /* This relocation describes which C++ vtable entries are actually
1427 	     used.  Record for later use during GC.  */
1428 	case R_PARISC_GNU_VTENTRY:
1429 	  if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1430 					     &h->elf, rel->r_addend))
1431 	    return false;
1432 	  continue;
1433 
1434 	default:
1435 	  continue;
1436 	}
1437 
1438       /* Now carry out our orders.  */
1439       if (need_entry & NEED_GOT)
1440 	{
1441 	  /* Allocate space for a GOT entry, as well as a dynamic
1442 	     relocation for this entry.  */
1443 	  if (dynobj == NULL)
1444 	    hplink->root.dynobj = dynobj = abfd;
1445 
1446 	  if (hplink->sgot == NULL)
1447 	    {
1448 	      if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1449 		return false;
1450 	    }
1451 
1452 	  if (h != NULL)
1453 	    {
1454 	      if (h->elf.got.refcount == -1)
1455 		{
1456 		  h->elf.got.refcount = 1;
1457 
1458 		  /* Make sure this symbol is output as a dynamic symbol.  */
1459 		  if (h->elf.dynindx == -1)
1460 		    {
1461 		      if (! bfd_elf32_link_record_dynamic_symbol (info,
1462 								  &h->elf))
1463 			return false;
1464 		    }
1465 		}
1466 	      else
1467 		h->elf.got.refcount += 1;
1468 	    }
1469 	  else
1470 	    {
1471 	      /* This is a global offset table entry for a local symbol.  */
1472 	      if (local_got_refcounts == NULL)
1473 		{
1474 		  size_t size;
1475 
1476 		  /* Allocate space for local got offsets and local
1477 		     plt offsets.  Done this way to save polluting
1478 		     elf_obj_tdata with another target specific
1479 		     pointer.  */
1480 		  size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1481 		  local_got_refcounts = ((bfd_signed_vma *)
1482 					 bfd_alloc (abfd, size));
1483 		  if (local_got_refcounts == NULL)
1484 		    return false;
1485 		  elf_local_got_refcounts (abfd) = local_got_refcounts;
1486 		  memset (local_got_refcounts, -1, size);
1487 		}
1488 	      if (local_got_refcounts[r_symndx] == -1)
1489 		local_got_refcounts[r_symndx] = 1;
1490 	      else
1491 		local_got_refcounts[r_symndx] += 1;
1492 	    }
1493 	}
1494 
1495       if (need_entry & NEED_PLT)
1496 	{
1497 	  /* If we are creating a shared library, and this is a reloc
1498 	     against a weak symbol or a global symbol in a dynamic
1499 	     object, then we will be creating an import stub and a
1500 	     .plt entry for the symbol.  Similarly, on a normal link
1501 	     to symbols defined in a dynamic object we'll need the
1502 	     import stub and a .plt entry.  We don't know yet whether
1503 	     the symbol is defined or not, so make an entry anyway and
1504 	     clean up later in adjust_dynamic_symbol.  */
1505 	  if ((sec->flags & SEC_ALLOC) != 0)
1506 	    {
1507 	      if (h != NULL)
1508 		{
1509 		  if (h->elf.plt.refcount == -1)
1510 		    {
1511 		      h->elf.plt.refcount = 1;
1512 		      h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1513 		    }
1514 		  else
1515 		    h->elf.plt.refcount += 1;
1516 
1517 		  /* If this .plt entry is for a plabel, mark it so
1518 		     that adjust_dynamic_symbol will keep the entry
1519 		     even if it appears to be local.  */
1520 		  if (need_entry & PLT_PLABEL)
1521 		    h->plabel = 1;
1522 		}
1523 	      else if (need_entry & PLT_PLABEL)
1524 		{
1525 		  int indx;
1526 
1527 		  if (local_got_refcounts == NULL)
1528 		    {
1529 		      size_t size;
1530 
1531 		      /* Allocate space for local got offsets and local
1532 			 plt offsets.  */
1533 		      size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1534 		      local_got_refcounts = ((bfd_signed_vma *)
1535 					     bfd_alloc (abfd, size));
1536 		      if (local_got_refcounts == NULL)
1537 			return false;
1538 		      elf_local_got_refcounts (abfd) = local_got_refcounts;
1539 		      memset (local_got_refcounts, -1, size);
1540 		    }
1541 		  indx = r_symndx + symtab_hdr->sh_info;
1542 		  if (local_got_refcounts[indx] == -1)
1543 		    local_got_refcounts[indx] = 1;
1544 		  else
1545 		    local_got_refcounts[indx] += 1;
1546 		}
1547 	    }
1548 	}
1549 
1550       if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1551 	{
1552 	  /* Flag this symbol as having a non-got, non-plt reference
1553 	     so that we generate copy relocs if it turns out to be
1554 	     dynamic.  */
1555 	  if (h != NULL)
1556 	    h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1557 
1558 	  /* If we are creating a shared library then we need to copy
1559 	     the reloc into the shared library.  However, if we are
1560 	     linking with -Bsymbolic, we need only copy absolute
1561 	     relocs or relocs against symbols that are not defined in
1562 	     an object we are including in the link.  PC- or DP- or
1563 	     DLT-relative relocs against any local sym or global sym
1564 	     with DEF_REGULAR set, can be discarded.  At this point we
1565 	     have not seen all the input files, so it is possible that
1566 	     DEF_REGULAR is not set now but will be set later (it is
1567 	     never cleared).  We account for that possibility below by
1568 	     storing information in the reloc_entries field of the
1569 	     hash table entry.
1570 
1571 	     A similar situation to the -Bsymbolic case occurs when
1572 	     creating shared libraries and symbol visibility changes
1573 	     render the symbol local.
1574 
1575 	     As it turns out, all the relocs we will be creating here
1576 	     are absolute, so we cannot remove them on -Bsymbolic
1577 	     links or visibility changes anyway.  A STUB_REL reloc
1578 	     is absolute too, as in that case it is the reloc in the
1579 	     stub we will be creating, rather than copying the PCREL
1580 	     reloc in the branch.  */
1581 	  if ((sec->flags & SEC_ALLOC) != 0
1582 	      && info->shared
1583 #if RELATIVE_DYNAMIC_RELOCS
1584 	      && (!info->symbolic
1585 		  || is_absolute_reloc (r_type)
1586 		  || (h != NULL
1587 		      && ((h->elf.elf_link_hash_flags
1588 			   & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1589 #endif
1590 	      )
1591 	    {
1592 	      boolean doit;
1593 	      asection *srel;
1594 
1595 	      srel = sreloc;
1596 	      if ((need_entry & NEED_STUBREL))
1597 		srel = stubreloc;
1598 
1599 	      /* Create a reloc section in dynobj and make room for
1600 		 this reloc.  */
1601 	      if (srel == NULL)
1602 		{
1603 		  char *name;
1604 
1605 		  if (dynobj == NULL)
1606 		    hplink->root.dynobj = dynobj = abfd;
1607 
1608 		  name = bfd_elf_string_from_elf_section
1609 		    (abfd,
1610 		     elf_elfheader (abfd)->e_shstrndx,
1611 		     elf_section_data (sec)->rel_hdr.sh_name);
1612 		  if (name == NULL)
1613 		    {
1614 		      (*_bfd_error_handler)
1615 			(_("Could not find relocation section for %s"),
1616 			 sec->name);
1617 		      bfd_set_error (bfd_error_bad_value);
1618 		      return false;
1619 		    }
1620 
1621 		  if ((need_entry & NEED_STUBREL))
1622 		    {
1623 		      size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1624 		      char *newname = bfd_malloc (len);
1625 
1626 		      if (newname == NULL)
1627 			return false;
1628 		      strcpy (newname, name);
1629 		      strcpy (newname + len - sizeof (STUB_SUFFIX),
1630 			      STUB_SUFFIX);
1631 		      name = newname;
1632 		    }
1633 
1634 		  srel = bfd_get_section_by_name (dynobj, name);
1635 		  if (srel == NULL)
1636 		    {
1637 		      flagword flags;
1638 
1639 		      srel = bfd_make_section (dynobj, name);
1640 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1641 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1642 		      if ((sec->flags & SEC_ALLOC) != 0)
1643 			flags |= SEC_ALLOC | SEC_LOAD;
1644 		      if (srel == NULL
1645 			  || !bfd_set_section_flags (dynobj, srel, flags)
1646 			  || !bfd_set_section_alignment (dynobj, srel, 2))
1647 			return false;
1648 		    }
1649 		  else if ((need_entry & NEED_STUBREL))
1650 		    free (name);
1651 
1652 		  if ((need_entry & NEED_STUBREL))
1653 		    stubreloc = srel;
1654 		  else
1655 		    sreloc = srel;
1656 		}
1657 
1658 #if ! LONG_BRANCH_PIC_IN_SHLIB
1659 	      /* If this is a function call, we only need one dynamic
1660 		 reloc for the stub as all calls to a particular
1661 		 function will go through the same stub.  Actually, a
1662 		 long branch stub needs two relocations, but we count
1663 		 on some intelligence on the part of the dynamic
1664 		 linker.  */
1665 	      if ((need_entry & NEED_STUBREL))
1666 		{
1667 		  doit = h->stub_reloc_sec != stubreloc;
1668 		  h->stub_reloc_sec = stubreloc;
1669 		}
1670 	      else
1671 #endif
1672 		doit = 1;
1673 
1674 	      if (doit)
1675 		{
1676 		  srel->_raw_size += sizeof (Elf32_External_Rela);
1677 
1678 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1679 		  /* Keep track of relocations we have entered for
1680 		     this global symbol, so that we can discard them
1681 		     later if necessary.  */
1682 		  if (h != NULL
1683 		      && (0
1684 #if RELATIVE_DYNAMIC_RELOCS
1685 			  || ! is_absolute_reloc (rtype)
1686 #endif
1687 			  || (need_entry & NEED_STUBREL)))
1688 		    {
1689 		      struct elf32_hppa_dyn_reloc_entry *p;
1690 
1691 		      for (p = h->reloc_entries; p != NULL; p = p->next)
1692 			if (p->section == srel)
1693 			  break;
1694 
1695 		      if (p == NULL)
1696 			{
1697 			  p = ((struct elf32_hppa_dyn_reloc_entry *)
1698 			       bfd_alloc (dynobj, sizeof *p));
1699 			  if (p == NULL)
1700 			    return false;
1701 			  p->next = h->reloc_entries;
1702 			  h->reloc_entries = p;
1703 			  p->section = srel;
1704 			  p->count = 0;
1705 			}
1706 
1707 		      /* NEED_STUBREL and NEED_DYNREL are never both
1708 			 set.  Leave the count at zero for the
1709 			 NEED_STUBREL case as we only ever have one
1710 			 stub reloc per section per symbol, and this
1711 			 simplifies code in hppa_discard_copies.  */
1712 		      if (! (need_entry & NEED_STUBREL))
1713 			++p->count;
1714 		    }
1715 #endif
1716 		}
1717 	    }
1718 	}
1719     }
1720 
1721   return true;
1722 }
1723 
1724 /* Return the section that should be marked against garbage collection
1725    for a given relocation.  */
1726 
1727 static asection *
1728 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1729      bfd *abfd;
1730      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1731      Elf_Internal_Rela *rel;
1732      struct elf_link_hash_entry *h;
1733      Elf_Internal_Sym *sym;
1734 {
1735   if (h != NULL)
1736     {
1737       switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1738 	{
1739 	case R_PARISC_GNU_VTINHERIT:
1740 	case R_PARISC_GNU_VTENTRY:
1741 	  break;
1742 
1743 	default:
1744 	  switch (h->root.type)
1745 	    {
1746 	    case bfd_link_hash_defined:
1747 	    case bfd_link_hash_defweak:
1748 	      return h->root.u.def.section;
1749 
1750 	    case bfd_link_hash_common:
1751 	      return h->root.u.c.p->section;
1752 
1753 	    default:
1754 	      break;
1755 	    }
1756 	}
1757     }
1758   else
1759     {
1760       if (!(elf_bad_symtab (abfd)
1761 	    && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1762 	  && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1763 		&& sym->st_shndx != SHN_COMMON))
1764 	{
1765 	  return bfd_section_from_elf_index (abfd, sym->st_shndx);
1766 	}
1767     }
1768 
1769   return NULL;
1770 }
1771 
1772 /* Update the got and plt entry reference counts for the section being
1773    removed.  */
1774 
1775 static boolean
1776 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1777      bfd *abfd;
1778      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1779      asection *sec;
1780      const Elf_Internal_Rela *relocs;
1781 {
1782   Elf_Internal_Shdr *symtab_hdr;
1783   struct elf_link_hash_entry **sym_hashes;
1784   bfd_signed_vma *local_got_refcounts;
1785   bfd_signed_vma *local_plt_refcounts;
1786   const Elf_Internal_Rela *rel, *relend;
1787   unsigned long r_symndx;
1788   struct elf_link_hash_entry *h;
1789   struct elf32_hppa_link_hash_table *hplink;
1790   bfd *dynobj;
1791 
1792   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1793   sym_hashes = elf_sym_hashes (abfd);
1794   local_got_refcounts = elf_local_got_refcounts (abfd);
1795   local_plt_refcounts = local_got_refcounts;
1796   if (local_plt_refcounts != NULL)
1797     local_plt_refcounts += symtab_hdr->sh_info;
1798   hplink = hppa_link_hash_table (info);
1799   dynobj = hplink->root.dynobj;
1800   if (dynobj == NULL)
1801     return true;
1802 
1803   relend = relocs + sec->reloc_count;
1804   for (rel = relocs; rel < relend; rel++)
1805     switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1806       {
1807       case R_PARISC_DLTIND14F:
1808       case R_PARISC_DLTIND14R:
1809       case R_PARISC_DLTIND21L:
1810 	r_symndx = ELF32_R_SYM (rel->r_info);
1811 	if (r_symndx >= symtab_hdr->sh_info)
1812 	  {
1813 	    h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1814 	    if (h->got.refcount > 0)
1815 	      h->got.refcount -= 1;
1816 	  }
1817 	else if (local_got_refcounts != NULL)
1818 	  {
1819 	    if (local_got_refcounts[r_symndx] > 0)
1820 	      local_got_refcounts[r_symndx] -= 1;
1821 	  }
1822 	break;
1823 
1824       case R_PARISC_PCREL12F:
1825       case R_PARISC_PCREL17C:
1826       case R_PARISC_PCREL17F:
1827       case R_PARISC_PCREL22F:
1828 	r_symndx = ELF32_R_SYM (rel->r_info);
1829 	if (r_symndx >= symtab_hdr->sh_info)
1830 	  {
1831 	    h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1832 	    if (h->plt.refcount > 0)
