1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003 4 Free Software Foundation, Inc. 5 Written by Cygnus Support. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 22 23 /* 24 SECTION 25 Sections 26 27 The raw data contained within a BFD is maintained through the 28 section abstraction. A single BFD may have any number of 29 sections. It keeps hold of them by pointing to the first; 30 each one points to the next in the list. 31 32 Sections are supported in BFD in <<section.c>>. 33 34 @menu 35 @* Section Input:: 36 @* Section Output:: 37 @* typedef asection:: 38 @* section prototypes:: 39 @end menu 40 41 INODE 42 Section Input, Section Output, Sections, Sections 43 SUBSECTION 44 Section input 45 46 When a BFD is opened for reading, the section structures are 47 created and attached to the BFD. 48 49 Each section has a name which describes the section in the 50 outside world---for example, <<a.out>> would contain at least 51 three sections, called <<.text>>, <<.data>> and <<.bss>>. 52 53 Names need not be unique; for example a COFF file may have several 54 sections named <<.data>>. 55 56 Sometimes a BFD will contain more than the ``natural'' number of 57 sections. A back end may attach other sections containing 58 constructor data, or an application may add a section (using 59 <<bfd_make_section>>) to the sections attached to an already open 60 BFD. For example, the linker creates an extra section 61 <<COMMON>> for each input file's BFD to hold information about 62 common storage. 63 64 The raw data is not necessarily read in when 65 the section descriptor is created. Some targets may leave the 66 data in place until a <<bfd_get_section_contents>> call is 67 made. Other back ends may read in all the data at once. For 68 example, an S-record file has to be read once to determine the 69 size of the data. An IEEE-695 file doesn't contain raw data in 70 sections, but data and relocation expressions intermixed, so 71 the data area has to be parsed to get out the data and 72 relocations. 73 74 INODE 75 Section Output, typedef asection, Section Input, Sections 76 77 SUBSECTION 78 Section output 79 80 To write a new object style BFD, the various sections to be 81 written have to be created. They are attached to the BFD in 82 the same way as input sections; data is written to the 83 sections using <<bfd_set_section_contents>>. 84 85 Any program that creates or combines sections (e.g., the assembler 86 and linker) must use the <<asection>> fields <<output_section>> and 87 <<output_offset>> to indicate the file sections to which each 88 section must be written. (If the section is being created from 89 scratch, <<output_section>> should probably point to the section 90 itself and <<output_offset>> should probably be zero.) 91 92 The data to be written comes from input sections attached 93 (via <<output_section>> pointers) to 94 the output sections. The output section structure can be 95 considered a filter for the input section: the output section 96 determines the vma of the output data and the name, but the 97 input section determines the offset into the output section of 98 the data to be written. 99 100 E.g., to create a section "O", starting at 0x100, 0x123 long, 101 containing two subsections, "A" at offset 0x0 (i.e., at vma 102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 103 structures would look like: 104 105 | section name "A" 106 | output_offset 0x00 107 | size 0x20 108 | output_section -----------> section name "O" 109 | | vma 0x100 110 | section name "B" | size 0x123 111 | output_offset 0x20 | 112 | size 0x103 | 113 | output_section --------| 114 115 SUBSECTION 116 Link orders 117 118 The data within a section is stored in a @dfn{link_order}. 119 These are much like the fixups in <<gas>>. The link_order 120 abstraction allows a section to grow and shrink within itself. 121 122 A link_order knows how big it is, and which is the next 123 link_order and where the raw data for it is; it also points to 124 a list of relocations which apply to it. 125 126 The link_order is used by the linker to perform relaxing on 127 final code. The compiler creates code which is as big as 128 necessary to make it work without relaxing, and the user can 129 select whether to relax. Sometimes relaxing takes a lot of 130 time. The linker runs around the relocations to see if any 131 are attached to data which can be shrunk, if so it does it on 132 a link_order by link_order basis. 133 134 */ 135 136 #include "bfd.h" 137 #include "sysdep.h" 138 #include "libbfd.h" 139 #include "bfdlink.h" 140 141 /* 142 DOCDD 143 INODE 144 typedef asection, section prototypes, Section Output, Sections 145 SUBSECTION 146 typedef asection 147 148 Here is the section structure: 149 150 CODE_FRAGMENT 151 . 152 .{* This structure is used for a comdat section, as in PE. A comdat 153 . section is associated with a particular symbol. When the linker 154 . sees a comdat section, it keeps only one of the sections with a 155 . given name and associated with a given symbol. *} 156 . 157 .struct bfd_comdat_info 158 .{ 159 . {* The name of the symbol associated with a comdat section. *} 160 . const char *name; 161 . 162 . {* The local symbol table index of the symbol associated with a 163 . comdat section. This is only meaningful to the object file format 164 . specific code; it is not an index into the list returned by 165 . bfd_canonicalize_symtab. *} 166 . long symbol; 167 .