1 /* atof_vax.c - turn a Flonum into a VAX floating point number
2    Copyright (C) 1987, 1992, 93, 95, 1997 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19    02111-1307, USA.  */
20 
21 #include "as.h"
22 
23 static int atof_vax_sizeof PARAMS ((int));
24 static int next_bits PARAMS ((int));
25 static void make_invalid_floating_point_number PARAMS ((LITTLENUM_TYPE *));
26 static int what_kind_of_float PARAMS ((int, int *, long *));
27 static char *atof_vax PARAMS ((char *, int, LITTLENUM_TYPE *));
28 
29 /* Precision in LittleNums. */
30 #define MAX_PRECISION (8)
31 #define H_PRECISION (8)
32 #define G_PRECISION (4)
33 #define D_PRECISION (4)
34 #define F_PRECISION (2)
35 
36 /* Length in LittleNums of guard bits. */
37 #define GUARD (2)
38 
39 int flonum_gen2vax PARAMS ((int format_letter, FLONUM_TYPE * f,
40 			    LITTLENUM_TYPE * words));
41 
42 /* Number of chars in flonum type 'letter'. */
43 static int
44 atof_vax_sizeof (letter)
45      int letter;
46 {
47   int return_value;
48 
49   /*
50    * Permitting uppercase letters is probably a bad idea.
51    * Please use only lower-cased letters in case the upper-cased
52    * ones become unsupported!
53    */
54   switch (letter)
55     {
56     case 'f':
57     case 'F':
58       return_value = 4;
59       break;
60 
61     case 'd':
62     case 'D':
63     case 'g':
64     case 'G':
65       return_value = 8;
66       break;
67 
68     case 'h':
69     case 'H':
70       return_value = 16;
71       break;
72 
73     default:
74       return_value = 0;
75       break;
76     }
77   return (return_value);
78 }				/* atof_vax_sizeof */
79 
80 static const long mask[] =
81 {
82   0x00000000,
83   0x00000001,
84   0x00000003,
85   0x00000007,
86   0x0000000f,
87   0x0000001f,
88   0x0000003f,
89   0x0000007f,
90   0x000000ff,
91   0x000001ff,
92   0x000003ff,
93   0x000007ff,
94   0x00000fff,
95   0x00001fff,
96   0x00003fff,
97   0x00007fff,
98   0x0000ffff,
99   0x0001ffff,
100   0x0003ffff,
101   0x0007ffff,
102   0x000fffff,
103   0x001fffff,
104   0x003fffff,
105   0x007fffff,
106   0x00ffffff,
107   0x01ffffff,
108   0x03ffffff,
109   0x07ffffff,
110   0x0fffffff,
111   0x1fffffff,
112   0x3fffffff,
113   0x7fffffff,
114   0xffffffff
115 };
116 
117 
118 /* Shared between flonum_gen2vax and next_bits */
119 static int bits_left_in_littlenum;
120 static LITTLENUM_TYPE *littlenum_pointer;
121 static LITTLENUM_TYPE *littlenum_end;
122 
123 static int
124 next_bits (number_of_bits)
125      int number_of_bits;
126 {
127   int return_value;
128 
129   if (littlenum_pointer < littlenum_end)
130     return 0;
131   if (number_of_bits >= bits_left_in_littlenum)
132     {
133       return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
134       number_of_bits -= bits_left_in_littlenum;
135       return_value <<= number_of_bits;
136       bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
137       littlenum_pointer--;
138       if (littlenum_pointer >= littlenum_end)
139 	return_value |= ((*littlenum_pointer) >> (bits_left_in_littlenum)) & mask[number_of_bits];
140     }
141   else
142     {
143       bits_left_in_littlenum -= number_of_bits;
144       return_value = mask[number_of_bits] & ((*littlenum_pointer) >> bits_left_in_littlenum);
145     }
146   return (return_value);
147 }
148 
149 static void
150 make_invalid_floating_point_number (words)
151      LITTLENUM_TYPE *words;
152 {
153   *words = 0x8000;		/* Floating Reserved Operand Code */
154 }
155 
156 static int			/* 0 means letter is OK. */
157 what_kind_of_float (letter, precisionP, exponent_bitsP)
158      int letter;		/* In: lowercase please. What kind of float? */
159      int *precisionP;		/* Number of 16-bit words in the float. */
160      long *exponent_bitsP;	/* Number of exponent bits. */
161 {
162   int retval;			/* 0: OK. */
163 
164   retval = 0;
165   switch (letter)
166     {
167     case 'f':
