1 /* tc-a29k.c -- Assemble for the AMD 29000. 2 Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 2000, 2001, 2002 3 Free Software Foundation, Inc. 4 5 This file is part of GAS, the GNU Assembler. 6 7 GAS is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 GAS is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GAS; see the file COPYING. If not, write to the Free 19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 20 02111-1307, USA. */ 21 22 /* John Gilmore has reorganized this module somewhat, to make it easier 23 to convert it to new machines' assemblers as desired. There was too 24 much bloody rewriting required before. There still probably is. */ 25 26 #include "as.h" 27 #include "safe-ctype.h" 28 29 #include "opcode/a29k.h" 30 31 /* Make it easier to clone this machine desc into another one. */ 32 #define machine_opcode a29k_opcode 33 #define machine_opcodes a29k_opcodes 34 #define machine_ip a29k_ip 35 #define machine_it a29k_it 36 37 #define IMMEDIATE_BIT 0x01000000 /* Turns RB into Immediate */ 38 #define ABSOLUTE_BIT 0x01000000 /* Turns PC-relative to Absolute */ 39 #define CE_BIT 0x00800000 /* Coprocessor enable in LOAD */ 40 #define UI_BIT 0x00000080 /* Unsigned integer in CONVERT */ 41 42 /* handle of the OPCODE hash table */ 43 static struct hash_control *op_hash = NULL; 44 45 struct machine_it 46 { 47 char *error; 48 unsigned long opcode; 49 struct nlist *nlistp; 50 expressionS exp; 51 int pcrel; 52 int reloc_offset; /* Offset of reloc within insn */ 53 54 int reloc; 55 } 56 the_insn; 57 58 static void machine_ip PARAMS ((char *str)); 59 /* static void print_insn PARAMS ((struct machine_it *insn)); */ 60 #ifndef OBJ_COFF 61 static void s_data1 PARAMS ((void)); 62 static void s_use PARAMS ((int)); 63 #endif 64 static void insert_sreg PARAMS ((char *, int)); 65 static void define_some_regs PARAMS ((void)); 66 static char *parse_operand PARAMS ((char *, expressionS *, int)); 67 68 const pseudo_typeS 69 md_pseudo_table[] = 70 { 71 {"align", s_align_bytes, 4}, 72 {"block", s_space, 0}, 73 {"cputype", s_ignore, 0}, /* CPU as 29000 or 29050 */ 74 {"reg", s_lsym, 0}, /* Register equate, same as equ */ 75 {"space", s_ignore, 0}, /* Listing control */ 76 {"sect", s_ignore, 0}, /* Creation of coff sections */ 77 #ifndef OBJ_COFF 78 /* We can do this right with coff. */ 79 {"use", s_use, 0}, 80 #endif 81 {"word", cons, 4}, 82 {NULL, 0, 0}, 83 }; 84 85 #if defined(BFD_HEADERS) 86 #ifdef RELSZ 87 const int md_reloc_size = RELSZ; /* Coff headers */ 88 #else 89 const int md_reloc_size = 12; /* something else headers */ 90 #endif 91 #else 92 const int md_reloc_size = 12; /* Not bfdized*/ 93 #endif 94 95 /* This array holds the chars that always start a comment. If the 96 pre-processor is disabled, these aren't very useful */ 97 const char comment_chars[] = ";"; 98 99 /* This array holds the chars that only start a comment at the beginning of 100 a line. If the line seems to have the form '# 123 filename' 101 .line and .file directives will appear in the pre-processed output */ 102 /* Note that input_file.c hand checks for '#' at the beginning of the 103 first line of the input file. This is because the compiler outputs 104 #NO_APP at the beginning of its output. */ 105 /* Also note that comments like this one will always work */ 106 const char line_comment_chars[] = "#"; 107 108 /* We needed an unused char for line separation to work around the 109 lack of macros, using sed and such. */ 110 const char line_separator_chars[] = "@"; 111 112 /* Chars that can be used to separate mant from exp in floating point nums */ 113 const char EXP_CHARS[] = "eE"; 114 115 /* Chars that mean this number is a floating point constant */ 116 /* As in 0f12.456 */ 117 /* or 0d1.2345e12 */ 118 const char FLT_CHARS[] = "rRsSfFdDxXpP"; 119 120 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be 121 changed in read.c. Ideally it shouldn't have to know about it at 122 all, but nothing is ideal around here. */ 123 124 /* 125 * anull bit - causes the branch delay slot instructions to not be executed 126 */ 127 #define ANNUL (1 << 29) 128 129 #ifndef OBJ_COFF 130 131 static void 132 s_use (ignore) 133 int ignore; 134 { 135 if (strncmp (input_line_pointer, ".text", 5) == 