}; 168 . 169 .typedef struct bfd_section 170 .{ 171 . {* The name of the section; the name isn't a copy, the pointer is 172 . the same as that passed to bfd_make_section. *} 173 . const char *name; 174 . 175 . {* A unique sequence number. *} 176 . int id; 177 . 178 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 179 . int index; 180 . 181 . {* The next section in the list belonging to the BFD, or NULL. *} 182 . struct bfd_section *next; 183 . 184 . {* The field flags contains attributes of the section. Some 185 . flags are read in from the object file, and some are 186 . synthesized from other information. *} 187 . flagword flags; 188 . 189 .#define SEC_NO_FLAGS 0x000 190 . 191 . {* Tells the OS to allocate space for this section when loading. 192 . This is clear for a section containing debug information only. *} 193 .#define SEC_ALLOC 0x001 194 . 195 . {* Tells the OS to load the section from the file when loading. 196 . This is clear for a .bss section. *} 197 .#define SEC_LOAD 0x002 198 . 199 . {* The section contains data still to be relocated, so there is 200 . some relocation information too. *} 201 .#define SEC_RELOC 0x004 202 . 203 . {* ELF reserves 4 processor specific bits and 8 operating system 204 . specific bits in sh_flags; at present we can get away with just 205 . one in communicating between the assembler and BFD, but this 206 . isn't a good long-term solution. *} 207 .#define SEC_ARCH_BIT_0 0x008 208 . 209 . {* A signal to the OS that the section contains read only data. *} 210 .#define SEC_READONLY 0x010 211 . 212 . {* The section contains code only. *} 213 .#define SEC_CODE 0x020 214 . 215 . {* The section contains data only. *} 216 .#define SEC_DATA 0x040 217 . 218 . {* The section will reside in ROM. *} 219 .#define SEC_ROM 0x080 220 . 221 . {* The section contains constructor information. This section 222 . type is used by the linker to create lists of constructors and 223 . destructors used by <<g++>>. When a back end sees a symbol 224 . which should be used in a constructor list, it creates a new 225 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 226 . the symbol to it, and builds a relocation. To build the lists 227 . of constructors, all the linker has to do is catenate all the 228 . sections called <<__CTOR_LIST__>> and relocate the data 229 . contained within - exactly the operations it would peform on 230 . standard data. *} 231 .#define SEC_CONSTRUCTOR 0x100 232 . 233 . {* The section has contents - a data section could be 234 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 235 . <<SEC_HAS_CONTENTS>> *} 236 .#define SEC_HAS_CONTENTS 0x200 237 . 238 . {* An instruction to the linker to not output the section 239 . even if it has information which would normally be written. *} 240 .#define SEC_NEVER_LOAD 0x400 241 . 242 . {* The section is a COFF shared library section. This flag is 243 . only for the linker. If this type of section appears in 244 . the input file, the linker must copy it to the output file 245 . without changing the vma or size. FIXME: Although this 246 . was originally intended to be general, it really is COFF 247 . specific (and the flag was renamed to indicate this). It 248 . might be cleaner to have some more general mechanism to 249 . allow the back end to control what the linker does with 250 . sections. *} 251 .#define SEC_COFF_SHARED_LIBRARY 0x800 252 . 253 . {* The section contains thread local data. *} 254 .#define SEC_THREAD_LOCAL 0x1000 255 . 256 . {* The section has GOT references. This flag is only for the 257 . linker, and is currently only used by the elf32-hppa back end. 258 . It will be set if global offset table references were detected 259 . in this section, which indicate to the linker that the section 260 . contains PIC code, and must be handled specially when doing a 261 . static link. *} 262 .#define SEC_HAS_GOT_REF 0x4000 263 . 264 . {* The section contains common symbols (symbols may be defined 265 . multiple times, the value of a symbol is the amount of 266 . space it requires, and the largest symbol value is the one 267 . used). Most targets have exactly one of these (which we 268 . translate to bfd_com_section_ptr), but ECOFF has two. *} 269 .#define SEC_IS_COMMON 0x8000 270 . 271 . {* The section contains only debugging information. For 272 . example, this is set for ELF .debug and .stab sections. 273 . strip tests this flag to see if a section can be 274 . discarded. *} 275 .#define SEC_DEBUGGING 0x10000 276 . 277 . {* The contents of this section are held in memory pointed to 278 . by the contents field. This is checked by bfd_get_section_contents, 279 . and the data is retrieved from memory if appropriate. *} 280 .#define SEC_IN_MEMORY 0x20000 281 . 282 . {* The contents of this section are to be excluded by the 283 . linker for executable and shared objects unless those 284 . objects are to be further relocated. *} 285 .#define SEC_EXCLUDE 0x40000 286 . 287 . {* The contents of this section are to be sorted based on the sum of 288 . the symbol and addend values specified by the associated relocation 289 . entries. Entries without associated relocation entries will be 290 . appended to the end of the section in an unspecified order. *} 291 .#define SEC_SORT_ENTRIES 0x80000 292 . 293 . {* When linking, duplicate sections of the same name should be 294 . discarded, rather than being combined into a single section as 295 . is usually done. This is similar to how common symbols are 296 . handled. See SEC_LINK_DUPLICATES below. *} 297 .