1833 	      h->plt.refcount -= 1;
1834 	  }
1835 	break;
1836 
1837       case R_PARISC_PLABEL14R:
1838       case R_PARISC_PLABEL21L:
1839       case R_PARISC_PLABEL32:
1840 	r_symndx = ELF32_R_SYM (rel->r_info);
1841 	if (r_symndx >= symtab_hdr->sh_info)
1842 	  {
1843 	    h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1844 	    if (h->plt.refcount > 0)
1845 	      h->plt.refcount -= 1;
1846 	  }
1847 	else if (local_plt_refcounts != NULL)
1848 	  {
1849 	    if (local_plt_refcounts[r_symndx] > 0)
1850 	      local_plt_refcounts[r_symndx] -= 1;
1851 	  }
1852 	break;
1853 
1854       default:
1855 	break;
1856       }
1857 
1858   return true;
1859 }
1860 
1861 /* Our own version of hide_symbol, so that we can keep plt entries for
1862    plabels.  */
1863 
1864 static void
1865 elf32_hppa_hide_symbol (info, h)
1866      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1867      struct elf_link_hash_entry *h;
1868 {
1869   if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1870     h->dynindx = -1;
1871   if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1872     {
1873       h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1874       h->plt.offset = (bfd_vma) -1;
1875     }
1876 }
1877 
1878 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1879    will be called from elflink.h.  If elflink.h doesn't call our
1880    finish_dynamic_symbol routine, we'll need to do something about
1881    initializing any .plt and .got entries in elf32_hppa_relocate_section.  */
1882 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1883   ((DYN)								\
1884    && ((INFO)->shared							\
1885        || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)	\
1886    && ((H)->dynindx != -1						\
1887        || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1888 
1889 /* Adjust a symbol defined by a dynamic object and referenced by a
1890    regular object.  The current definition is in some section of the
1891    dynamic object, but we're not including those sections.  We have to
1892    change the definition to something the rest of the link can
1893    understand.  */
1894 
1895 static boolean
1896 elf32_hppa_adjust_dynamic_symbol (info, h)
1897      struct bfd_link_info *info;
1898      struct elf_link_hash_entry *h;
1899 {
1900   bfd *dynobj;
1901   struct elf32_hppa_link_hash_table *hplink;
1902   asection *s;
1903 
1904   hplink = hppa_link_hash_table (info);
1905   dynobj = hplink->root.dynobj;
1906 
1907   /* If this is a function, put it in the procedure linkage table.  We
1908      will fill in the contents of the procedure linkage table later,
1909      when we know the address of the .got section.  */
1910   if (h->type == STT_FUNC
1911       || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1912     {
1913       if (!info->shared
1914 	  && h->plt.refcount > 0
1915 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1916 	  && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1917 	{
1918 	  ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1919 	}
1920 
1921       if (h->plt.refcount <= 0
1922 	  || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1923 	      && h->root.type != bfd_link_hash_defweak
1924 	      && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1925 	      && (!info->shared || info->symbolic)))
1926 	{
1927 	  /* The .plt entry is not needed when:
1928 	     a) Garbage collection has removed all references to the
1929 	     symbol, or
1930 	     b) We know for certain the symbol is defined in this
1931 	     object, and it's not a weak definition, nor is the symbol
1932 	     used by a plabel relocation.  Either this object is the
1933 	     application or we are doing a shared symbolic link.  */
1934 
1935 	  /* As a special sop to the hppa ABI, we keep a .plt entry
1936 	     for functions in sections containing PIC code.  */
1937 	  if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1938 	    ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1939 	  else
1940 	    {
1941 	      h->plt.offset = (bfd_vma) -1;
1942 	      h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1943 	      return true;
1944 	    }
1945 	}
1946 
1947       if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1948 	{
1949 	  /* Make sure this symbol is output as a dynamic symbol.  */
1950 	  if (h->dynindx == -1
1951 	      && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1952 	    {
1953 	      if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1954 		return false;
1955 	    }
1956 	}
1957 
1958       return true;
1959     }
1960 
1961   /* If this is a weak symbol, and there is a real definition, the
1962      processor independent code will have arranged for us to see the
1963      real definition first, and we can just use the same value.  */
1964   if (h->weakdef != NULL)
1965     {
1966       if (h->weakdef->root.type != bfd_link_hash_defined
1967 	  && h->weakdef->root.type != bfd_link_hash_defweak)
1968 	abort ();
1969       h->root.u.def.section = h->weakdef->root.u.def.section;
1970       h->root.u.def.value = h->weakdef->root.u.def.value;
1971       return true;
1972     }
1973 
1974   /* This is a reference to a symbol defined by a dynamic object which
1975      is not a function.  */
1976 
1977   /* If we are creating a shared library, we must presume that the
1978      only references to the symbol are via the global offset table.
1979      For such cases we need not do anything here; the relocations will
1980      be handled correctly by relocate_section.  */
1981   if (info->shared)
1982     return true;
1983 
1984   /* If there are no references to this symbol that do not use the
1985      GOT, we don't need to generate a copy reloc.  */
1986   if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1987     return true;
1988 
1989   /* We must allocate the symbol in our .dynbss section, which will
1990      become part of the .bss section of the executable.  There will be
1991      an entry for this symbol in the .dynsym section.  The dynamic
1992      object will contain position independent code, so all references
1993      from the dynamic object to this symbol will go through the global
1994      offset table.  The dynamic linker will use the .dynsym entry to
1995      determine the address it must put in the global offset table, so
1996      both the dynamic object and the regular object will refer to the
1997      same memory location for the variable.  */
1998 
1999   s = hplink->sdynbss;
2000 
2001   /* We must generate a COPY reloc to tell the dynamic linker to
2002      copy the initial value out of the dynamic object and into the
2003      runtime process image.  We need to remember the offset into the
2004      .rela.bss section we are going to use.  */
2005   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2006     {
2007       asection *srel;
2008 
2009       srel = hplink->srelbss;
2010       srel->_raw_size += sizeof (Elf32_External_Rela);
2011       h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2012     }
2013 
2014   {
2015     /* We need to figure out the alignment required for this symbol.  I
2016        have no idea how other ELF linkers handle this.  */
2017     unsigned int power_of_two;
2018 
2019     power_of_two = bfd_log2 (h->size);
2020     if (power_of_two > 3)
2021       power_of_two = 3;
2022 
2023     /* Apply the required alignment.  */
2024     s->_raw_size = BFD_ALIGN (s->_raw_size,
2025 			      (bfd_size_type) (1 << power_of_two));
2026     if (power_of_two > bfd_get_section_alignment (dynobj, s))
2027       {
2028 	if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2029 	  return false;
2030       }
2031   }
2032   /* Define the symbol as being at this point in the section.  */
2033   h->root.u.def.section = s;
2034   h->root.u.def.value = s->_raw_size;
2035 
2036   /* Increment the section size to make room for the symbol.  */
2037   s->_raw_size += h->size;
2038 
2039   return true;
2040 }
2041 
2042 /* Called via elf_link_hash_traverse to create .plt entries for an
2043    application that uses statically linked PIC functions.  Similar to
2044    the first part of elf32_hppa_adjust_dynamic_symbol.  */
2045 
2046 static boolean
2047 hppa_handle_PIC_calls (h, inf)
2048      struct elf_link_hash_entry *h;
2049      PTR inf ATTRIBUTE_UNUSED;
2050 {
2051   if (! (h->plt.refcount > 0
2052 	 && (h->root.type == bfd_link_hash_defined
2053 	     || h->root.type == bfd_link_hash_defweak)
2054 	 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2055     {
2056       h->plt.offset = (bfd_vma) -1;
2057       h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2058       return true;
2059     }
2060 
2061   h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2062   ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2063   ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2064 
2065   return true;
2066 }
2067 
2068 /* Allocate space in .plt, .got and associated reloc sections for
2069    global syms.  */
2070 
2071 static boolean
2072 allocate_plt_and_got (h, inf)
2073      struct elf_link_hash_entry *h;
2074      PTR inf;
2075 {
2076   struct bfd_link_info *info;
2077   struct elf32_hppa_link_hash_table *hplink;
2078   asection *s;
2079 
2080   if (h->root.type == bfd_link_hash_indirect
2081       || h->root.type == bfd_link_hash_warning)
2082     return true;
2083 
2084   info = (struct bfd_link_info *) inf;
2085   hplink = hppa_link_hash_table (info);
2086   if ((hplink->root.dynamic_sections_created
2087        && h->plt.refcount > 0)
2088       || ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2089     {
2090       /* Make an entry in the .plt section.  */
2091       s = hplink->splt;
2092       h->plt.offset = s->_raw_size;
2093       if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
2094 	  && ((struct elf32_hppa_link_hash_entry *) h)->plabel
2095 	  && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2096 	{
2097 	  /* Add some extra space for the dynamic linker to use.  */
2098 	  s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
2099 	}
2100       else
2101 	s->_raw_size += PLT_ENTRY_SIZE;
2102 
2103       if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call
2104 	  && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2105 	{
2106 	  /* We also need to make an entry in the .rela.plt section.  */
2107 	  hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2108 	  hplink->need_plt_stub = 1;
2109 	}
2110     }
2111   else
2112     {
2113       h->plt.offset = (bfd_vma) -1;
2114       h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2115     }
2116 
2117   if (h->got.refcount > 0)
2118     {
2119       boolean dyn;
2120 
2121       s = hplink->sgot;
2122       h->got.offset = s->_raw_size;
2123       s->_raw_size += GOT_ENTRY_SIZE;
2124       dyn = hplink->root.dynamic_sections_created;
2125       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
2126 	hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2127     }
2128   else
2129     h->got.offset = (bfd_vma) -1;
2130 
2131   return true;
2132 }
2133 
2134 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2135      || RELATIVE_DYNAMIC_RELOCS)
2136 /* This function is called via elf_link_hash_traverse to discard space
2137    we allocated for relocs that it turned out we didn't need.  */
2138 
2139 static boolean
2140 hppa_discard_copies (h, inf)
2141      struct elf_link_hash_entry *h;
2142      PTR inf;
2143 {
2144   struct elf32_hppa_dyn_reloc_entry *s;
2145   struct elf32_hppa_link_hash_entry *eh;
2146   struct bfd_link_info *info;
2147 
2148   eh = (struct elf32_hppa_link_hash_entry *) h;
2149   info = (struct bfd_link_info *) inf;
2150 
2151 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2152   /* Handle the stub reloc case.  If we have a plt entry for the
2153      function, we won't be needing long branch stubs.  s->count will
2154      only be zero for stub relocs, which provides a handy way of
2155      flagging these relocs, and means we need do nothing special for
2156      the forced local and symbolic link case.  */
2157   if (eh->stub_reloc_sec != NULL
2158       && eh->elf.plt.offset != (bfd_vma) -1)
2159     {
2160       for (s = eh->reloc_entries; s != NULL; s = s->next)
2161 	if (s->count == 0)
2162 	  s->section->_raw_size -= sizeof (Elf32_External_Rela);
2163     }
2164 #endif
2165 
2166 #if RELATIVE_DYNAMIC_RELOCS
2167   /* If a symbol has been forced local or we have found a regular
2168      definition for the symbolic link case, then we won't be needing
2169      any relocs.  */
2170   if (eh->elf.dynindx == -1
2171       || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2172 	  && !is_absolute_reloc (r_type)
2173 	  && info->symbolic))
2174     {
2175       for (s = eh->reloc_entries; s != NULL; s = s->next)
2176 	s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2177     }
2178 #endif
2179 
2180   return true;
2181 }
2182 #endif
2183 
2184 /* This function is called via elf_link_hash_traverse to force
2185    millicode symbols local so they do not end up as globals in the
2186    dynamic symbol table.  We ought to be able to do this in
2187    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2188    for all dynamic symbols.  Arguably, this is a bug in
2189    elf_adjust_dynamic_symbol.  */
2190 
2191 static boolean
2192 clobber_millicode_symbols (h, info)
2193      struct elf_link_hash_entry *h;
2194      struct bfd_link_info *info;
2195 {
2196   /* We only want to remove these from the dynamic symbol table.