168       *precisionP = F_PRECISION;
169       *exponent_bitsP = 8;
170       break;
171 
172     case 'd':
173       *precisionP = D_PRECISION;
174       *exponent_bitsP = 8;
175       break;
176 
177     case 'g':
178       *precisionP = G_PRECISION;
179       *exponent_bitsP = 11;
180       break;
181 
182     case 'h':
183       *precisionP = H_PRECISION;
184       *exponent_bitsP = 15;
185       break;
186 
187     default:
188       retval = 69;
189       break;
190     }
191   return (retval);
192 }
193 
194 /***********************************************************************\
195  *									*
196  *	Warning: this returns 16-bit LITTLENUMs, because that is	*
197  *	what the VAX thinks in. It is up to the caller to figure	*
198  *	out any alignment problems and to conspire for the bytes/word	*
199  *	to be emitted in the right order. Bigendians beware!		*
200  *									*
201  \***********************************************************************/
202 
203 static char *				/* Return pointer past text consumed. */
204 atof_vax (str, what_kind, words)
205      char *str;			/* Text to convert to binary. */
206      int what_kind;		/* 'd', 'f', 'g', 'h' */
207      LITTLENUM_TYPE *words;	/* Build the binary here. */
208 {
209   FLONUM_TYPE f;
210   LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
211   /* Extra bits for zeroed low-order bits. */
212   /* The 1st MAX_PRECISION are zeroed, */
213   /* the last contain flonum bits. */
214   char *return_value;
215   int precision;		/* Number of 16-bit words in the format. */
216   long exponent_bits;
217 
218   return_value = str;
219   f.low = bits + MAX_PRECISION;
220   f.high = NULL;
221   f.leader = NULL;
222   f.exponent = 0;
223   f.sign = '\0';
224 
225   if (what_kind_of_float (what_kind, &precision, &exponent_bits))
226     {
227       return_value = NULL;	/* We lost. */
228       make_invalid_floating_point_number (words);
229     }
230 
231   if (return_value)
232     {
233       memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
234 
235       /* Use more LittleNums than seems */
236       /* necessary: the highest flonum may have */
237       /* 15 leading 0 bits, so could be useless. */
238       f.high = f.low + precision - 1 + GUARD;
239 
240       if (atof_generic (&return_value, ".", "eE", &f))
241 	{
242 	  make_invalid_floating_point_number (words);
243 	  return_value = NULL;	/* we lost */
244 	}
245       else
246 	{
247 	  if (flonum_gen2vax (what_kind, &f, words))
248 	    {
249 	      return_value = NULL;
250 	    }
251 	}
252     }
253   return (return_value);
254 }				/* atof_vax() */
255 
256 /*
257  * In: a flonum, a vax floating point format.
258  * Out: a vax floating-point bit pattern.
259  */
260 
261 int				/* 0: OK. */
262 flonum_gen2vax (format_letter, f, words)
263      char format_letter;	/* One of 'd' 'f' 'g' 'h'. */
264      FLONUM_TYPE *f;
265      LITTLENUM_TYPE *words;	/* Deliver answer here. */
266 {
267   LITTLENUM_TYPE *lp;
268   int precision;
269   long exponent_bits;
270   int return_value;		/* 0 == OK. */
271 
272   return_value = what_kind_of_float (format_letter, &precision, &exponent_bits);
273 
274   if (return_value != 0)
275     {
276       make_invalid_floating_point_number (words);
277     }
278   else
279     {
280       if (f->low > f->leader)
281 	{
282 	  /* 0.0e0 seen. */
283 	  memset (words, '\0', sizeof (LITTLENUM_TYPE) * precision);
284 	}
285       else
286 	{
287 	  long exponent_1;
288 	  long exponent_2;
289 	  long exponent_3;
290 	  long exponent_4;
291 	  int exponent_skippage;
292 	  LITTLENUM_TYPE word1;
293 
294 	  /* JF: Deal with new Nan, +Inf and -Inf codes */
295 	  if (f->sign != '-' && f->sign != '+')
296 	    {
297 	      make_invalid_floating_point_number (words);
298 	      return return_value;
299 	    }
300 	  /*
301 			 * All vaxen floating_point formats (so far) have:
302 			 * Bit 15 is sign bit.