#define SEC_LINK_ONCE 0x100000 298 . 299 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 300 . should handle duplicate sections. *} 301 .#define SEC_LINK_DUPLICATES 0x600000 302 . 303 . {* This value for SEC_LINK_DUPLICATES means that duplicate 304 . sections with the same name should simply be discarded. *} 305 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 306 . 307 . {* This value for SEC_LINK_DUPLICATES means that the linker 308 . should warn if there are any duplicate sections, although 309 . it should still only link one copy. *} 310 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000 311 . 312 . {* This value for SEC_LINK_DUPLICATES means that the linker 313 . should warn if any duplicate sections are a different size. *} 314 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000 315 . 316 . {* This value for SEC_LINK_DUPLICATES means that the linker 317 . should warn if any duplicate sections contain different 318 . contents. *} 319 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000 320 . 321 . {* This section was created by the linker as part of dynamic 322 . relocation or other arcane processing. It is skipped when 323 . going through the first-pass output, trusting that someone 324 . else up the line will take care of it later. *} 325 .#define SEC_LINKER_CREATED 0x800000 326 . 327 . {* This section should not be subject to garbage collection. *} 328 .#define SEC_KEEP 0x1000000 329 . 330 . {* This section contains "short" data, and should be placed 331 . "near" the GP. *} 332 .#define SEC_SMALL_DATA 0x2000000 333 . 334 . {* This section contains data which may be shared with other 335 . executables or shared objects. *} 336 .#define SEC_SHARED 0x4000000 337 . 338 . {* When a section with this flag is being linked, then if the size of 339 . the input section is less than a page, it should not cross a page 340 . boundary. If the size of the input section is one page or more, it 341 . should be aligned on a page boundary. *} 342 .#define SEC_BLOCK 0x8000000 343 . 344 . {* Conditionally link this section; do not link if there are no 345 . references found to any symbol in the section. *} 346 .#define SEC_CLINK 0x10000000 347 . 348 . {* Attempt to merge identical entities in the section. 349 . Entity size is given in the entsize field. *} 350 .#define SEC_MERGE 0x20000000 351 . 352 . {* If given with SEC_MERGE, entities to merge are zero terminated 353 . strings where entsize specifies character size instead of fixed 354 . size entries. *} 355 .#define SEC_STRINGS 0x40000000 356 . 357 . {* This section contains data about section groups. *} 358 .#define SEC_GROUP 0x80000000 359 . 360 . {* End of section flags. *} 361 . 362 . {* Some internal packed boolean fields. *} 363 . 364 . {* See the vma field. *} 365 . unsigned int user_set_vma : 1; 366 . 367 . {* Whether relocations have been processed. *} 368 . unsigned int reloc_done : 1; 369 . 370 . {* A mark flag used by some of the linker backends. *} 371 . unsigned int linker_mark : 1; 372 . 373 . {* Another mark flag used by some of the linker backends. Set for 374 . output sections that have an input section. *} 375 . unsigned int linker_has_input : 1; 376 . 377 . {* A mark flag used by some linker backends for garbage collection. *} 378 . unsigned int gc_mark : 1; 379 . 380 . {* The following flags are used by the ELF linker. *} 381 . 382 . {* Mark sections which have been allocated to segments. *} 383 . unsigned int segment_mark : 1; 384 . 385 . {* Type of sec_info information. *} 386 . unsigned int sec_info_type:3; 387 .#define ELF_INFO_TYPE_NONE 0 388 .#define ELF_INFO_TYPE_STABS 1 389 .#define ELF_INFO_TYPE_MERGE 2 390 .#define ELF_INFO_TYPE_EH_FRAME 3 391 .#define ELF_INFO_TYPE_JUST_SYMS 4 392 . 393 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 394 . unsigned int use_rela_p:1; 395 . 396 . {* Bits used by various backends. *} 397 . unsigned int has_tls_reloc:1; 398 . 399 . {* Nonzero if this section needs the relax finalize pass. *} 400 . unsigned int need_finalize_relax:1; 401 . 402 . {* Nonzero if this section has a gp reloc. *} 403 . unsigned int has_gp_reloc:1; 404 . 405 . {* Unused bits. *} 406 . unsigned int flag13:1; 407 . unsigned int flag14:1; 408 . unsigned int flag15:1; 409 . unsigned int flag16:4; 410 . unsigned int flag20:4; 411 . unsigned int flag24:8; 412 . 413 . {* End of internal packed boolean fields. *} 414 . 415 . {* The virtual memory address of the section - where it will be 416 . at run time. The symbols are relocated against this. The 417 . user_set_vma flag is maintained by bfd; if it's not set, the 418 . backend can assign addresses (for example, in <<a.out>>, where 419 . the default address for <<.data>> is dependent on the specific 420 . target and various flags). *} 421 . bfd_vma vma; 422 . 423 . {* The load address of the section - where it would be in a 424 . rom image; really only used for writing section header 425 . information. *} 426 . bfd_vma lma; 427 . 428 . {* The size of the section in octets, as it will be output. 429 . Contains a value even if the section has no contents (e.g., the 430 . size of <<.bss>>). This will be filled in after relocation. *} 431 . bfd_size_type _cooked_size; 432 . 