2197      Therefore we do not leave ELF_LINK_FORCED_LOCAL set.  */
2198   if (h->type == STT_PARISC_MILLI)
2199     {
2200       unsigned short oldflags = h->elf_link_hash_flags;
2201       h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2202       elf32_hppa_hide_symbol (info, h);
2203       h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2204       h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2205     }
2206   return true;
2207 }
2208 
2209 /* Set the sizes of the dynamic sections.  */
2210 
2211 static boolean
2212 elf32_hppa_size_dynamic_sections (output_bfd, info)
2213      bfd *output_bfd;
2214      struct bfd_link_info *info;
2215 {
2216   struct elf32_hppa_link_hash_table *hplink;
2217   bfd *dynobj;
2218   asection *s;
2219   boolean relocs;
2220   boolean reltext;
2221 
2222   hplink = hppa_link_hash_table (info);
2223   dynobj = hplink->root.dynobj;
2224   if (dynobj == NULL)
2225     abort ();
2226 
2227   if (hplink->root.dynamic_sections_created)
2228     {
2229       bfd *i;
2230 
2231       /* Set the contents of the .interp section to the interpreter.  */
2232       if (! info->shared)
2233 	{
2234 	  s = bfd_get_section_by_name (dynobj, ".interp");
2235 	  if (s == NULL)
2236 	    abort ();
2237 	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2238 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2239 	}
2240 
2241       /* Force millicode symbols local.  */
2242       elf_link_hash_traverse (&hplink->root,
2243 			      clobber_millicode_symbols,
2244 			      info);
2245 
2246       /* Set up .got and .plt offsets for local syms.  */
2247       for (i = info->input_bfds; i; i = i->link_next)
2248 	{
2249 	  bfd_signed_vma *local_got;
2250 	  bfd_signed_vma *end_local_got;
2251 	  bfd_signed_vma *local_plt;
2252 	  bfd_signed_vma *end_local_plt;
2253 	  bfd_size_type locsymcount;
2254 	  Elf_Internal_Shdr *symtab_hdr;
2255 	  asection *srel;
2256 
2257 	  if (bfd_get_flavour (i) != bfd_target_elf_flavour)
2258 	    continue;
2259 
2260 	  local_got = elf_local_got_refcounts (i);
2261 	  if (!local_got)
2262 	    continue;
2263 
2264 	  symtab_hdr = &elf_tdata (i)->symtab_hdr;
2265 	  locsymcount = symtab_hdr->sh_info;
2266 	  end_local_got = local_got + locsymcount;
2267 	  s = hplink->sgot;
2268 	  srel = hplink->srelgot;
2269 	  for (; local_got < end_local_got; ++local_got)
2270 	    {
2271 	      if (*local_got > 0)
2272 		{
2273 		  *local_got = s->_raw_size;
2274 		  s->_raw_size += GOT_ENTRY_SIZE;
2275 		  if (info->shared)
2276 		    srel->_raw_size += sizeof (Elf32_External_Rela);
2277 		}
2278 	      else
2279 		*local_got = (bfd_vma) -1;
2280 	    }
2281 
2282 	  local_plt = end_local_got;
2283 	  end_local_plt = local_plt + locsymcount;
2284 	  s = hplink->splt;
2285 	  srel = hplink->srelplt;
2286 	  for (; local_plt < end_local_plt; ++local_plt)
2287 	    {
2288 	      if (*local_plt > 0)
2289 		{
2290 		  *local_plt = s->_raw_size;
2291 		  s->_raw_size += PLT_ENTRY_SIZE;
2292 		  if (info->shared)
2293 		    srel->_raw_size += sizeof (Elf32_External_Rela);
2294 		}
2295 	      else
2296 		*local_plt = (bfd_vma) -1;
2297 	    }
2298 	}
2299     }
2300   else
2301     {
2302       /* Run through the function symbols, looking for any that are
2303 	 PIC, and allocate space for the necessary .plt entries so
2304 	 that %r19 will be set up.  */
2305       if (! info->shared)
2306 	elf_link_hash_traverse (&hplink->root,
2307 				hppa_handle_PIC_calls,
2308 				info);
2309     }
2310 
2311   /* Allocate global sym .plt and .got entries.  */
2312   elf_link_hash_traverse (&hplink->root,
2313 			  allocate_plt_and_got,
2314 			  info);
2315 
2316 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2317      || RELATIVE_DYNAMIC_RELOCS)
2318   /* If this is a -Bsymbolic shared link, then we need to discard all
2319      relocs against symbols defined in a regular object.  We also need
2320      to lose relocs we've allocated for long branch stubs if we know
2321      we won't be generating a stub.  */
2322   if (info->shared)
2323     elf_link_hash_traverse (&hplink->root,
2324 			    hppa_discard_copies,
2325 			    info);
2326 #endif
2327 
2328   /* The check_relocs and adjust_dynamic_symbol entry points have
2329      determined the sizes of the various dynamic sections.  Allocate
2330      memory for them.  */
2331   relocs = false;
2332   reltext = false;
2333   for (s = dynobj->sections; s != NULL; s = s->next)
2334     {
2335       const char *name;
2336 
2337       if ((s->flags & SEC_LINKER_CREATED) == 0)
2338 	continue;
2339 
2340       /* It's OK to base decisions on the section name, because none
2341 	 of the dynobj section names depend upon the input files.  */
2342       name = bfd_get_section_name (dynobj, s);
2343 
2344       if (strncmp (name, ".rela", 5) == 0)
2345 	{
2346 	  if (s->_raw_size != 0)
2347 	    {
2348 	      asection *target;
2349 	      const char *outname;
2350 
2351 	      /* Remember whether there are any reloc sections other
2352 		 than .rela.plt.  */
2353 	      if (strcmp (name+5, ".plt") != 0)
2354 		relocs = true;
2355 
2356 	      /* If this relocation section applies to a read only
2357 		 section, then we probably need a DT_TEXTREL entry.  */
2358 	      outname = bfd_get_section_name (output_bfd,
2359 					      s->output_section);
2360 	      target = bfd_get_section_by_name (output_bfd, outname + 5);
2361 	      if (target != NULL
2362 		  && (target->flags & SEC_READONLY) != 0
2363 		  && (target->flags & SEC_ALLOC) != 0)
2364 		reltext = true;
2365 
2366 	      /* We use the reloc_count field as a counter if we need
2367 		 to copy relocs into the output file.  */
2368 	      s->reloc_count = 0;
2369 	    }
2370 	}
2371       else if (strcmp (name, ".plt") == 0)
2372 	{
2373 	  if (hplink->need_plt_stub)
2374 	    {
2375 	      /* Make space for the plt stub at the end of the .plt
2376 		 section.  We want this stub right at the end, up
2377 		 against the .got section.  */
2378 	      int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2379 	      int pltalign = bfd_section_alignment (dynobj, s);
2380 	      bfd_size_type mask;
2381 
2382 	      if (gotalign > pltalign)
2383 		bfd_set_section_alignment (dynobj, s, gotalign);
2384 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2385 	      s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2386 	    }
2387 	}
2388       else if (strcmp (name, ".got") == 0)
2389 	;
2390       else
2391 	{
2392 	  /* It's not one of our sections, so don't allocate space.  */
2393 	  continue;
2394 	}
2395 
2396       if (s->_raw_size == 0)
2397 	{
2398 	  /* If we don't need this section, strip it from the
2399 	     output file.  This is mostly to handle .rela.bss and
2400 	     .rela.plt.  We must create both sections in
2401 	     create_dynamic_sections, because they must be created
2402 	     before the linker maps input sections to output
2403 	     sections.  The linker does that before
2404 	     adjust_dynamic_symbol is called, and it is that
2405 	     function which decides whether anything needs to go
2406 	     into these sections.  */
2407 	  _bfd_strip_section_from_output (info, s);
2408 	  continue;
2409 	}
2410 
2411       /* Allocate memory for the section contents.  Zero it, because
2412 	 we may not fill in all the reloc sections.  */
2413       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2414       if (s->contents == NULL && s->_raw_size != 0)
2415 	return false;
2416     }
2417 
2418   if (hplink->root.dynamic_sections_created)
2419     {
2420       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2421 	 actually has nothing to do with the PLT, it is how we
2422 	 communicate the LTP value of a load module to the dynamic
2423 	 linker.  */
2424       if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2425 	return false;
2426 
2427       /* Add some entries to the .dynamic section.  We fill in the
2428 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2429 	 must add the entries now so that we get the correct size for
2430 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2431 	 dynamic linker and used by the debugger.  */
2432       if (! info->shared)
2433 	{
2434 	  if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2435 	    return false;
2436 	}
2437 
2438       if (hplink->srelplt->_raw_size != 0)
2439 	{
2440 	  if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2441 	      || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2442 	      || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2443 	    return false;
2444 	}
2445 
2446       if (relocs)
2447 	{
2448 	  if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2449 	      || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2450 	      || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2451 						sizeof (Elf32_External_Rela)))
2452 	    return false;
2453 	}
2454 
2455       if (reltext)
2456 	{
2457 	  if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2458 	    return false;
2459 	  info->flags |= DF_TEXTREL;
2460 	}
2461     }
2462 
2463   return true;
2464 }
2465 
2466 /* External entry points for sizing and building linker stubs.  */
2467 
2468 /* Determine and set the size of the stub section for a final link.
2469 
2470    The basic idea here is to examine all the relocations looking for
2471    PC-relative calls to a target that is unreachable with a "bl"
2472    instruction.  */
2473 
2474 boolean
2475 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2476 		       add_stub_section, layout_sections_again)
2477      bfd *output_bfd;
2478      bfd *stub_bfd;
2479      struct bfd_link_info *info;
2480      boolean multi_subspace;
2481      bfd_signed_vma group_size;
2482      asection * (*add_stub_section) PARAMS ((const char *, asection *));
2483      void (*layout_sections_again) PARAMS ((void));
2484 {
2485   bfd *input_bfd;
2486   asection *section;
2487   asection **input_list, **list;
2488   Elf_Internal_Sym *local_syms, **all_local_syms;
2489   unsigned int bfd_indx, bfd_count;
2490   int top_id, top_index;
2491   struct elf32_hppa_link_hash_table *hplink;
2492   bfd_size_type stub_group_size;
2493   boolean stubs_always_before_branch;
2494   boolean stub_changed = 0;
2495   boolean ret = 0;
2496 
2497   hplink = hppa_link_hash_table (info);
2498 
2499   /* Stash our params away.  */
2500   hplink->stub_bfd = stub_bfd;
2501   hplink->multi_subspace = multi_subspace;
2502   hplink->add_stub_section = add_stub_section;
2503   hplink->layout_sections_again = layout_sections_again;
2504   stubs_always_before_branch = group_size < 0;
2505   if (group_size < 0)
2506     stub_group_size = -group_size;
2507   else
2508     stub_group_size = group_size;
2509   if (stub_group_size == 1)
2510     {
2511       /* Default values.  */
2512       stub_group_size = 8000000;
2513       if (hplink->has_17bit_branch || hplink->multi_subspace)
2514 	stub_group_size = 250000;
2515       if (hplink->has_12bit_branch)
2516 	stub_group_size = 7812;
2517     }
2518 
2519   /* Count the number of input BFDs and find the top input section id.  */
2520   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2521        input_bfd != NULL;
2522        input_bfd = input_bfd->link_next)
2523     {
2524       bfd_count += 1;
2525       for (section = input_bfd->sections;
2526 	   section != NULL;
2527 	   section = section->next)
2528 	{
2529 	  if (top_id < section->id)
2530 	    top_id = section->id;
2531 	}
2532     }
2533 
2534   hplink->stub_group
2535     = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2536   if (hplink->stub_group == NULL)
2537     return false;
2538 
2539   /* Make a list of input sections for each output section included in
2540      the link.