303 			 * Bits 14:n are excess-whatever exponent.
304 			 * Bits n-1:0 (if any) are most significant bits of fraction.
305 			 * Bits 15:0 of the next word are the next most significant bits.
306 			 * And so on for each other word.
307 			 *
308 			 * All this to be compatible with a KF11?? (Which is still faster
309 			 * than lots of vaxen I can think of, but it also has higher
310 			 * maintenance costs ... sigh).
311 			 *
312 			 * So we need: number of bits of exponent, number of bits of
313 			 * mantissa.
314 			 */
315 
316 #ifdef NEVER			/******* This zeroing seems redundant - Dean 3may86 **********/
317 	  /*
318 			 * No matter how few bits we got back from the atof()
319 			 * routine, add enough zero littlenums so the rest of the
320 			 * code won't run out of "significant" bits in the mantissa.
321 			 */
322 	  {
323 	    LITTLENUM_TYPE *ltp;
324 	    for (ltp = f->leader + 1;
325 		 ltp <= f->low + precision;
326 		 ltp++)
327 	      {
328 		*ltp = 0;
329 	      }
330 	  }
331 #endif
332 
333 	  bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
334 	  littlenum_pointer = f->leader;
335 	  littlenum_end = f->low;
336 	  /* Seek (and forget) 1st significant bit */
337 	  for (exponent_skippage = 0;
338 	       !next_bits (1);
339 	       exponent_skippage++);;
340 
341 	  exponent_1 = f->exponent + f->leader + 1 - f->low;
342 	  /* Radix LITTLENUM_RADIX, point just higher than f->leader. */
343 	  exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
344 	  /* Radix 2. */
345 	  exponent_3 = exponent_2 - exponent_skippage;
346 	  /* Forget leading zeros, forget 1st bit. */
347 	  exponent_4 = exponent_3 + (1 << (exponent_bits - 1));
348 	  /* Offset exponent. */
349 
350 	  if (exponent_4 & ~mask[exponent_bits])
351 	    {
352 	      /*
353 				 * Exponent overflow. Lose immediately.
354 				 */
355 
356 	      make_invalid_floating_point_number (words);
357 
358 	      /*
359 				 * We leave return_value alone: admit we read the
360 				 * number, but return a floating exception
361 				 * because we can't encode the number.
362 				 */
363 	    }
364 	  else
365 	    {
366 	      lp = words;
367 
368 	      /* Word 1. Sign, exponent and perhaps high bits. */
369 	      /* Assume 2's complement integers. */
370 	      word1 = (((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits))
371 		       | ((f->sign == '+') ? 0 : 0x8000)
372 		       | next_bits (15 - exponent_bits));
373 	      *lp++ = word1;
374 
375 	      /* The rest of the words are just mantissa bits. */
376 	      for (; lp < words + precision; lp++)
377 		{
378 		  *lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
379 		}
380 
381 	      if (next_bits (1))
382 		{
383 		  /*
384 					 * Since the NEXT bit is a 1, round UP the mantissa.
385 					 * The cunning design of these hidden-1 floats permits
386 					 * us to let the mantissa overflow into the exponent, and
387 					 * it 'does the right thing'. However, we lose if the
388 					 * highest-order bit of the lowest-order word flips.
389 					 * Is that clear?