433 . {* The original size on disk of the section, in octets. Normally this 434 . value is the same as the size, but if some relaxing has 435 . been done, then this value will be bigger. *} 436 . bfd_size_type _raw_size; 437 . 438 . {* If this section is going to be output, then this value is the 439 . offset in *bytes* into the output section of the first byte in the 440 . input section (byte ==> smallest addressable unit on the 441 . target). In most cases, if this was going to start at the 442 . 100th octet (8-bit quantity) in the output section, this value 443 . would be 100. However, if the target byte size is 16 bits 444 . (bfd_octets_per_byte is "2"), this value would be 50. *} 445 . bfd_vma output_offset; 446 . 447 . {* The output section through which to map on output. *} 448 . struct bfd_section *output_section; 449 . 450 . {* The alignment requirement of the section, as an exponent of 2 - 451 . e.g., 3 aligns to 2^3 (or 8). *} 452 . unsigned int alignment_power; 453 . 454 . {* If an input section, a pointer to a vector of relocation 455 . records for the data in this section. *} 456 . struct reloc_cache_entry *relocation; 457 . 458 . {* If an output section, a pointer to a vector of pointers to 459 . relocation records for the data in this section. *} 460 . struct reloc_cache_entry **orelocation; 461 . 462 . {* The number of relocation records in one of the above. *} 463 . unsigned reloc_count; 464 . 465 . {* Information below is back end specific - and not always used 466 . or updated. *} 467 . 468 . {* File position of section data. *} 469 . file_ptr filepos; 470 . 471 . {* File position of relocation info. *} 472 . file_ptr rel_filepos; 473 . 474 . {* File position of line data. *} 475 . file_ptr line_filepos; 476 . 477 . {* Pointer to data for applications. *} 478 . void *userdata; 479 . 480 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 481 . contents. *} 482 . unsigned char *contents; 483 . 484 . {* Attached line number information. *} 485 . alent *lineno; 486 . 487 . {* Number of line number records. *} 488 . unsigned int lineno_count; 489 . 490 . {* Entity size for merging purposes. *} 491 . unsigned int entsize; 492 . 493 . {* Optional information about a COMDAT entry; NULL if not COMDAT. *} 494 . struct bfd_comdat_info *comdat; 495 . 496 . {* Points to the kept section if this section is a link-once section, 497 . and is discarded. *} 498 . struct bfd_section *kept_section; 499 . 500 . {* When a section is being output, this value changes as more 501 . linenumbers are written out. *} 502 . file_ptr moving_line_filepos; 503 . 504 . {* What the section number is in the target world. *} 505 . int target_index; 506 . 507 . void *used_by_bfd; 508 . 509 . {* If this is a constructor section then here is a list of the 510 . relocations created to relocate items within it. *} 511 . struct relent_chain *constructor_chain; 512 . 513 . {* The BFD which owns the section. *} 514 . bfd *owner; 515 . 516 . {* A symbol which points at this section only. *} 517 . struct bfd_symbol *symbol; 518 . struct bfd_symbol **symbol_ptr_ptr; 519 . 520 . struct bfd_link_order *link_order_head; 521 . struct bfd_link_order *link_order_tail; 522 .} asection; 523 . 524 .{* These sections are global, and are managed by BFD. The application 525 . and target back end are not permitted to change the values in 526 . these sections. New code should use the section_ptr macros rather 527 . than referring directly to the const sections. The const sections 528 . may eventually vanish. *} 529 .#define BFD_ABS_SECTION_NAME "*ABS*" 530 .#define BFD_UND_SECTION_NAME "*UND*" 531 .#define BFD_COM_SECTION_NAME "*COM*" 532 .#define BFD_IND_SECTION_NAME "*IND*" 533 . 534 .{* The absolute section. *} 535 .extern asection bfd_abs_section; 536 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section) 537 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 538 .{* Pointer to the undefined section. *} 539 .extern asection bfd_und_section; 540 .#define bfd_und_section_ptr ((asection *) &bfd_und_section) 541 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 542 .{* Pointer to the common section. *} 543 .extern asection bfd_com_section; 544 .#define bfd_com_section_ptr ((asection *) &bfd_com_section) 545 .{* Pointer to the indirect section. *} 546 .extern asection bfd_ind_section; 547 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section) 548 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 549 . 550 .#define bfd_is_const_section(SEC) \ 551 . ( ((SEC) == bfd_abs_section_ptr) \ 552 . || ((SEC) == bfd_und_section_ptr) \ 553 . || ((SEC) == bfd_com_section_ptr) \ 554 . || ((SEC) == bfd_ind_section_ptr)) 555 . 556 .extern const struct bfd_symbol * const bfd_abs_symbol; 557 .extern const struct bfd_symbol * const bfd_com_symbol; 558 .extern const struct bfd_symbol * const bfd_und_symbol; 559 .extern const struct bfd_symbol * const bfd_ind_symbol; 560 .#define bfd_get_section_size_before_reloc(section) \ 561 . ((section)->_raw_size) 562 .#define bfd_get_section_size_after_reloc(section) \ 563 . ((section)->reloc_done ? (section)->_cooked_size \ 564 . : (abort (), (bfd_size_type) 1)) 565 . 566 .{* Macros to handle insertion and deletion of a bfd's sections. These 567 . only handle the list pointers, ie. do not adjust section_count, 568 . target_index etc. *} 569 .#define bfd_section_list_remove(ABFD, PS) \ 570 . do \ 571 . { \ 572 . asection **_ps = PS; \ 573 . asection *_s = *_ps; \ 574 . *_ps = _s->next; \ 575 . if (_s->next == NULL) \ 576 . (ABFD)->section_tail = _ps; \ 577 . } \ 578 . while (0) 579 .