2541 
2542      We can't use output_bfd->section_count here to find the top output
2543      section index as some sections may have been removed, and
2544      _bfd_strip_section_from_output doesn't renumber the indices.  */
2545   for (section = output_bfd->sections, top_index = 0;
2546        section != NULL;
2547        section = section->next)
2548     {
2549       if (top_index < section->index)
2550 	top_index = section->index;
2551     }
2552 
2553   input_list
2554     = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2555   if (input_list == NULL)
2556     return false;
2557 
2558   /* For sections we aren't interested in, mark their entries with a
2559      value we can check later.  */
2560   list = input_list + top_index;
2561   do
2562     *list = bfd_abs_section_ptr;
2563   while (list-- != input_list);
2564 
2565   for (section = output_bfd->sections;
2566        section != NULL;
2567        section = section->next)
2568     {
2569       if ((section->flags & SEC_CODE) != 0)
2570 	input_list[section->index] = NULL;
2571     }
2572 
2573   /* Now actually build the lists.  */
2574   for (input_bfd = info->input_bfds;
2575        input_bfd != NULL;
2576        input_bfd = input_bfd->link_next)
2577     {
2578       for (section = input_bfd->sections;
2579 	   section != NULL;
2580 	   section = section->next)
2581 	{
2582 	  if (section->output_section != NULL
2583 	      && section->output_section->owner == output_bfd
2584 	      && section->output_section->index <= top_index)
2585 	    {
2586 	      list = input_list + section->output_section->index;
2587 	      if (*list != bfd_abs_section_ptr)
2588 		{
2589 		  /* Steal the link_sec pointer for our list.  */
2590 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2591 		  /* This happens to make the list in reverse order,
2592 		     which is what we want.  */
2593 		  PREV_SEC (section) = *list;
2594 		  *list = section;
2595 		}
2596 	    }
2597 	}
2598     }
2599 
2600   /* See whether we can group stub sections together.  Grouping stub
2601      sections may result in fewer stubs.  More importantly, we need to
2602      put all .init* and .fini* stubs at the beginning of the .init or
2603      .fini output sections respectively, because glibc splits the
2604      _init and _fini functions into multiple parts.  Putting a stub in
2605      the middle of a function is not a good idea.  */
2606   list = input_list + top_index;
2607   do
2608     {
2609       asection *tail = *list;
2610       if (tail == bfd_abs_section_ptr)
2611 	continue;
2612       while (tail != NULL)
2613 	{
2614 	  asection *curr;
2615 	  asection *prev;
2616 	  bfd_size_type total;
2617 
2618 	  curr = tail;
2619 	  if (tail->_cooked_size)
2620 	    total = tail->_cooked_size;
2621 	  else
2622 	    total = tail->_raw_size;
2623 	  while ((prev = PREV_SEC (curr)) != NULL
2624 		 && ((total += curr->output_offset - prev->output_offset)
2625 		     < stub_group_size))
2626 	    curr = prev;
2627 
2628 	  /* OK, the size from the start of CURR to the end is less
2629 	     than 250000 bytes and thus can be handled by one stub
2630 	     section.  (or the tail section is itself larger than
2631 	     250000 bytes, in which case we may be toast.)
2632 	     We should really be keeping track of the total size of
2633 	     stubs added here, as stubs contribute to the final output
2634 	     section size.  That's a little tricky, and this way will
2635 	     only break if stubs added total more than 12144 bytes, or
2636 	     1518 long branch stubs.  It seems unlikely for more than
2637 	     1518 different functions to be called, especially from
2638 	     code only 250000 bytes long.  */
2639 	  do
2640 	    {
2641 	      prev = PREV_SEC (tail);
2642 	      /* Set up this stub group.  */
2643 	      hplink->stub_group[tail->id].link_sec = curr;
2644 	    }
2645 	  while (tail != curr && (tail = prev) != NULL);
2646 
2647 	  /* But wait, there's more!  Input sections up to 250000
2648 	     bytes before the stub section can be handled by it too.  */
2649 	  if (!stubs_always_before_branch)
2650 	    {
2651 	      total = 0;
2652 	      while (prev != NULL
2653 		     && ((total += tail->output_offset - prev->output_offset)
2654 			 < stub_group_size))
2655 		{
2656 		  tail = prev;
2657 		  prev = PREV_SEC (tail);
2658 		  hplink->stub_group[tail->id].link_sec = curr;
2659 		}
2660 	    }
2661 	  tail = prev;
2662 	}
2663     }
2664   while (list-- != input_list);
2665   free (input_list);
2666 #undef PREV_SEC
2667 
2668   /* We want to read in symbol extension records only once.  To do this
2669      we need to read in the local symbols in parallel and save them for
2670      later use; so hold pointers to the local symbols in an array.  */
2671   all_local_syms
2672     = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2673 					 * bfd_count);
2674   if (all_local_syms == NULL)
2675     return false;
2676 
2677   /* Walk over all the input BFDs, swapping in local symbols.
2678      If we are creating a shared library, create hash entries for the
2679      export stubs.  */
2680   for (input_bfd = info->input_bfds, bfd_indx = 0;
2681        input_bfd != NULL;
2682        input_bfd = input_bfd->link_next, bfd_indx++)
2683     {
2684       Elf_Internal_Shdr *symtab_hdr;
2685       Elf_Internal_Sym *isym;
2686       Elf32_External_Sym *ext_syms, *esym, *end_sy;
2687 
2688       /* We'll need the symbol table in a second.  */
2689       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2690       if (symtab_hdr->sh_info == 0)
2691 	continue;
2692 
2693       /* We need an array of the local symbols attached to the input bfd.
2694 	 Unfortunately, we're going to have to read & swap them in.  */
2695       local_syms = (Elf_Internal_Sym *)
2696 	bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2697       if (local_syms == NULL)
2698 	{
2699 	  goto error_ret_free_local;
2700 	}
2701       all_local_syms[bfd_indx] = local_syms;
2702       ext_syms = (Elf32_External_Sym *)
2703 	bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2704       if (ext_syms == NULL)
2705 	{
2706 	  goto error_ret_free_local;
2707 	}
2708 
2709       if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2710 	  || (bfd_read (ext_syms, 1,
2711 			(symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2712 			input_bfd)
2713 	      != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2714 	{
2715 	  free (ext_syms);
2716 	  goto error_ret_free_local;
2717 	}
2718 
2719       /* Swap the local symbols in.  */
2720       isym = local_syms;
2721       esym = ext_syms;
2722       for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2723 	bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2724 
2725       /* Now we can free the external symbols.  */
2726       free (ext_syms);
2727 
2728 #if ! LONG_BRANCH_PIC_IN_SHLIB
2729       /* If this is a shared link, find all the stub reloc sections.  */
2730       if (info->shared)
2731 	for (section = input_bfd->sections;
2732 	     section != NULL;
2733 	     section = section->next)
2734 	  {
2735 	    char *name;
2736 	    asection *reloc_sec;
2737 
2738 	    name = bfd_malloc (strlen (section->name)
2739 			       + sizeof STUB_SUFFIX
2740 			       + 5);
2741 	    if (name == NULL)
2742 	      return false;
2743 	    sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2744 	    reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2745 	    hplink->stub_group[section->id].reloc_sec = reloc_sec;
2746 	    free (name);
2747 	  }
2748 #endif
2749 
2750       if (info->shared && hplink->multi_subspace)
2751 	{
2752 	  struct elf_link_hash_entry **sym_hashes;
2753 	  struct elf_link_hash_entry **end_hashes;
2754 	  unsigned int symcount;
2755 
2756 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2757 		      - symtab_hdr->sh_info);
2758 	  sym_hashes = elf_sym_hashes (input_bfd);
2759 	  end_hashes = sym_hashes + symcount;
2760 
2761 	  /* Look through the global syms for functions;  We need to
2762 	     build export stubs for all globally visible functions.  */
2763 	  for (; sym_hashes < end_hashes; sym_hashes++)
2764 	    {
2765 	      struct elf32_hppa_link_hash_entry *hash;
2766 
2767 	      hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2768 
2769 	      while (hash->elf.root.type == bfd_link_hash_indirect
2770 		     || hash->elf.root.type == bfd_link_hash_warning)
2771 		hash = ((struct elf32_hppa_link_hash_entry *)
2772 			hash->elf.root.u.i.link);
2773 
2774 	      /* At this point in the link, undefined syms have been
2775 		 resolved, so we need to check that the symbol was
2776 		 defined in this BFD.  */
2777 	      if ((hash->elf.root.type == bfd_link_hash_defined
2778 		   || hash->elf.root.type == bfd_link_hash_defweak)
2779 		  && hash->elf.type == STT_FUNC
2780 		  && hash->elf.root.u.def.section->output_section != NULL
2781 		  && (hash->elf.root.u.def.section->output_section->owner
2782 		      == output_bfd)
2783 		  && hash->elf.root.u.def.section->owner == input_bfd
2784 		  && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2785 		  && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2786 		  && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2787 		{
2788 		  asection *sec;
2789 		  const char *stub_name;
2790 		  struct elf32_hppa_stub_hash_entry *stub_entry;
2791 
2792 		  sec = hash->elf.root.u.def.section;
2793 		  stub_name = hash->elf.root.root.string;
2794 		  stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2795 						      stub_name,
2796 						      false, false);
2797 		  if (stub_entry == NULL)
2798 		    {
2799 		      stub_entry = hppa_add_stub (stub_name, sec, hplink);
2800 		      if (!stub_entry)
2801 			goto error_ret_free_local;
2802 
2803 		      stub_entry->target_value = hash->elf.root.u.def.value;
2804 		      stub_entry->target_section = hash->elf.root.u.def.section;
2805 		      stub_entry->stub_type = hppa_stub_export;
2806 		      stub_entry->h = hash;
2807 		      stub_changed = 1;
2808 		    }
2809 		  else
2810 		    {
2811 		      (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2812 			     bfd_get_filename (input_bfd),
2813 			     stub_name);
2814 		    }
2815 		}
2816 	    }
2817 	}
2818     }
2819 
2820   while (1)
2821     {
2822       asection *stub_sec;
2823 
2824       for (input_bfd = info->input_bfds, bfd_indx = 0;
2825 	   input_bfd != NULL;
2826 	   input_bfd = input_bfd->link_next, bfd_indx++)
2827 	{
2828 	  Elf_Internal_Shdr *symtab_hdr;
2829 
2830 	  /* We'll need the symbol table in a second.  */
2831 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2832 	  if (symtab_hdr->sh_info == 0)
2833 	    continue;
2834 
2835 	  local_syms = all_local_syms[bfd_indx];
2836 
2837 	  /* Walk over each section attached to the input bfd.  */
2838 	  for (section = input_bfd->sections;
2839 	       section != NULL;
2840 	       section = section->next)
2841 	    {
2842 	      Elf_Internal_Shdr *input_rel_hdr;
2843 	      Elf32_External_Rela *external_relocs, *erelaend, *erela;
2844 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2845 
2846 	      /* If there aren't any relocs, then there's nothing more
2847 		 to do.  */
2848 	      if ((section->flags & SEC_RELOC) == 0
2849 		  || section->reloc_count == 0)
2850 		continue;
2851 
2852 	      /* If this section is a link-once section that will be
2853 		 discarded, then don't create any stubs.  */
2854 	      if (section->output_section == NULL
2855 		  || section->output_section->owner != output_bfd)
2856 		continue;
2857 
2858 	      /* Allocate space for the external relocations.  */
2859 	      external_relocs
2860 		= ((Elf32_External_Rela *)
2861 		   bfd_malloc (section->reloc_count
2862 			       * sizeof (Elf32_External_Rela)));
2863 	      if (external_relocs == NULL)
2864 		{
2865 		  goto error_ret_free_local;
2866 		}
2867 
2868 	      /* Likewise for the internal relocations.  */
2869 	      internal_relocs = ((Elf_Internal_Rela *)
2870 				 bfd_malloc (section->reloc_count
2871 					     * sizeof (Elf_Internal_Rela)));
2872 	      if (internal_relocs == NULL)
2873 		{
2874 		  free (external_relocs);
2875 		  goto error_ret_free_local;
2876 		}
2877 
2878 	      /* Read in the external relocs.  */
2879 	      input_rel_hdr = &elf_section_data (section)->rel_hdr;
2880 	      if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2881 		  || bfd_read (external_relocs, 1,
2882 			       input_rel_hdr->sh_size,
2883 			       input_bfd) != input_rel_hdr->sh_size)
2884 		{
2885 		  free (external_relocs);
2886 		error_ret_free_internal:
2887 		  free (internal_relocs);
2888 		  goto error_ret_free_local;
2889 		}
2890 
2891 	      /* Swap in the relocs.  */
2892 	      erela = external_relocs;
2893 	      erelaend = erela + section->reloc_count;
2894 	      irela = internal_relocs;
2895 	      for (; erela < erelaend; erela++, irela++)
2896 		bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2897 
2898 	      /* We're done with the external relocs, free them.  */
2899 	      free (external_relocs);
2900 
2901 	      /* Now examine each relocation.  */
2902 	      irela = internal_relocs;