390 					 */
391 
392 		  unsigned long carry;
393 
394 		  /*
395 					  #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
396 					  Please allow at least 1 more bit in carry than is in a LITTLENUM.
397 					  We need that extra bit to hold a carry during a LITTLENUM carry
398 					  propagation. Another extra bit (kept 0) will assure us that we
399 					  don't get a sticky sign bit after shifting right, and that
400 					  permits us to propagate the carry without any masking of bits.
401 					  #endif
402 					  */
403 		  for (carry = 1, lp--;
404 		       carry && (lp >= words);
405 		       lp--)
406 		    {
407 		      carry = *lp + carry;
408 		      *lp = carry;
409 		      carry >>= LITTLENUM_NUMBER_OF_BITS;
410 		    }
411 
412 		  if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
413 		    {
414 		      make_invalid_floating_point_number (words);
415 		      /*
416 						 * We leave return_value alone: admit we read the
417 						 * number, but return a floating exception
418 						 * because we can't encode the number.
419 						 */
420 		    }
421 		}		/* if (we needed to round up) */
422 	    }			/* if (exponent overflow) */
423 	}			/* if (0.0e0) */
424     }				/* if (float_type was OK) */
425   return (return_value);
426 }				/* flonum_gen2vax() */
427 
428 
429 /* JF this used to be in vax.c but this looks like a better place for it */
430 
431 /*
432  *		md_atof()
433  *
434  * In:	input_line_pointer->the 1st character of a floating-point
435  *		number.
436  *	1 letter denoting the type of statement that wants a
437  *		binary floating point number returned.
438  *	Address of where to build floating point literal.
439  *		Assumed to be 'big enough'.
440  *	Address of where to return size of literal (in chars).
441  *
442  * Out:	Input_line_pointer->of next char after floating number.
443  *	Error message, or 0.
444  *	Floating point literal.
445  *	Number of chars we used for the literal.
446  */
447 
448 #define MAXIMUM_NUMBER_OF_LITTLENUMS (8)	/* For .hfloats. */
449 
450 char *
451 md_atof (what_statement_type, literalP, sizeP)
452      int what_statement_type;
453      char *literalP;
454      int *sizeP;
455 {
456   LITTLENUM_TYPE words[MAXIMUM_NUMBER_OF_LITTLENUMS];
457   register char kind_of_float;
458   register int number_of_chars;
459   register LITTLENUM_TYPE *littlenumP;
460 
461   switch (what_statement_type)
462     {
463     case 'F':			/* .float */
464     case 'f':			/* .ffloat */
465       kind_of_float = 'f';
466       break;
467 
468     case 'D':			/* .double */
469     case 'd':			/* .dfloat */
470       kind_of_float = 'd';
471       break;
472 
473     case 'g':			/* .gfloat */
474       kind_of_float = 'g';
475       break;
476 
477     case 'h':			/* .hfloat */
478       kind_of_float = 'h';
479       break;
480 
481     default:
482       kind_of_float = 0;
483       break;
484     };
485 
486   if (kind_of_float)
487     {
488       register LITTLENUM_TYPE *limit;
489 
490       input_line_pointer = atof_vax (input_line_pointer,
491 				     kind_of_float,
492 				     words);
493       /*
494        * The atof_vax() builds up 16-bit numbers.
495        * Since the assembler may not be running on
496        * a little-endian machine, be very careful about
497        * converting words to chars.
498        */
499       number_of_chars = atof_vax_sizeof (kind_of_float);
500       know (number_of_chars <= MAXIMUM_NUMBER_OF_LITTLENUMS * sizeof (LITTLENUM_TYPE));
501       limit = words + (number_of_chars / sizeof (LITTLENUM_TYPE));
502       for (littlenumP = words; littlenumP < limit; littlenumP++)
503 	{
504 	  md_number_to_chars (literalP, *littlenumP, sizeof (LITTLENUM_TYPE));
505 	  literalP += sizeof (LITTLENUM_TYPE);
506 	};
507     }
508   else
509     {
510       number_of_chars = 0;
511     };
512 
513   *sizeP = number_of_chars;
514   return kind_of_float ? 0 : "Bad call to md_atof()";
515 }
516 
517 /* end of atof-vax.c */
518