#define bfd_section_list_insert(ABFD, PS, S) \ 580 . do \ 581 . { \ 582 . asection **_ps = PS; \ 583 . asection *_s = S; \ 584 . _s->next = *_ps; \ 585 . *_ps = _s; \ 586 . if (_s->next == NULL) \ 587 . (ABFD)->section_tail = &_s->next; \ 588 . } \ 589 . while (0) 590 . 591 */ 592 593 /* We use a macro to initialize the static asymbol structures because 594 traditional C does not permit us to initialize a union member while 595 gcc warns if we don't initialize it. */ 596 /* the_bfd, name, value, attr, section [, udata] */ 597 #ifdef __STDC__ 598 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 599 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }} 600 #else 601 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 602 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION } 603 #endif 604 605 /* These symbols are global, not specific to any BFD. Therefore, anything 606 that tries to change them is broken, and should be repaired. */ 607 608 static const asymbol global_syms[] = 609 { 610 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section), 611 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section), 612 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section), 613 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section) 614 }; 615 616 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 617 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \ 618 asection SEC = \ 619 /* name, id, index, next, flags, user_set_vma, reloc_done, */ \ 620 { NAME, IDX, 0, NULL, FLAGS, 0, 0, \ 621 \ 622 /* linker_mark, linker_has_input, gc_mark, segment_mark, */ \ 623 0, 0, 1, 0, \ 624 \ 625 /* sec_info_type, use_rela_p, has_tls_reloc, */ \ 626 0, 0, 0, \ 627 \ 628 /* need_finalize_relax, has_gp_reloc, */ \ 629 0, 0, \ 630 \ 631 /* flag13, flag14, flag15, flag16, flag20, flag24, */ \ 632 0, 0, 0, 0, 0, 0, \ 633 \ 634 /* vma, lma, _cooked_size, _raw_size, */ \ 635 0, 0, 0, 0, \ 636 \ 637 /* output_offset, output_section, alignment_power, */ \ 638 0, (struct bfd_section *) &SEC, 0, \ 639 \ 640 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \ 641 NULL, NULL, 0, 0, 0, \ 642 \ 643 /* line_filepos, userdata, contents, lineno, lineno_count, */ \ 644 0, NULL, NULL, NULL, 0, \ 645 \ 646 /* entsize, comdat, kept_section, moving_line_filepos, */ \ 647 0, NULL, NULL, 0, \ 648 \ 649 /* target_index, used_by_bfd, constructor_chain, owner, */ \ 650 0, NULL, NULL, NULL, \ 651 \ 652 /* symbol, */ \ 653 (struct bfd_symbol *) &global_syms[IDX], \ 654 \ 655 /* symbol_ptr_ptr, */ \ 656 (struct bfd_symbol **) &SYM, \ 657 \ 658 /* link_order_head, link_order_tail */ \ 659 NULL, NULL \ 660 } 661 662 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol, 663 BFD_COM_SECTION_NAME, 0); 664 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1); 665 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2); 666 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3); 667 #undef STD_SECTION 668 669 struct section_hash_entry 670 { 671 struct bfd_hash_entry root; 672 asection section; 673 }; 674 675 /* Initialize an entry in the section hash table. */ 676 677 struct bfd_hash_entry * 678 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 679 struct bfd_hash_table *table, 680 const char *string) 681 { 682 /* Allocate the structure if it has not already been allocated by a 683 subclass. */ 684 if (entry == NULL) 685 { 686 entry = (struct bfd_hash_entry *) 687 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 688 if (entry == NULL) 689 return entry; 690 } 691 692 /* Call the allocation method of the superclass. */ 693 entry = bfd_hash_newfunc (entry, table, string); 694 if (entry != NULL) 695 memset (&((struct section_hash_entry *) entry)->section, 0, 696 sizeof (asection)); 697 698 return entry; 699 } 700 701 #define section_hash_lookup(table, string, create, copy) \ 702 ((struct section_hash_entry *) \ 703 bfd_hash_lookup ((table), (string), (create), (copy))) 704 705 /* Initializes a new section. NEWSECT->NAME is already set. */ 706 707 static asection * 708 bfd_section_init (bfd *abfd, asection *newsect) 709 { 710 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 711 712 newsect->id = section_id; 713 newsect->index = abfd->section_count; 714 newsect->owner = abfd; 715 716 /* Create a symbol whose only job is to point to this section. This 717 is useful for things like relocs which are relative to the base 718 of a section. */ 719 newsect->symbol = bfd_make_empty_symbol (abfd); 720 if (newsect->symbol == NULL) 721 return NULL; 722 723 newsect->symbol->name = newsect->name; 724 newsect->symbol->value = 0; 725 newsect->symbol->section = newsect; 726 newsect->symbol->flags = BSF_SECTION_SYM; 727 728 newsect->symbol_ptr_ptr = &newsect->symbol; 729 730 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 731 return NULL; 732 733 section_id++; 734 abfd->section_count++; 735 *abfd->section_tail = newsect; 736 abfd->section_tail = &newsect->next; 737 return newsect; 738 } 739 740 /* 741 DOCDD 742 INODE 743 section prototypes, , typedef asection, Sections 744 SUBSECTION 745 Section prototypes 746 747 These are the functions exported by the section handling part of BFD. 748 */ 749 750 /* 751 FUNCTION 752 bfd_section_list_clear 753 754 SYNOPSIS 755 void bfd_section_list_clear (bfd *); 756 757 DESCRIPTION 758 Clears the section list, and also resets the section count and 759 hash table entries. 