2903 	      irelaend = irela + section->reloc_count;
2904 	      for (; irela < irelaend; irela++)
2905 		{
2906 		  unsigned int r_type, r_indx;
2907 		  enum elf32_hppa_stub_type stub_type;
2908 		  struct elf32_hppa_stub_hash_entry *stub_entry;
2909 		  asection *sym_sec;
2910 		  bfd_vma sym_value;
2911 		  bfd_vma destination;
2912 		  struct elf32_hppa_link_hash_entry *hash;
2913 		  char *stub_name;
2914 		  const asection *id_sec;
2915 
2916 		  r_type = ELF32_R_TYPE (irela->r_info);
2917 		  r_indx = ELF32_R_SYM (irela->r_info);
2918 
2919 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2920 		    {
2921 		      bfd_set_error (bfd_error_bad_value);
2922 		      goto error_ret_free_internal;
2923 		    }
2924 
2925 		  /* Only look for stubs on call instructions.  */
2926 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2927 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2928 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2929 		    continue;
2930 
2931 		  /* Now determine the call target, its name, value,
2932 		     section.  */
2933 		  sym_sec = NULL;
2934 		  sym_value = 0;
2935 		  destination = 0;
2936 		  hash = NULL;
2937 		  if (r_indx < symtab_hdr->sh_info)
2938 		    {
2939 		      /* It's a local symbol.  */
2940 		      Elf_Internal_Sym *sym;
2941 		      Elf_Internal_Shdr *hdr;
2942 
2943 		      sym = local_syms + r_indx;
2944 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2945 		      sym_sec = hdr->bfd_section;
2946 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2947 			sym_value = sym->st_value;
2948 		      destination = (sym_value + irela->r_addend
2949 				     + sym_sec->output_offset
2950 				     + sym_sec->output_section->vma);
2951 		    }
2952 		  else
2953 		    {
2954 		      /* It's an external symbol.  */
2955 		      int e_indx;
2956 
2957 		      e_indx = r_indx - symtab_hdr->sh_info;
2958 		      hash = ((struct elf32_hppa_link_hash_entry *)
2959 			      elf_sym_hashes (input_bfd)[e_indx]);
2960 
2961 		      while (hash->elf.root.type == bfd_link_hash_indirect
2962 			     || hash->elf.root.type == bfd_link_hash_warning)
2963 			hash = ((struct elf32_hppa_link_hash_entry *)
2964 				hash->elf.root.u.i.link);
2965 
2966 		      if (hash->elf.root.type == bfd_link_hash_defined
2967 			  || hash->elf.root.type == bfd_link_hash_defweak)
2968 			{
2969 			  sym_sec = hash->elf.root.u.def.section;
2970 			  sym_value = hash->elf.root.u.def.value;
2971 			  if (sym_sec->output_section != NULL)
2972 			    destination = (sym_value + irela->r_addend
2973 					   + sym_sec->output_offset
2974 					   + sym_sec->output_section->vma);
2975 			}
2976 		      else if (hash->elf.root.type == bfd_link_hash_undefweak)
2977 			{
2978 			  if (! info->shared)
2979 			    continue;
2980 			}
2981 		      else if (hash->elf.root.type == bfd_link_hash_undefined)
2982 			{
2983 			  if (! (info->shared
2984 				 && !info->no_undefined
2985 				 && (ELF_ST_VISIBILITY (hash->elf.other)
2986 				     == STV_DEFAULT)))
2987 			    continue;
2988 			}
2989 		      else
2990 			{
2991 			  bfd_set_error (bfd_error_bad_value);
2992 			  goto error_ret_free_internal;
2993 			}
2994 		    }
2995 
2996 		  /* Determine what (if any) linker stub is needed.  */
2997 		  stub_type = hppa_type_of_stub (section, irela, hash,
2998 						 destination);
2999 		  if (stub_type == hppa_stub_none)
3000 		    continue;
3001 
3002 		  /* Support for grouping stub sections.  */
3003 		  id_sec = hplink->stub_group[section->id].link_sec;
3004 
3005 		  /* Get the name of this stub.  */
3006 		  stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3007 		  if (!stub_name)
3008 		    goto error_ret_free_internal;
3009 
3010 		  stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
3011 						      stub_name,
3012 						      false, false);
3013 		  if (stub_entry != NULL)
3014 		    {
3015 		      /* The proper stub has already been created.  */
3016 		      free (stub_name);
3017 		      continue;
3018 		    }
3019 
3020 		  stub_entry = hppa_add_stub (stub_name, section, hplink);
3021 		  if (stub_entry == NULL)
3022 		    {
3023 		      free (stub_name);
3024 		      goto error_ret_free_local;
3025 		    }
3026 
3027 		  stub_entry->target_value = sym_value;
3028 		  stub_entry->target_section = sym_sec;
3029 		  stub_entry->stub_type = stub_type;
3030 		  if (info->shared)
3031 		    {
3032 		      if (stub_type == hppa_stub_import)
3033 			stub_entry->stub_type = hppa_stub_import_shared;
3034 		      else if (stub_type == hppa_stub_long_branch
3035 			       && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3036 			stub_entry->stub_type = hppa_stub_long_branch_shared;
3037 		    }
3038 		  stub_entry->h = hash;
3039 		  stub_changed = 1;
3040 		}
3041 
3042 	      /* We're done with the internal relocs, free them.  */
3043 	      free (internal_relocs);
3044 	    }
3045 	}
3046 
3047       if (!stub_changed)
3048 	break;
3049 
3050       /* OK, we've added some stubs.  Find out the new size of the
3051 	 stub sections.  */
3052       for (stub_sec = hplink->stub_bfd->sections;
3053 	   stub_sec != NULL;
3054 	   stub_sec = stub_sec->next)
3055 	{
3056 	  stub_sec->_raw_size = 0;
3057 	  stub_sec->_cooked_size = 0;
3058 	}
3059 #if ! LONG_BRANCH_PIC_IN_SHLIB
3060       {
3061 	int i;
3062 
3063 	for (i = top_id; i >= 0; --i)
3064 	  {
3065 	    /* This will probably hit the same section many times..  */
3066 	    stub_sec = hplink->stub_group[i].reloc_sec;
3067 	    if (stub_sec != NULL)
3068 	      {
3069 		stub_sec->_raw_size = 0;
3070 		stub_sec->_cooked_size = 0;
3071 	      }
3072 	  }
3073       }
3074 #endif
3075 
3076       bfd_hash_traverse (&hplink->stub_hash_table,
3077 			 hppa_size_one_stub,
3078 			 hplink);
3079 
3080       /* Ask the linker to do its stuff.  */
3081       (*hplink->layout_sections_again) ();
3082       stub_changed = 0;
3083     }
3084 
3085   ret = 1;
3086 
3087  error_ret_free_local:
3088   while (bfd_count-- > 0)
3089     if (all_local_syms[bfd_count])
3090       free (all_local_syms[bfd_count]);
3091   free (all_local_syms);
3092 
3093   return ret;
3094 }
3095 
3096 /* For a final link, this function is called after we have sized the
3097    stubs to provide a value for __gp.  */
3098 
3099 boolean
3100 elf32_hppa_set_gp (abfd, info)
3101      bfd *abfd;
3102      struct bfd_link_info *info;
3103 {
3104   struct elf32_hppa_link_hash_table *hplink;
3105   struct elf_link_hash_entry *h;
3106   asection *sec;
3107   bfd_vma gp_val;
3108 
3109   hplink = hppa_link_hash_table (info);
3110   h = elf_link_hash_lookup (&hplink->root, "$global$",
3111 			    false, false, false);
3112 
3113   if (h != NULL
3114       && (h->root.type == bfd_link_hash_defined
3115 	  || h->root.type == bfd_link_hash_defweak))
3116     {
3117       gp_val = h->root.u.def.value;
3118       sec = h->root.u.def.section;
3119     }
3120   else
3121     {
3122       /* Choose to point our LTP at, in this order, one of .plt, .got,
3123 	 or .data, if these sections exist.  In the case of choosing
3124 	 .plt try to make the LTP ideal for addressing anywhere in the
3125 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3126 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3127 	 if either the .plt or .got is larger than 0x2000.  If both
3128 	 the .plt and .got are smaller than 0x2000, choose the end of
3129 	 the .plt section.  */
3130 
3131       sec = hplink->splt;
3132       if (sec != NULL)
3133 	{
3134 	  gp_val = sec->_raw_size;
3135 	  if (gp_val > 0x2000
3136 	      || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3137 	    {
3138 	      gp_val = 0x2000;
3139 	    }
3140 	}
3141       else
3142 	{
3143 	  gp_val = 0;
3144 	  sec = hplink->sgot;
3145 	  if (sec != NULL)
3146 	    {
3147 	      /* We know we don't have a .plt.  If .got is large,
3148 		 offset our LTP.  */
3149 	      if (sec->_raw_size > 0x2000)
3150 		gp_val = 0x2000;
3151 	    }
3152 	  else
3153 	    {
3154 	      /* No .plt or .got.  Who cares what the LTP is?  */
3155 	      sec = bfd_get_section_by_name (abfd, ".data");
3156 	    }
3157 	}
3158 
3159       if (h != NULL)
3160 	{
3161 	  h->root.type = bfd_link_hash_defined;
3162 	  h->root.u.def.value = gp_val;
3163 	  if (sec != NULL)
3164 	    h->root.u.def.section = sec;
3165 	  else
3166 	    h->root.u.def.section = bfd_abs_section_ptr;
3167 	}
3168     }
3169 
3170   if (sec != NULL && sec->output_section != NULL)
3171     gp_val += sec->output_section->vma + sec->output_offset;
3172 
3173   elf_gp (abfd) = gp_val;
3174   return true;
3175 }
3176 
3177 /* Build all the stubs associated with the current output file.  The
3178    stubs are kept in a hash table attached to the main linker hash
3179    table.  We also set up the .plt entries for statically linked PIC
3180    functions here.  This function is called via hppaelf_finish in the
3181    linker.  */
3182 
3183 boolean
3184 elf32_hppa_build_stubs (info)
3185      struct bfd_link_info *info;
3186 {
3187   asection *stub_sec;
3188   struct bfd_hash_table *table;
3189   struct elf32_hppa_link_hash_table *hplink;
3190 
3191   hplink = hppa_link_hash_table (info);
3192 
3193   for (stub_sec = hplink->stub_bfd->sections;
3194        stub_sec != NULL;
3195        stub_sec = stub_sec->next)
3196     {
3197       size_t size;
3198 
3199       /* Allocate memory to hold the linker stubs.  */
3200       size = stub_sec->_raw_size;
3201       stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3202 							 size);
3203       if (stub_sec->contents == NULL && size != 0)
3204 	return false;
3205       stub_sec->_raw_size = 0;
3206     }
3207 
3208   /* Build the stubs as directed by the stub hash table.  */
3209   table = &hplink->stub_hash_table;
3210   bfd_hash_traverse (table, hppa_build_one_stub, info);
3211 
3212   return true;
3213 }
3214 
3215 /* Perform a final link.  */
3216 
3217 static boolean
3218 elf32_hppa_final_link (abfd, info)
3219      bfd *abfd;
3220      struct bfd_link_info *info;
3221 {
3222   asection *s;
3223 
3224   /* Invoke the regular ELF linker to do all the work.  */
3225   if (!bfd_elf32_bfd_final_link (abfd, info))
3226     return false;
3227 
3228   /* If we're producing a final executable, sort the contents of the
3229      unwind section.  Magic section names, but this is much safer than
3230      having elf32_hppa_relocate_section remember where SEGREL32 relocs
3231      occurred.  Consider what happens if someone inept creates a
3232      linker script that puts unwind information in .text.  */
3233   s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3234   if (s != NULL)
3235     {
3236       bfd_size_type size;
3237       char *contents;
3238 
3239       size = s->_raw_size;
3240       contents = bfd_malloc (size);
3241       if (contents == NULL)
3242 	return false;
3243 
3244       if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3245 	return false;
3246 
3247       qsort (contents, size / 16, 16, hppa_unwind_entry_compare);
3248 
3249       if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3250 	return false;
3251     }
3252   return true;
3253 }
3254 
3255 /* Record the lowest address for the data and text segments.  */
3256 
3257 static void
3258 hppa_record_segment_addr (abfd, section, data)
3259      bfd *abfd ATTRIBUTE_UNUSED;
3260      asection *section;
3261      PTR data;
3262 {
3263   struct elf32_hppa_link_hash_table *hplink;
3264 
3265   hplink = (struct elf32_hppa_link_hash_table *) data;
3266 
3267   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3268     {
3269       bfd_vma value = section->vma - section->filepos;
3270 
3271       if ((section->flags & SEC_READONLY) != 0)
3272 	{
3273 	  if (value < hplink->text_segment_base)
3274 	    hplink->text_segment_base = value;
3275 	}
3276       else
3277 	{
3278 	  if (value < hplink->data_segment_base)
3279 	    hplink->data_segment_base = value;
3280 	}
3281     }
3282 }
3283 
3284 /* Perform a relocation as part of a final link.  */
3285 
3286 static bfd_reloc_status_type
3287 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3288      asection *input_section;
3289      bfd_byte *contents;
3290      const Elf_Internal_Rela *rel;
3291      bfd_vma value;
3292      struct elf32_hppa_link_hash_table *hplink;
3293      asection *sym_sec;
3294      struct elf32_hppa_link_hash_entry *h;
3295 {
3296   int insn;
3297   unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3298   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3299   int r_format = howto->bitsize;
3300   enum hppa_reloc_field_selector_type_alt r_field;
3301   bfd *input_bfd = input_section->owner;
3302   bfd_vma offset = rel->r_offset;
3303   bfd_vma max_branch_offset = 0;
3304   bfd_byte *hit_data = contents + offset;
3305   bfd_signed_vma addend = rel->r_addend;
3306   bfd_vma location;
3307   struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3308   int val;
3309 
3310   if (r_type == R_PARISC_NONE)
3311     return bfd_reloc_ok;
3312 
3313   insn = bfd_get_32 (input_bfd, hit_data);
3314 
3315   /* Find out where we are and where we're going.  */
3316   location = (offset +
3317 	      input_section->output_offset +