760 */ 761 762 void 763 bfd_section_list_clear (bfd *abfd) 764 { 765 abfd->sections = NULL; 766 abfd->section_tail = &abfd->sections; 767 abfd->section_count = 0; 768 memset (abfd->section_htab.table, 0, 769 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 770 } 771 772 /* 773 FUNCTION 774 bfd_get_section_by_name 775 776 SYNOPSIS 777 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 778 779 DESCRIPTION 780 Run through @var{abfd} and return the one of the 781 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>. 782 @xref{Sections}, for more information. 783 784 This should only be used in special cases; the normal way to process 785 all sections of a given name is to use <<bfd_map_over_sections>> and 786 <<strcmp>> on the name (or better yet, base it on the section flags 787 or something else) for each section. 788 */ 789 790 asection * 791 bfd_get_section_by_name (bfd *abfd, const char *name) 792 { 793 struct section_hash_entry *sh; 794 795 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 796 if (sh != NULL) 797 return &sh->section; 798 799 return NULL; 800 } 801 802 /* 803 FUNCTION 804 bfd_get_unique_section_name 805 806 SYNOPSIS 807 char *bfd_get_unique_section_name 808 (bfd *abfd, const char *templat, int *count); 809 810 DESCRIPTION 811 Invent a section name that is unique in @var{abfd} by tacking 812 a dot and a digit suffix onto the original @var{templat}. If 813 @var{count} is non-NULL, then it specifies the first number 814 tried as a suffix to generate a unique name. The value 815 pointed to by @var{count} will be incremented in this case. 816 */ 817 818 char * 819 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 820 { 821 int num; 822 unsigned int len; 823 char *sname; 824 825 len = strlen (templat); 826 sname = bfd_malloc (len + 8); 827 if (sname == NULL) 828 return NULL; 829 memcpy (sname, templat, len); 830 num = 1; 831 if (count != NULL) 832 num = *count; 833 834 do 835 { 836 /* If we have a million sections, something is badly wrong. */ 837 if (num > 999999) 838 abort (); 839 sprintf (sname + len, ".%d", num++); 840 } 841 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 842 843 if (count != NULL) 844 *count = num; 845 return sname; 846 } 847 848 /* 849 FUNCTION 850 bfd_make_section_old_way 851 852 SYNOPSIS 853 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 854 855 DESCRIPTION 856 Create a new empty section called @var{name} 857 and attach it to the end of the chain of sections for the 858 BFD @var{abfd}. An attempt to create a section with a name which 859 is already in use returns its pointer without changing the 860 section chain. 861 862 It has the funny name since this is the way it used to be 863 before it was rewritten.... 864 865 Possible errors are: 866 o <<bfd_error_invalid_operation>> - 867 If output has already started for this BFD. 868 o <<bfd_error_no_memory>> - 869 If memory allocation fails. 870 871 */ 872 873 asection * 874 bfd_make_section_old_way (bfd *abfd, const char *name) 875 { 876 struct section_hash_entry *sh; 877 asection *newsect; 878 879 if (abfd->output_has_begun) 880 { 881 bfd_set_error (bfd_error_invalid_operation); 882 return NULL; 883 } 884 885 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 886 return bfd_abs_section_ptr; 887 888 if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 889 return bfd_com_section_ptr; 890 891 if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 892 return bfd_und_section_ptr; 893 894 if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 895 return bfd_ind_section_ptr; 896 897 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 898 if (sh == NULL) 899 return NULL; 900 901 newsect = &sh->section; 902 if (newsect->name != NULL) 903 { 904 /* Section already exists. */ 905 return newsect; 906 } 907 908 newsect->name = name; 909 return bfd_section_init (abfd, newsect); 910 } 911 912 /* 913 FUNCTION 914 bfd_make_section_anyway 915 916 SYNOPSIS 917 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 918 919 DESCRIPTION 920 Create a new empty section called @var{name} and attach it to the end of 921 the chain of sections for @var{abfd}. Create a new section even if there 922 is already a section with that name. 923 924 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 925 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 926 o <<bfd_error_no_memory>> - If memory allocation fails. 927 */ 928 929 sec_ptr 930 bfd_make_section_anyway (bfd *abfd, const char *name) 931 { 932 struct section_hash_entry *sh; 933 asection *newsect; 934 935 if (abfd->output_has_begun) 936 { 937 bfd_set_error (bfd_error_invalid_operation); 938 return NULL; 939 } 940 941 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 942 if (sh == NULL) 943 return NULL; 944 945 newsect = &sh->section; 946 if (newsect->name != NULL) 947 { 948 /* We are making a section of the same name. It can't go in 949 section_htab without generating a unique section name and 950 that would be pointless; We don't need to traverse the 951 hash table. */ 952 newsect = bfd_zalloc (abfd, sizeof (asection)); 953 if (newsect == NULL) 954 return NULL; 955 } 956 957 newsect->name = name; 958 return bfd_section_init (abfd, newsect); 959 } 960 961 /* 962 FUNCTION 963 bfd_make_section 964 965 SYNOPSIS 966 asection *bfd_make_section (bfd *, const char *name); 967 968 DESCRIPTION 969 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 970 bfd_set_error ()) without changing the section chain if there is already a 971 section named @var{name}. If there is an error, return <<NULL>> and set 972 <<bfd_error>>. 973 */ 974 975 asection * 976 bfd_make_section (bfd *abfd, const char *name) 977 { 978 struct section_hash_entry *sh; 979 asection *newsect; 980 981 if (abfd->output_has_begun) 982 { 983 bfd_set_error (bfd_error_invalid_operation); 984 return NULL; 985 } 986 987 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 988 || strcmp (name, BFD_COM_SECTION_NAME) == 0 989 || strcmp (name, BFD_UND_SECTION_NAME) == 0 990 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 991 return NULL; 992 993 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 994 if (sh == NULL) 995 return NULL; 996 997 newsect = &sh->section; 998 if (newsect->name != NULL) 999 { 1000 /* Section already exists. */ 1001 return NULL; 1002 } 1003 1004 newsect->name = name; 1005 return bfd_section_init (abfd, newsect); 1006 } 1007 1008 /* 1009 FUNCTION 1010 bfd_set_section_flags 1011 1012 SYNOPSIS 1013 bfd_boolean bfd_set_section_flags 1014 (bfd *abfd, asection *sec, flagword flags); 1015 1016 DESCRIPTION 1017 Set the attributes of the section @var{sec} in the BFD 1018 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1019 <<FALSE>> on error. Possible error returns are: 1020 1021 o <<bfd_error_invalid_operation>> - 1022 The section cannot have one or more of the attributes 1023 requested. For example, a .bss section in <<a.out>> may not 1024 have the <<SEC_HAS_CONTENTS>> field set. 1025 1026 */ 1027 1028 bfd_boolean 1029 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1030 sec_ptr section, 1031 flagword flags) 1032 { 1033 #if 0 1034 /* If you try to copy a text section from an input file (where it 1035 has the SEC_CODE flag set) to an output file, this loses big if 1036 the bfd_applicable_section_flags (abfd) doesn't have the SEC_CODE 1037 set - which it doesn't, at least not for a.out. FIXME */ 1038 1039 if ((flags & bfd_applicable_section_flags (abfd)) != flags) 1040 { 1041 bfd_set_error (bfd_error_invalid_operation); 1042 return FALSE; 1043 } 1044 #endif 1045 1046 section->flags = flags; 1047 return TRUE; 1048 } 1049 1050 /* 1051 FUNCTION 1052 bfd_map_over_sections 1053 1054 SYNOPSIS 1055 void bfd_map_over_sections 1056 (bfd *abfd, 1057 void (*func) (bfd *abfd, asection *sect, void *obj), 1058 void *obj); 1059 1060 DESCRIPTION 1061 Call the provided function @var{func} for each section 1062 attached to the BFD @var{abfd}, passing @var{obj} as an 1063 argument. The function will be called as if by 1064 1065 | func (abfd, the_section, obj); 1066 1067 This is the preferred method for iterating over sections; an 1068 alternative would be to use a loop: 1069 1070 | section *p; 1071 | for (p = abfd->sections; p != NULL; p = p->next) 1072 | func (abfd, p, ...) 1073 1074 */ 1075 1076 void 1077 bfd_map_over_sections (bfd *abfd, 1078 void (*operation) (bfd *, asection *, void *), 1079 void *user_storage) 1080 { 1081 asection *sect; 1082 unsigned int i = 0; 1083 1084 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1085 (*operation) (abfd, sect, user_storage); 1086 1087 if (i != abfd->section_count) /* Debugging */ 1088 abort (); 1089 } 1090 1091 /* 1092 FUNCTION 1093 bfd_set_section_size 1094 1095 SYNOPSIS 1096 bfd_boolean bfd_set_section_size 1097 (bfd *abfd, asection *sec, bfd_size_type val); 1098 1099 DESCRIPTION 1100 Set @var{sec} to the size @var{val}. If the operation is 1101 ok, then <<TRUE>> is returned, else <<FALSE>>. 1102 1103 Possible error returns: 1104 o <<bfd_error_invalid_operation>> - 1105 Writing has started to the BFD, so setting the size is invalid. 1106 1107 */ 1108 1109 bfd_boolean 1110 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1111 { 1112 /* Once you've started writing to any section you cannot create or change 1113 the size of any others. */ 1114 1115 if (abfd->output_has_begun) 1116 { 1117 bfd_set_error (bfd_error_invalid_operation); 1118 return FALSE; 1119 } 1120 1121 ptr->_cooked_size = val; 1122 ptr->_raw_size = val; 1123 1124 return TRUE; 1125 } 1126 1127 /* 1128 FUNCTION 1129 bfd_set_section_contents 1130 1131 SYNOPSIS 1132 bfd_boolean bfd_set_section_contents 1133 (bfd *abfd, asection *section, const void *data, 1134 file_ptr offset, bfd_size_type count); 1135 1136 DESCRIPTION 1137 Sets the contents of the section @var{section} in BFD 1138 @var{abfd} to the data starting in memory at @var{data}. The 1139 data is written to the output section starting at offset 1140 @var{offset} for @var{count} octets. 1141 1142 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1143 returns are: 1144 o <<bfd_error_no_contents>> - 1145 The output section does not have the <<SEC_HAS_CONTENTS>> 1146 attribute, so nothing can be written to it. 1147 o and some more too 1148 1149 This routine is front end to the back end function 1150 <<_bfd_set_section_contents>>. 