3318 	      input_section->output_section->vma);
3319 
3320   switch (r_type)
3321     {
3322     case R_PARISC_PCREL12F:
3323     case R_PARISC_PCREL17F:
3324     case R_PARISC_PCREL22F:
3325       /* If this is a call to a function defined in another dynamic
3326 	 library, or if it is a call to a PIC function in the same
3327 	 object, or if this is a shared link and it is a call to a
3328 	 weak symbol which may or may not be in the same object, then
3329 	 find the import stub in the stub hash.  */
3330       if (sym_sec == NULL
3331 	  || sym_sec->output_section == NULL
3332 	  || (h != NULL
3333 	      && ((h->maybe_pic_call
3334 		   && !(input_section->flags & SEC_HAS_GOT_REF))
3335 		  || (h->elf.root.type == bfd_link_hash_defweak
3336 		      && h->elf.dynindx != -1
3337 		      && h->elf.plt.offset != (bfd_vma) -1))))
3338 	{
3339 	  stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3340 					    h, rel, hplink);
3341 	  if (stub_entry != NULL)
3342 	    {
3343 	      value = (stub_entry->stub_offset
3344 		       + stub_entry->stub_sec->output_offset
3345 		       + stub_entry->stub_sec->output_section->vma);
3346 	      addend = 0;
3347 	    }
3348 	  else if (sym_sec == NULL && h != NULL
3349 		   && h->elf.root.type == bfd_link_hash_undefweak)
3350 	    {
3351 	      /* It's OK if undefined weak.  Calls to undefined weak
3352 		 symbols behave as if the "called" function
3353 		 immediately returns.  We can thus call to a weak
3354 		 function without first checking whether the function
3355 		 is defined.  */
3356 	      value = location;
3357 	      addend = 8;
3358 	    }
3359 	  else
3360 	    return bfd_reloc_notsupported;
3361 	}
3362       /* Fall thru.  */
3363 
3364     case R_PARISC_PCREL21L:
3365     case R_PARISC_PCREL17C:
3366     case R_PARISC_PCREL17R:
3367     case R_PARISC_PCREL14R:
3368     case R_PARISC_PCREL14F:
3369       /* Make it a pc relative offset.  */
3370       value -= location;
3371       addend -= 8;
3372       break;
3373 
3374     case R_PARISC_DPREL21L:
3375     case R_PARISC_DPREL14R:
3376     case R_PARISC_DPREL14F:
3377     /* For all the DP relative relocations, we need to examine the symbol's
3378        section.  If it's a code section, then "data pointer relative" makes
3379        no sense.  In that case we don't adjust the "value", and for 21 bit
3380        addil instructions, we change the source addend register from %dp to
3381        %r0.  This situation commonly arises when a variable's "constness"
3382        is declared differently from the way the variable is defined.  For
3383        instance: "extern int foo" with foo defined as "const int foo".  */
3384       if (sym_sec == NULL)
3385 	break;
3386       if ((sym_sec->flags & SEC_CODE) != 0)
3387 	{
3388 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3389 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3390 	    {
3391 	      insn &= ~ (0x1f << 21);
3392 #if 1 /* debug them.  */
3393 	      (*_bfd_error_handler)
3394 		(_("%s(%s+0x%lx): fixing %s"),
3395 		 bfd_get_filename (input_bfd),
3396 		 input_section->name,
3397 		 (long) rel->r_offset,
3398 		 howto->name);
3399 #endif
3400 	    }
3401 	  /* Now try to make things easy for the dynamic linker.  */
3402 
3403 	  break;
3404 	}
3405       /* Fall thru.  */
3406 
3407     case R_PARISC_DLTIND21L:
3408     case R_PARISC_DLTIND14R:
3409     case R_PARISC_DLTIND14F:
3410       value -= elf_gp (input_section->output_section->owner);
3411       break;
3412 
3413     case R_PARISC_SEGREL32:
3414       if ((sym_sec->flags & SEC_CODE) != 0)
3415 	value -= hplink->text_segment_base;
3416       else
3417 	value -= hplink->data_segment_base;
3418       break;
3419 
3420     default:
3421       break;
3422     }
3423 
3424   switch (r_type)
3425     {
3426     case R_PARISC_DIR32:
3427     case R_PARISC_DIR14F:
3428     case R_PARISC_DIR17F:
3429     case R_PARISC_PCREL17C:
3430     case R_PARISC_PCREL14F:
3431     case R_PARISC_DPREL14F:
3432     case R_PARISC_PLABEL32:
3433     case R_PARISC_DLTIND14F:
3434     case R_PARISC_SEGBASE:
3435     case R_PARISC_SEGREL32:
3436       r_field = e_fsel;
3437       break;
3438 
3439     case R_PARISC_DIR21L:
3440     case R_PARISC_PCREL21L:
3441     case R_PARISC_DPREL21L:
3442     case R_PARISC_PLABEL21L:
3443     case R_PARISC_DLTIND21L:
3444       r_field = e_lrsel;
3445       break;
3446 
3447     case R_PARISC_DIR17R:
3448     case R_PARISC_PCREL17R:
3449     case R_PARISC_DIR14R:
3450     case R_PARISC_PCREL14R:
3451     case R_PARISC_DPREL14R:
3452     case R_PARISC_PLABEL14R:
3453     case R_PARISC_DLTIND14R:
3454       r_field = e_rrsel;
3455       break;
3456 
3457     case R_PARISC_PCREL12F:
3458     case R_PARISC_PCREL17F:
3459     case R_PARISC_PCREL22F:
3460       r_field = e_fsel;
3461 
3462       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3463 	{
3464 	  max_branch_offset = (1 << (17-1)) << 2;
3465 	}
3466       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3467 	{
3468 	  max_branch_offset = (1 << (12-1)) << 2;
3469 	}
3470       else
3471 	{
3472 	  max_branch_offset = (1 << (22-1)) << 2;
3473 	}
3474 
3475       /* sym_sec is NULL on undefined weak syms or when shared on
3476 	 undefined syms.  We've already checked for a stub for the
3477 	 shared undefined case.  */
3478       if (sym_sec == NULL)
3479 	break;
3480 
3481       /* If the branch is out of reach, then redirect the
3482 	 call to the local stub for this function.  */
3483       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3484 	{
3485 	  stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3486 					    h, rel, hplink);
3487 	  if (stub_entry == NULL)
3488 	    return bfd_reloc_notsupported;
3489 
3490 	  /* Munge up the value and addend so that we call the stub
3491 	     rather than the procedure directly.  */
3492 	  value = (stub_entry->stub_offset
3493 		   + stub_entry->stub_sec->output_offset
3494 		   + stub_entry->stub_sec->output_section->vma
3495 		   - location);
3496 	  addend = -8;
3497 	}
3498       break;
3499 
3500     /* Something we don't know how to handle.  */
3501     default:
3502       return bfd_reloc_notsupported;
3503     }
3504 
3505   /* Make sure we can reach the stub.  */
3506   if (max_branch_offset != 0
3507       && value + addend + max_branch_offset >= 2*max_branch_offset)
3508     {
3509       (*_bfd_error_handler)
3510 	(_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3511 	 bfd_get_filename (input_bfd),
3512 	 input_section->name,
3513 	 (long) rel->r_offset,
3514 	 stub_entry->root.string);
3515       return bfd_reloc_notsupported;
3516     }
3517 
3518   val = hppa_field_adjust (value, addend, r_field);
3519 
3520   switch (r_type)
3521     {
3522     case R_PARISC_PCREL12F:
3523     case R_PARISC_PCREL17C:
3524     case R_PARISC_PCREL17F:
3525     case R_PARISC_PCREL17R:
3526     case R_PARISC_PCREL22F:
3527     case R_PARISC_DIR17F:
3528     case R_PARISC_DIR17R:
3529       /* This is a branch.  Divide the offset by four.
3530 	 Note that we need to decide whether it's a branch or
3531 	 otherwise by inspecting the reloc.  Inspecting insn won't
3532 	 work as insn might be from a .word directive.  */
3533       val >>= 2;
3534       break;
3535 
3536     default:
3537       break;
3538     }
3539 
3540   insn = hppa_rebuild_insn (insn, val, r_format);
3541 
3542   /* Update the instruction word.  */
3543   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3544   return bfd_reloc_ok;
3545 }
3546 
3547 /* Relocate an HPPA ELF section.  */
3548 
3549 static boolean
3550 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3551 			     contents, relocs, local_syms, local_sections)
3552      bfd *output_bfd;
3553      struct bfd_link_info *info;
3554      bfd *input_bfd;
3555      asection *input_section;
3556      bfd_byte *contents;
3557      Elf_Internal_Rela *relocs;
3558      Elf_Internal_Sym *local_syms;
3559      asection **local_sections;
3560 {
3561   bfd *dynobj;
3562   bfd_vma *local_got_offsets;
3563   struct elf32_hppa_link_hash_table *hplink;
3564   Elf_Internal_Shdr *symtab_hdr;
3565   Elf_Internal_Rela *rel;
3566   Elf_Internal_Rela *relend;
3567   asection *sreloc;
3568 
3569   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3570 
3571   hplink = hppa_link_hash_table (info);
3572   dynobj = hplink->root.dynobj;
3573   local_got_offsets = elf_local_got_offsets (input_bfd);
3574   sreloc = NULL;
3575 
3576   rel = relocs;
3577   relend = relocs + input_section->reloc_count;
3578   for (; rel < relend; rel++)
3579     {
3580       unsigned int r_type;
3581       reloc_howto_type *howto;
3582       unsigned int r_symndx;
3583       struct elf32_hppa_link_hash_entry *h;
3584       Elf_Internal_Sym *sym;
3585       asection *sym_sec;
3586       bfd_vma relocation;
3587       bfd_reloc_status_type r;
3588       const char *sym_name;
3589       boolean plabel;
3590 
3591       r_type = ELF32_R_TYPE (rel->r_info);
3592       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3593 	{
3594 	  bfd_set_error (bfd_error_bad_value);
3595 	  return false;
3596 	}
3597       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3598 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3599 	continue;
3600 
3601       r_symndx = ELF32_R_SYM (rel->r_info);
3602 
3603       if (info->relocateable)
3604 	{
3605 	  /* This is a relocateable link.  We don't have to change
3606 	     anything, unless the reloc is against a section symbol,
3607 	     in which case we have to adjust according to where the
3608 	     section symbol winds up in the output section.  */
3609 	  if (r_symndx < symtab_hdr->sh_info)
3610 	    {
3611 	      sym = local_syms + r_symndx;
3612 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3613 		{
3614 		  sym_sec = local_sections[r_symndx];
3615 		  rel->r_addend += sym_sec->output_offset;
3616 		}
3617 	    }
3618 	  continue;
3619 	}
3620 
3621       /* This is a final link.  */
3622       h = NULL;
3623       sym = NULL;
3624       sym_sec = NULL;
3625       if (r_symndx < symtab_hdr->sh_info)
3626 	{
3627 	  /* This is a local symbol, h defaults to NULL.  */
3628 	  sym = local_syms + r_symndx;
3629 	  sym_sec = local_sections[r_symndx];
3630 	  relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3631 			   ? 0 : sym->st_value)
3632 			 + sym_sec->output_offset
3633 			 + sym_sec->output_section->vma);
3634 	}
3635       else
3636 	{
3637 	  int indx;
3638 
3639 	  /* It's a global; Find its entry in the link hash.  */
3640 	  indx = r_symndx - symtab_hdr->sh_info;
3641 	  h = ((struct elf32_hppa_link_hash_entry *)
3642 	       elf_sym_hashes (input_bfd)[indx]);
3643 	  while (h->elf.root.type == bfd_link_hash_indirect
3644 		 || h->elf.root.type == bfd_link_hash_warning)
3645 	    h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3646 
3647 	  relocation = 0;
3648 	  if (h->elf.root.type == bfd_link_hash_defined
3649 	      || h->elf.root.type == bfd_link_hash_defweak)
3650 	    {
3651 	      sym_sec = h->elf.root.u.def.section;
3652 	      /* If sym_sec->output_section is NULL, then it's a
3653 		 symbol defined in a shared library.  */
3654 	      if (sym_sec->output_section != NULL)
3655 		relocation = (h->elf.root.u.def.value
3656 			      + sym_sec->output_offset
3657 			      + sym_sec->output_section->vma);
3658 	    }
3659 	  else if (h->elf.root.type == bfd_link_hash_undefweak)
3660 	    ;
3661 	  else if (info->shared && !info->no_undefined
3662 		   && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3663 		   && h->elf.type != STT_PARISC_MILLI)
3664 	    {
3665 	      if (info->symbolic)
3666 		if (!((*info->callbacks->undefined_symbol)
3667 		      (info, h->elf.root.root.string, input_bfd,
3668 		       input_section, rel->r_offset, false)))
3669 		  return false;
3670 	    }
3671 	  else
3672 	    {
3673 	      if (!((*info->callbacks->undefined_symbol)
3674 		    (info, h->elf.root.root.string, input_bfd,
3675 		     input_section, rel->r_offset, true)))
3676 		return false;
3677 	    }
3678 	}
3679 
3680       /* Do any required modifications to the relocation value, and
3681 	 determine what types of dynamic info we need to output, if
3682 	 any.  */
3683       plabel = 0;
3684       switch (r_type)
3685 	{
3686 	case R_PARISC_DLTIND14F:
3687 	case R_PARISC_DLTIND14R:
3688 	case R_PARISC_DLTIND21L:
3689 	  /* Relocation is to the entry for this symbol in the global
3690 	     offset table.  */
3691 	  if (h != NULL)
3692 	    {
3693 	      bfd_vma off;
3694 	      boolean dyn;
3695 
3696 	      off = h->elf.got.offset;
3697 	      if (off == (bfd_vma) -1)
3698 		abort ();
3699 
3700 	      dyn = hplink->root.dynamic_sections_created;
3701 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3702 		{
3703 		  /* This is actually a static link, or it is a
3704 		     -Bsymbolic link and the symbol is defined
3705 		     locally, or the symbol was forced to be local
3706 		     because of a version file.  We must initialize
3707 		     this entry in the global offset table.  Since the
3708 		     offset must always be a multiple of 4, we use the
3709 		     least significant bit to record whether we have
3710 		     initialized it already.