1151 1152 */ 1153 1154 #define bfd_get_section_size_now(abfd, sec) \ 1155 (sec->reloc_done \ 1156 ? bfd_get_section_size_after_reloc (sec) \ 1157 : bfd_get_section_size_before_reloc (sec)) 1158 1159 bfd_boolean 1160 bfd_set_section_contents (bfd *abfd, 1161 sec_ptr section, 1162 const void *location, 1163 file_ptr offset, 1164 bfd_size_type count) 1165 { 1166 bfd_size_type sz; 1167 1168 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1169 { 1170 bfd_set_error (bfd_error_no_contents); 1171 return FALSE; 1172 } 1173 1174 sz = bfd_get_section_size_now (abfd, section); 1175 if ((bfd_size_type) offset > sz 1176 || count > sz 1177 || offset + count > sz 1178 || count != (size_t) count) 1179 { 1180 bfd_set_error (bfd_error_bad_value); 1181 return FALSE; 1182 } 1183 1184 switch (abfd->direction) 1185 { 1186 case read_direction: 1187 case no_direction: 1188 bfd_set_error (bfd_error_invalid_operation); 1189 return FALSE; 1190 1191 case write_direction: 1192 break; 1193 1194 case both_direction: 1195 /* File is opened for update. `output_has_begun' some time ago when 1196 the file was created. Do not recompute sections sizes or alignments 1197 in _bfd_set_section_content. */ 1198 abfd->output_has_begun = TRUE; 1199 break; 1200 } 1201 1202 /* Record a copy of the data in memory if desired. */ 1203 if (section->contents 1204 && location != section->contents + offset) 1205 memcpy (section->contents + offset, location, (size_t) count); 1206 1207 if (BFD_SEND (abfd, _bfd_set_section_contents, 1208 (abfd, section, location, offset, count))) 1209 { 1210 abfd->output_has_begun = TRUE; 1211 return TRUE; 1212 } 1213 1214 return FALSE; 1215 } 1216 1217 /* 1218 FUNCTION 1219 bfd_get_section_contents 1220 1221 SYNOPSIS 1222 bfd_boolean bfd_get_section_contents 1223 (bfd *abfd, asection *section, void *location, file_ptr offset, 1224 bfd_size_type count); 1225 1226 DESCRIPTION 1227 Read data from @var{section} in BFD @var{abfd} 1228 into memory starting at @var{location}. The data is read at an 1229 offset of @var{offset} from the start of the input section, 1230 and is read for @var{count} bytes. 1231 1232 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1233 flag set are requested or if the section does not have the 1234 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1235 with zeroes. If no errors occur, <<TRUE>> is returned, else 1236 <<FALSE>>. 1237 1238 */ 1239 bfd_boolean 1240 bfd_get_section_contents (bfd *abfd, 1241 sec_ptr section, 1242 void *location, 1243 file_ptr offset, 1244 bfd_size_type count) 1245 { 1246 bfd_size_type sz; 1247 1248 if (section->flags & SEC_CONSTRUCTOR) 1249 { 1250 memset (location, 0, (size_t) count); 1251 return TRUE; 1252 } 1253 1254 /* Even if reloc_done is TRUE, this function reads unrelocated 1255 contents, so we want the raw size. */ 1256 sz = section->_raw_size; 1257 if ((bfd_size_type) offset > sz 1258 || count > sz 1259 || offset + count > sz 1260 || count != (size_t) count) 1261 { 1262 bfd_set_error (bfd_error_bad_value); 1263 return FALSE; 1264 } 1265 1266 if (count == 0) 1267 /* Don't bother. */ 1268 return TRUE; 1269 1270 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1271 { 1272 memset (location, 0, (size_t) count); 1273 return TRUE; 1274 } 1275 1276 if ((section->flags & SEC_IN_MEMORY) != 0) 1277 { 1278 memcpy (location, section->contents + offset, (size_t) count); 1279 return TRUE; 1280 } 1281 1282 return BFD_SEND (abfd, _bfd_get_section_contents, 1283 (abfd, section, location, offset, count)); 1284 } 1285 1286 /* 1287 FUNCTION 1288 bfd_copy_private_section_data 1289 1290 SYNOPSIS 1291 bfd_boolean bfd_copy_private_section_data 1292 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1293 1294 DESCRIPTION 1295 Copy private section information from @var{isec} in the BFD 1296 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1297 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1298 returns are: 1299 1300 o <<bfd_error_no_memory>> - 1301 Not enough memory exists to create private data for @var{osec}. 1302 1303 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1304 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1305 . (ibfd, isection, obfd, osection)) 1306 */ 1307 1308 /* 1309 FUNCTION 1310 _bfd_strip_section_from_output 1311 1312 SYNOPSIS 1313 void _bfd_strip_section_from_output 1314 (struct bfd_link_info *info, asection *section); 1315 1316 DESCRIPTION 1317 Remove @var{section} from the output. If the output section 1318 becomes empty, remove it from the output bfd. 1319 1320 This function won't actually do anything except twiddle flags 1321 if called too late in the linking process, when it's not safe 1322 to remove sections. 1323 */ 1324 void 1325 _bfd_strip_section_from_output (struct bfd_link_info *info, asection *s) 1326 { 1327 asection *os; 1328 asection *is; 1329 bfd *abfd; 1330 1331 s->flags |= SEC_EXCLUDE; 1332 1333 /* If the section wasn't assigned to an output section, or the 1334 section has been discarded by the linker script, there's nothing 1335 more to do. */ 1336 os = s->output_section; 1337 if (os == NULL || os->owner == NULL) 1338 return; 1339 1340 /* If the output section has other (non-excluded) input sections, we 1341 can't remove it. */ 1342 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) 1343 for (is = abfd->sections; is != NULL; is = is->next) 1344 if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0) 1345 return; 1346 1347 /* If the output section is empty, flag it for removal too. 1348 See ldlang.c:strip_excluded_output_sections for the action. */ 1349 os->flags |= SEC_EXCLUDE; 1350 } 1351 1352 /* 1353 FUNCTION 1354 bfd_generic_discard_group 1355 1356 SYNOPSIS 1357 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1358 1359 DESCRIPTION 1360 Remove all members of @var{group} from the output. 1361 */ 1362 1363 bfd_boolean 1364 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1365 asection *group ATTRIBUTE_UNUSED) 1366 { 1367 return TRUE; 1368 } 1369