3711 
3712 		     When doing a dynamic link, we create a .rela.got
3713 		     relocation entry to initialize the value.  This
3714 		     is done in the finish_dynamic_symbol routine.  */
3715 		  if ((off & 1) != 0)
3716 		    off &= ~1;
3717 		  else
3718 		    {
3719 		      bfd_put_32 (output_bfd, relocation,
3720 				  hplink->sgot->contents + off);
3721 		      h->elf.got.offset |= 1;
3722 		    }
3723 		}
3724 
3725 	      relocation = off;
3726 	    }
3727 	  else
3728 	    {
3729 	      /* Local symbol case.  */
3730 	      bfd_vma off;
3731 
3732 	      if (local_got_offsets == NULL
3733 		  || (off = local_got_offsets[r_symndx]) == (bfd_vma) -1)
3734 		abort ();
3735 
3736 	      /* The offset must always be a multiple of 4.  We use
3737 		 the least significant bit to record whether we have
3738 		 already generated the necessary reloc.  */
3739 	      if ((off & 1) != 0)
3740 		off &= ~1;
3741 	      else
3742 		{
3743 		  bfd_put_32 (output_bfd, relocation,
3744 			      hplink->sgot->contents + off);
3745 
3746 		  if (info->shared)
3747 		    {
3748 		      /* Output a dynamic relocation for this GOT
3749 			 entry.  In this case it is relative to the
3750 			 base of the object because the symbol index
3751 			 is zero.  */
3752 		      Elf_Internal_Rela outrel;
3753 		      asection *srelgot = hplink->srelgot;
3754 
3755 		      outrel.r_offset = (off
3756 					 + hplink->sgot->output_offset
3757 					 + hplink->sgot->output_section->vma);
3758 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3759 		      outrel.r_addend = relocation;
3760 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3761 						 ((Elf32_External_Rela *)
3762 						  srelgot->contents
3763 						  + srelgot->reloc_count));
3764 		      ++srelgot->reloc_count;
3765 		    }
3766 
3767 		  local_got_offsets[r_symndx] |= 1;
3768 		}
3769 
3770 	      relocation = off;
3771 	    }
3772 
3773 	  /* Add the base of the GOT to the relocation value.  */
3774 	  relocation += (hplink->sgot->output_offset
3775 			 + hplink->sgot->output_section->vma);
3776 	  break;
3777 
3778 	case R_PARISC_SEGREL32:
3779 	  /* If this is the first SEGREL relocation, then initialize
3780 	     the segment base values.  */
3781 	  if (hplink->text_segment_base == (bfd_vma) -1)
3782 	    bfd_map_over_sections (output_bfd,
3783 				   hppa_record_segment_addr,
3784 				   hplink);
3785 	  break;
3786 
3787 	case R_PARISC_PLABEL14R:
3788 	case R_PARISC_PLABEL21L:
3789 	case R_PARISC_PLABEL32:
3790 	  if (hplink->root.dynamic_sections_created)
3791 	    {
3792 	      bfd_vma off;
3793 
3794 	      /* If we have a global symbol with a PLT slot, then
3795 		 redirect this relocation to it.  */
3796 	      if (h != NULL)
3797 		{
3798 		  off = h->elf.plt.offset;
3799 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3800 		    {
3801 		      /* In a non-shared link, adjust_dynamic_symbols
3802 			 isn't called for symbols forced local.  We
3803 			 need to write out the plt entry here.  */
3804 		      if ((off & 1) != 0)
3805 			off &= ~1;
3806 		      else
3807 			{
3808 			  bfd_put_32 (output_bfd,
3809 				      relocation,
3810 				      hplink->splt->contents + off);
3811 			  bfd_put_32 (output_bfd,
3812 				      elf_gp (hplink->splt->output_section->owner),
3813 				      hplink->splt->contents + off + 4);
3814 			  h->elf.plt.offset |= 1;
3815 			}
3816 		    }
3817 		}
3818 	      else
3819 		{
3820 		  int indx;
3821 
3822 		  indx = r_symndx + symtab_hdr->sh_info;
3823 		  off = local_got_offsets[indx];
3824 
3825 		  /* As for the local .got entry case, we use the last
3826 		     bit to record whether we've already initialised
3827 		     this local .plt entry.  */
3828 		  if ((off & 1) != 0)
3829 		    off &= ~1;
3830 		  else
3831 		    {
3832 		      bfd_put_32 (output_bfd,
3833 				  relocation,
3834 				  hplink->splt->contents + off);
3835 		      bfd_put_32 (output_bfd,
3836 				  elf_gp (hplink->splt->output_section->owner),
3837 				  hplink->splt->contents + off + 4);
3838 
3839 		      if (info->shared)
3840 			{
3841 			  /* Output a dynamic IPLT relocation for this
3842 			     PLT entry.  */
3843 			  Elf_Internal_Rela outrel;
3844 			  asection *srelplt = hplink->srelplt;
3845 
3846 			  outrel.r_offset = (off
3847 					     + hplink->splt->output_offset
3848 					     + hplink->splt->output_section->vma);
3849 			  outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3850 			  outrel.r_addend = relocation;
3851 			  bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3852 						     ((Elf32_External_Rela *)
3853 						      srelplt->contents
3854 						      + srelplt->reloc_count));
3855 			  ++srelplt->reloc_count;
3856 			}
3857 
3858 		      local_got_offsets[indx] |= 1;
3859 		    }
3860 		}
3861 
3862 	      if (off >= (bfd_vma) -2 || (off & 1) != 0)
3863 		abort ();
3864 
3865 	      /* PLABELs contain function pointers.  Relocation is to
3866 		 the entry for the function in the .plt.  The magic +2
3867 		 offset signals to $$dyncall that the function pointer
3868 		 is in the .plt and thus has a gp pointer too.
3869 		 Exception:  Undefined PLABELs should have a value of
3870 		 zero.  */
3871 	      if (h == NULL
3872 		  || (h->elf.root.type != bfd_link_hash_undefweak
3873 		      && h->elf.root.type != bfd_link_hash_undefined))
3874 		{
3875 		  relocation = (off
3876 				+ hplink->splt->output_offset
3877 				+ hplink->splt->output_section->vma
3878 				+ 2);
3879 		}
3880 	      plabel = 1;
3881 	    }
3882 	  /* Fall through and possibly emit a dynamic relocation.  */
3883 
3884 	case R_PARISC_DIR17F:
3885 	case R_PARISC_DIR17R:
3886 	case R_PARISC_DIR14F:
3887 	case R_PARISC_DIR14R:
3888 	case R_PARISC_DIR21L:
3889 	case R_PARISC_DPREL14F:
3890 	case R_PARISC_DPREL14R:
3891 	case R_PARISC_DPREL21L:
3892 	case R_PARISC_DIR32:
3893 	  /* The reloc types handled here and this conditional
3894 	     expression must match the code in check_relocs and
3895 	     hppa_discard_copies.  ie. We need exactly the same
3896 	     condition as in check_relocs, with some extra conditions
3897 	     (dynindx test in this case) to cater for relocs removed
3898 	     by hppa_discard_copies.  */
3899 	  if ((input_section->flags & SEC_ALLOC) != 0
3900 	      && info->shared
3901 #if RELATIVE_DYNAMIC_RELOCS
3902 	      && (is_absolute_reloc (r_type)
3903 		  || ((!info->symbolic
3904 		       || (h != NULL
3905 			   && ((h->elf.elf_link_hash_flags
3906 				& ELF_LINK_HASH_DEF_REGULAR) == 0
3907 			       || h->elf.root.type == bfd_link_hash_defweak)))
3908 		      && (h == NULL || h->elf.dynindx != -1)))
3909 #endif
3910 	      )
3911 	    {
3912 	      Elf_Internal_Rela outrel;
3913 	      boolean skip;
3914 
3915 	      /* When generating a shared object, these relocations
3916 		 are copied into the output file to be resolved at run
3917 		 time.  */
3918 
3919 	      if (sreloc == NULL)
3920 		{
3921 		  const char *name;
3922 
3923 		  name = (bfd_elf_string_from_elf_section
3924 			  (input_bfd,
3925 			   elf_elfheader (input_bfd)->e_shstrndx,
3926 			   elf_section_data (input_section)->rel_hdr.sh_name));
3927 		  if (name == NULL)
3928 		    return false;
3929 		  sreloc = bfd_get_section_by_name (dynobj, name);
3930 		  if (sreloc == NULL)
3931 		    abort ();
3932 		}
3933 
3934 	      outrel.r_offset = rel->r_offset;
3935 	      outrel.r_addend = rel->r_addend;
3936 	      skip = false;
3937 	      if (elf_section_data (input_section)->stab_info != NULL)
3938 		{
3939 		  bfd_vma off;
3940 
3941 		  off = (_bfd_stab_section_offset
3942 			 (output_bfd, &hplink->root.stab_info,
3943 			  input_section,
3944 			  &elf_section_data (input_section)->stab_info,
3945 			  rel->r_offset));
3946 		  if (off == (bfd_vma) -1)
3947 		    skip = true;
3948 		  outrel.r_offset = off;
3949 		}
3950 
3951 	      outrel.r_offset += (input_section->output_offset
3952 				  + input_section->output_section->vma);
3953 
3954 	      if (skip)
3955 		{
3956 		  memset (&outrel, 0, sizeof (outrel));
3957 		}
3958 	      else if (h != NULL
3959 		       && h->elf.dynindx != -1
3960 		       && (plabel
3961 			   || !info->symbolic
3962 			   || (h->elf.elf_link_hash_flags
3963 			       & ELF_LINK_HASH_DEF_REGULAR) == 0))
3964 		{
3965 		  outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3966 		}
3967 	      else /* It's a local symbol, or one marked to become local.  */
3968 		{
3969 		  int indx = 0;
3970 
3971 		  /* Add the absolute offset of the symbol.  */
3972 		  outrel.r_addend += relocation;
3973 
3974 		  /* Global plabels need to be processed by the
3975 		     dynamic linker so that functions have at most one
3976 		     fptr.  For this reason, we need to differentiate
3977 		     between global and local plabels, which we do by
3978 		     providing the function symbol for a global plabel
3979 		     reloc, and no symbol for local plabels.  */
3980 		  if (! plabel
3981 		      && sym_sec != NULL
3982 		      && sym_sec->output_section != NULL
3983 		      && ! bfd_is_abs_section (sym_sec))
3984 		    {
3985 		      indx = elf_section_data (sym_sec->output_section)->dynindx;
3986 		      /* We are turning this relocation into one
3987 			 against a section symbol, so subtract out the
3988 			 output section's address but not the offset
3989 			 of the input section in the output section.  */
3990 		      outrel.r_addend -= sym_sec->output_section->vma;
3991 		    }
3992 
3993 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
3994 		}
3995 
3996 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3997 					 ((Elf32_External_Rela *)
3998 					  sreloc->contents
3999 					  + sreloc->reloc_count));
4000 	      ++sreloc->reloc_count;
4001 	    }
4002 	  break;
4003 
4004 	default:
4005 	  break;
4006 	}
4007 
4008       r = final_link_relocate (input_section, contents, rel, relocation,
4009 			       hplink, sym_sec, h);
4010 
4011       if (r == bfd_reloc_ok)
4012 	continue;
4013 
4014       if (h != NULL)
4015 	sym_name = h->elf.root.root.string;
4016       else
4017 	{
4018 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4019 						      symtab_hdr->sh_link,
4020 						      sym->st_name);
4021 	  if (sym_name == NULL)
4022 	    return false;
4023 	  if (*sym_name == '\0')
4024 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4025 	}
4026 
4027       howto = elf_hppa_howto_table + r_type;
4028 
4029       if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4030 	{
4031 	  (*_bfd_error_handler)
4032 	    (_("%s(%s+0x%lx): cannot handle %s for %s"),
4033 	     bfd_get_filename (input_bfd),
4034 	     input_section->name,
4035 	     (long) rel->r_offset,
4036 	     howto->name,
4037 	     sym_name);
4038 	}
4039       else
4040 	{
4041 	  if (!((*info->callbacks->reloc_overflow)
4042 		(info, sym_name, howto->name, (bfd_vma) 0,
4043 		 input_bfd, input_section, rel->r_offset)))
4044 	    return false;
4045 	}
4046     }
4047 
4048   return true;
4049 }
4050 
4051 /* Comparison function for qsort to sort unwind section during a
4052    final link.  */
4053 
4054 static int
4055 hppa_unwind_entry_compare (a, b)
4056      const PTR a;
4057      const PTR b;
4058 {
4059   const bfd_byte *ap, *bp;
4060   unsigned long av, bv;
4061 
4062   ap = (const bfd_byte *) a;
4063   av = (unsigned long) ap[0] << 24;
4064   av |= (unsigned long) ap[1] << 16;
4065   av |= (unsigned long) ap[2] << 8;
4066   av |= (unsigned long) ap[3];
4067 
4068   bp = (const bfd_byte *) b;
4069   bv = (unsigned long) bp[0] << 24;
4070   bv |= (unsigned long) bp[1] << 16;
4071   bv |= (unsigned long) bp[2] << 8;
4072   bv |= (unsigned long) bp[3];
4073 
4074   return av < bv ? -1 : av > bv ? 1 : 0;
4075 }
4076 
4077 /* Finish up dynamic symbol handling.  We set the contents of various
4078    dynamic sections here.  */
4079 
4080 static boolean
4081 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4082      bfd *output_bfd;
4083      struct bfd_link_info *info;
4084      struct elf_link_hash_entry *h;
4085      Elf_Internal_Sym *sym;
4086 {
4087   struct elf32_hppa_link_hash_table *hplink;
4088   bfd *dynobj;
4089 
4090   hplink = hppa_link_hash_table (info);
4091   dynobj = hplink->root.dynobj;
4092 
4093   if (h->plt.offset != (bfd_vma) -1)
4094     {
4095       bfd_vma value;
4096 
4097       if (h->plt.offset & 1)
4098 	abort ();
4099 
4100       /* This symbol has an entry in the procedure linkage table.  Set
4101 	 it up.
4102 
4103 	 The format of a plt entry is
4104 	 <funcaddr>
4105 	 <__gp>
4106       */
4107       value = 0;
4108       if (h->root.type == bfd_link_hash_defined
4109 	  || h->root.type == bfd_link_hash_defweak)
4110 	{
4111 	  value = h->root.u.def.value;
4112 	  if (h->root.u.def.section->output_section != NULL)
4113 	    value += (h->root.u.def.section->output_offset
4114 		      + h->root.u.def.section->output_section->vma);
4115 	}
4116 
4117       if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4118 	{
4119 	  Elf_Internal_Rela rel;
4120 
4121 	  /* Create a dynamic IPLT relocation for this entry.  */
4122 	  rel.r_offset = (h->plt.offset
4123 			  + hplink->splt->output_offset
4124 			  + hplink->splt->output_section->vma);
4125 	  if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4126 	      && h->dynindx != -1)
4127 	    {
4128 	      /* To support lazy linking, the function pointer is
4129 		 initialised to point to a special stub stored at the
4130 		 end of the .plt.  This is not done for plt entries
4131 		 with a base-relative dynamic relocation.  */
4132 	      value = (hplink->splt->output_offset
4133 		       + hplink->splt->output_section->vma
4134 		       + hplink->splt->_raw_size
4135 		       - sizeof (plt_stub)
4136 		       + PLT_STUB_ENTRY);
4137 	      rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4138 	      rel.r_addend = 0;
4139 	    }
4140 	  else
4141 	    {
4142 	      /* This symbol has been marked to become local, and is
4143 		 used by a plabel so must be kept in the .plt.  */
4144 	      rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4145 	      rel.r_addend = value;
4146 	    }
4147 
4148 	  bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
4149 				     &rel,
4150 				     ((Elf32_External_Rela *)
4151 				      hplink->srelplt->contents
4152 				      + hplink->srelplt->reloc_count));
4153 	  hplink->srelplt->reloc_count++;
4154 	}
4155 
4156       bfd_put_32 (hplink->splt->owner,
4157 		  value,
4158 		  hplink->splt->contents + h->plt.offset);
4159       bfd_put_32 (hplink->splt->owner,
4160 		  elf_gp (hplink->splt->output_section->owner),
4161 		  hplink->splt->contents + h->plt.offset + 4);
4162       if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4163 	  && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4164 	  && h->dynindx != -1)
4165 	{
4166 	  memset (hplink->splt->contents + h->plt.offset + 8,
4167 		  0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4168 	}
4169 
4170       if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4171 	{
4172 	  /* Mark the symbol as undefined, rather than as defined in
4173 	     the .plt section.  Leave the value alone.  */
4174 	  sym->st_shndx = SHN_UNDEF;
4175 	}
4176     }
4177 
4178   if (h->got.offset != (bfd_vma) -1)
4179     {
4180       Elf_Internal_Rela rel;
4181 
4182       /* This symbol has an entry in the global offset table.  Set it
4183 	 up.  */
4184 
4185       rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4186 		      + hplink->sgot->output_offset
4187 		      + hplink->sgot->output_section->vma);
4188 
4189       /* If this is a -Bsymbolic link and the symbol is defined
4190 	 locally or was forced to be local because of a version file,
4191 	 we just want to emit a RELATIVE reloc.  The entry in the
4192 	 global offset table will already have been initialized in the
4193 	 relocate_section function.  */
4194       if (info->shared
4195 	  && (info->symbolic || h->dynindx == -1)
4196 	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4197 	{
4198 	  rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4199 	  rel.r_addend = (h->root.u.def.value
4200 			  + h->root.u.def.section->output_offset
4201 			  + h->root.u.def.section->output_section->vma);
4202 	}
4203       else
4204 	{
4205 	  if ((h->got.offset & 1) != 0)
4206 	    abort ();
4207 	  bfd_put_32 (output_bfd, (bfd_vma) 0,
4208 		      hplink->sgot->contents + h->got.offset);
4209 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4210 	  rel.r_addend = 0;
4211 	}
4212 
4213       bfd_elf32_swap_reloca_out (output_bfd, &rel,
4214 				 ((Elf32_External_Rela *)
4215 				  hplink->srelgot->contents
4216 				  + hplink->srelgot->reloc_count));
4217       ++hplink->srelgot->reloc_count;
4218     }
4219 
4220   if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4221     {
4222       asection *s;
4223       Elf_Internal_Rela rel;
4224 
4225       /* This symbol needs a copy reloc.  Set it up.  */
4226 
4227       if (! (h->dynindx != -1
4228 	     && (h->root.type == bfd_link_hash_defined
4229 		 || h->root.type == bfd_link_hash_defweak)))
4230 	abort ();
4231 
4232       s = hplink->srelbss;
4233 
4234       rel.r_offset = (h->root.u.def.value
4235 		      + h->root.u.def.section->output_offset
4236 		      + h->root.u.def.section->output_section->vma);
4237       rel.r_addend = 0;
4238       rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4239       bfd_elf32_swap_reloca_out (output_bfd, &rel,
4240 				 ((Elf32_External_Rela *) s->contents
4241 				  + s->reloc_count));
4242       ++s->reloc_count;
4243     }
4244 
4245   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4246   if (h->root.root.string[0] == '_'
4247       && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4248 	  || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4249     {
4250       sym->st_shndx = SHN_ABS;
4251     }
4252 
4253   return true;
4254 }
4255 
4256 /* Finish up the dynamic sections.  */
4257 
4258 static boolean
4259 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4260      bfd *output_bfd;
4261      struct bfd_link_info *info;
4262 {
4263   bfd *dynobj;
4264   struct elf32_hppa_link_hash_table *hplink;
4265   asection *sdyn;
4266 
4267   hplink = hppa_link_hash_table (info);
4268   dynobj = hplink->root.dynobj;
4269 
4270   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4271 
4272   if (hplink->root.dynamic_sections_created)
4273     {
4274       Elf32_External_Dyn *dyncon, *dynconend;
4275 
4276       if (sdyn == NULL)
4277 	abort ();
4278 
4279       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4280       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4281       for (; dyncon < dynconend; dyncon++)
4282 	{
4283 	  Elf_Internal_Dyn dyn;
4284 	  asection *s;
4285 
4286 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4287 
4288 	  switch (dyn.d_tag)
4289 	    {
4290 	    default:
4291 	      break;
4292 
4293 	    case DT_PLTGOT:
4294 	      /* Use PLTGOT to set the GOT register.  */
4295 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4296 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4297 	      break;
4298 
4299 	    case DT_JMPREL:
4300 	      s = hplink->srelplt;
4301 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4302 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4303 	      break;
4304 
4305 	    case DT_PLTRELSZ:
4306 	      s = hplink->srelplt;
4307 	      if (s->_cooked_size != 0)
4308 		dyn.d_un.d_val = s->_cooked_size;
4309 	      else
4310 		dyn.d_un.d_val = s->_raw_size;
4311 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4312 	      break;
4313 	    }
4314 	}
4315     }
4316 
4317   if (hplink->sgot->_raw_size != 0)
4318     {
4319       /* Fill in the first entry in the global offset table.
4320 	 We use it to point to our dynamic section, if we have one.  */
4321       bfd_put_32 (output_bfd,
4322 		  (sdyn != NULL
4323 		   ? sdyn->output_section->vma + sdyn->output_offset
4324 		   : (bfd_vma) 0),
4325 		  hplink->sgot->contents);
4326 
4327       /* The second entry is reserved for use by the dynamic linker.  */
4328       memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4329 
4330       /* Set .got entry size.  */
4331       elf_section_data (hplink->sgot->output_section)
4332 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4333     }
4334 
4335   if (hplink->splt->_raw_size != 0)
4336     {
4337       /* Set plt entry size.  */
4338       elf_section_data (hplink->splt->output_section)
4339 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4340 
4341       if (hplink->need_plt_stub)
4342 	{
4343 	  /* Set up the .plt stub.  */
4344 	  memcpy (hplink->splt->contents
4345 		  + hplink->splt->_raw_size - sizeof (plt_stub),
4346 		  plt_stub, sizeof (plt_stub));
4347 
4348 	  if ((hplink->splt->output_offset
4349 	       + hplink->splt->output_section->vma
4350 	       + hplink->splt->_raw_size)
4351 	      != (hplink->sgot->output_offset
4352 		  + hplink->sgot->output_section->vma))
4353 	    {
4354 	      (*_bfd_error_handler)
4355 		(_(".got section not immediately after .plt section"));
4356 	      return false;
4357 	    }
4358 	}
4359     }
4360 
4361   return true;
4362 }
4363 
4364 /* Tweak the OSABI field of the elf header.  */
4365 
4366 static void
4367 elf32_hppa_post_process_headers (abfd, link_info)
4368      bfd *abfd;
4369      struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4370 {
4371   Elf_Internal_Ehdr * i_ehdrp;
4372 
4373   i_ehdrp = elf_elfheader (abfd);
4374 
4375   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4376     {
4377       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4378     }
4379   else
4380     {
4381       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4382     }
4383 }
4384 
4385 /* Called when writing out an object file to decide the type of a
4386    symbol.  */
4387 static int
4388 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4389      Elf_Internal_Sym *elf_sym;
4390      int type;
4391 {
4392   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4393     return STT_PARISC_MILLI;
4394   else
4395     return type;
4396 }
4397 
4398 /* Misc BFD support code.  */
4399 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4400 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4401 #define elf_info_to_howto		     elf_hppa_info_to_howto
4402 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4403 
4404 /* Stuff for the BFD linker.  */
4405 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4406 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4407 #define elf_backend_add_symbol_hook	     elf32_hppa_add_symbol_hook
4408 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4409 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4410 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4411 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4412 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4413 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4414 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4415 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4416 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4417 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4418 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4419 #define elf_backend_object_p		     elf32_hppa_object_p
4420 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4421 #define elf_backend_post_process_headers     elf32_hppa_post_process_headers
4422 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4423 
4424 #define elf_backend_can_gc_sections	     1
4425 #define elf_backend_plt_alignment	     2
4426 #define elf_backend_want_got_plt	     0
4427 #define elf_backend_plt_readonly	     0
4428 #define elf_backend_want_plt_sym	     0
4429 #define elf_backend_got_header_size	     8
4430 
4431 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4432 #define TARGET_BIG_NAME		"elf32-hppa"
4433 #define ELF_ARCH		bfd_arch_hppa
4434 #define ELF_MACHINE_CODE	EM_PARISC
4435 #define ELF_MAXPAGESIZE		0x1000
4436 
4437 #include "elf32-target.h"
4438 
4439 #undef TARGET_BIG_SYM
4440 #define TARGET_BIG_SYM			bfd_elf32_hppa_linux_vec
4441 #undef TARGET_BIG_NAME
4442 #define TARGET_BIG_NAME			"elf32-hppa-linux"
4443 
4444 #define INCLUDED_TARGET_FILE 1
4445 #include "elf32-target.h"
4446