0) 136 { 137 input_line_pointer += 5; 138 s_text (0); 139 return; 140 } 141 if (strncmp (input_line_pointer, ".data", 5) == 0) 142 { 143 input_line_pointer += 5; 144 s_data (0); 145 return; 146 } 147 if (strncmp (input_line_pointer, ".data1", 6) == 0) 148 { 149 input_line_pointer += 6; 150 s_data1 (); 151 return; 152 } 153 /* Literals can't go in the text segment because you can't read from 154 instruction memory on some 29k's. So, into initialized data. */ 155 if (strncmp (input_line_pointer, ".lit", 4) == 0) 156 { 157 input_line_pointer += 4; 158 subseg_set (SEG_DATA, 200); 159 demand_empty_rest_of_line (); 160 return; 161 } 162 163 as_bad (_("Unknown segment type")); 164 demand_empty_rest_of_line (); 165 } 166 167 static void 168 s_data1 () 169 { 170 subseg_set (SEG_DATA, 1); 171 demand_empty_rest_of_line (); 172 } 173 174 #endif /* OBJ_COFF */ 175 176 /* Install symbol definition that maps REGNAME to REGNO. 177 FIXME-SOON: These are not recognized in mixed case. */ 178 179 static void 180 insert_sreg (regname, regnum) 181 char *regname; 182 int regnum; 183 { 184 /* FIXME-SOON, put something in these syms so they won't be output 185 to the symbol table of the resulting object file. */ 186 187 /* Must be large enough to hold the names of the special registers. */ 188 char buf[80]; 189 int i; 190 191 symbol_table_insert (symbol_new (regname, SEG_REGISTER, (valueT) regnum, 192 &zero_address_frag)); 193 for (i = 0; regname[i]; i++) 194 buf[i] = TOUPPER (regname[i]); 195 buf[i] = '\0'; 196 197 symbol_table_insert (symbol_new (buf, SEG_REGISTER, (valueT) regnum, 198 &zero_address_frag)); 199 } 200 201 /* Install symbol definitions for assorted special registers. 202 See ASM29K Ref page 2-9. */ 203 204 static void 205 define_some_regs () 206 { 207 #define SREG 256 208 209 /* Protected special-purpose register names */ 210 insert_sreg ("vab", SREG + 0); 211 insert_sreg ("ops", SREG + 1); 212 insert_sreg ("cps", SREG + 2); 213 insert_sreg ("cfg", SREG + 3); 214 insert_sreg ("cha", SREG + 4); 215 insert_sreg ("chd", SREG + 5); 216 insert_sreg ("chc", SREG + 6); 217 insert_sreg ("rbp", SREG + 7); 218 insert_sreg ("tmc", SREG + 8); 219 insert_sreg ("tmr", SREG + 9); 220 insert_sreg ("pc0", SREG + 10); 221 insert_sreg ("pc1", SREG + 11); 222 insert_sreg ("pc2", SREG + 12); 223 insert_sreg ("mmu", SREG + 13); 224 insert_sreg ("lru", SREG + 14); 225 226 /* Additional protected special-purpose registers for the 29050 */ 227 insert_sreg ("rsn", SREG + 15); 228 insert_sreg ("rma0", SREG + 16); 229 insert_sreg ("rmc0", SREG + 17); 230 insert_sreg ("rma1", SREG + 18); 231 insert_sreg ("rmc1", SREG + 19); 232 insert_sreg ("spc0", SREG + 20); 233 insert_sreg ("spc1", SREG + 21); 234 insert_sreg ("spc2", SREG + 22); 235 insert_sreg ("iba0", SREG + 23); 236 insert_sreg ("ibc0", SREG + 24); 237 insert_sreg ("iba1", SREG + 25); 238 insert_sreg ("ibc1", SREG + 26); 239 240 /* Additional registers for the 29040. */ 241 insert_sreg ("dba", SREG + 27); 242 insert_sreg ("dbc", SREG + 28); 243 insert_sreg ("cir", SREG + 29); 244 insert_sreg ("cdr", SREG + 30); 245 246 /* Unprotected special-purpose register names */ 247 insert_sreg ("ipc", SREG + 128); 248 insert_sreg ("ipa", SREG + 129); 249 insert_sreg ("ipb", SREG + 130); 250 insert_sreg ("q", SREG + 131); 251 insert_sreg ("alu", SREG + 132); 252 insert_sreg ("bp", SREG + 133); 253 insert_sreg ("fc", SREG + 134); 254 insert_sreg ("cr", SREG + 135); 255 insert_sreg ("fpe", SREG + 160); 256 insert_sreg ("inte", SREG + 161); 257 insert_sreg ("fps", SREG + 162); 258 /* "", SREG+163); Reserved */ 259 insert_sreg ("exop", SREG + 164); 260 } 261 262 /* This function is called once, at assembler startup time. It should 263 set up all the tables, etc., that the MD part of the assembler will 264 need. */ 265 void 266 md_begin () 267 { 268 register const char *retval = NULL; 269 int lose = 0; 270 register int skipnext = 0; 271 register unsigned int i; 272 register char *strend, *strend2; 273 274 /* Hash up all the opcodes for fast use later. */ 275 276 op_hash = hash_new (); 277 278 for (i = 0; i < num_opcodes; i++) 279 { 280 const char *name = machine_opcodes[i].name; 281 282 if (skipnext) 283 { 284 skipnext = 0; 285 continue; 286 } 287 288 /* Hack to avoid multiple opcode entries. We pre-locate all the 289 variations (b/i field and P/A field) and handle them. */ 290 291 if (!strcmp (name, machine_opcodes[i + 1].name)) 292 { 293 if ((machine_opcodes[i].opcode & 0x01000000) != 0 294 || (machine_opcodes[i + 1].opcode & 0x01000000) == 0 295 || ((machine_opcodes[i].opcode | 0x01000000) 296 != machine_opcodes[i + 1].opcode)) 297 goto bad_table; 298 strend = machine_opcodes[i].args + strlen (machine_opcodes[i].args) - 1; 299 strend2 = machine_opcodes[i + 1].args + strlen (machine_opcodes[i + 1].args) - 1; 300 switch (*strend) 301 { 302 case 'b': 303 if (*strend2 != 'i') 304 goto bad_table; 305 break; 306 case 'P': 307 if (*strend2 != 'A') 308 goto bad_table; 309 break; 310 default: 311 bad_table: 312 fprintf (stderr, "internal error: can't handle opcode %s\n", 313 name); 314 lose = 1; 315 } 316 317 /* OK, this is an i/b or A/P pair. We skip the 318 higher-valued one, and let the code for operand checking 319 handle OR-ing in the bit. */ 320 skipnext = 1; 321 } 322 323 retval = hash_insert (op_hash, name, (PTR) &machine_opcodes[i]); 324 if (retval != NULL) 325 { 326 fprintf (stderr, "internal error: can't hash `%s': %s\n", 327 machine_opcodes[i].name, retval); 328 lose = 1; 329 } 330 } 331 332 if (lose) 333 as_fatal (_("Broken assembler. No assembly attempted.")); 334 335 define_some_regs (); 336 } 337 338 /* Assemble a single instruction. Its label has already been handled 339 by the generic front end. We just parse opcode and operands, and 340 produce the bytes of data and relocation. */ 341 342 void 343 md_assemble (str) 344 char *str; 345 { 346 char *toP; 347 348 know (str); 349 machine_ip (str); 350 toP = frag_more (4); 351 /* put out the opcode */ 352 md_number_to_chars (toP, the_insn.opcode, 4); 353 354 /* put out the symbol-dependent stuff */ 355 if (the_insn.reloc != NO_RELOC) 356 { 357 fix_new_exp (frag_now, 358 (toP - frag_now->fr_literal + the_insn.reloc_offset), 359 4, /* size */ 360 &the_insn.exp, 361 the_insn.pcrel, 362 the_insn.reloc); 363 } 364 } 365 366 static char * 367 parse_operand (s, operandp, opt) 368 char *s; 369 expressionS *operandp; 370 int opt; 371 { 372 char *save = input_line_pointer; 373 char *new; 374 375 input_line_pointer = s; 376 expression (operandp); 377 if (operandp->X_op == O_absent && ! opt) 378 as_bad (_("missing operand")); 379 new = input_line_pointer; 380 input_line_pointer = save; 381 return new; 382 } 383 384 /* Instruction parsing. Takes a string containing the opcode. 385 Operands are at input_line_pointer. Output is in the_insn. 386 Warnings or errors are generated. */ 387 388 static void 389 machine_ip (str) 390 char *str; 391 { 392 char *s; 393 const char *args; 394 struct machine_opcode *insn; 395 char *argsStart; 396 unsigned long opcode; 397 expressionS the_operand; 398 expressionS *operand = &the_operand; 399 unsigned int reg; 400 401 /* Must handle `div0' opcode. */ 402 s = str; 403 if (ISALPHA (*s)) 404 for (; ISALNUM (*s); ++s) 405 *s = TOLOWER (*s); 406 407 switch (*s) 408 { 409 case '\0': 410 break; 411 412 case ' ': /* FIXME-SOMEDAY more whitespace */ 413 *s++ = '\0'; 414 break; 415 416 default: 417 as_bad (_("Unknown opcode: `%s'"), str); 418 return; 419 } 420 if ((insn = (struct machine_opcode *) hash_find (op_hash, str)) == NULL) 421 { 422 as_bad (_("Unknown opcode `%s'."), str); 423 return; 424 } 425 argsStart = s; 426 opcode = insn->opcode; 427 memset (&the_insn, '\0', sizeof (the_insn)); 428 the_insn.reloc = NO_RELOC; 429 430 /* Build the opcode, checking as we go to make sure that the 431 operands match. 432 433 If an operand matches, we modify the_insn or opcode appropriately, 434 and do a "continue". If an operand fails to match, we "break". */ 435 436 if (insn->args[0] != '\0') 437 { 438 /* Prime the pump. */ 439 s = parse_operand (s, operand, insn->args[0] == 'I'); 440 } 441 442 for (args = insn->args;; ++args) 443 { 444 switch (*args) 445 { 446 447 case '\0': /* end of args */ 448 if (*s == '\0') 449 { 450 /* We are truly done. */ 451 the_insn.opcode = opcode; 452 return; 453 } 454 as_bad (_("Too many operands: %s"), s); 455 break; 456 457 case ',': /* Must match a comma */ 458 if (*s++ == ',') 459 { 460 /* Parse next operand. */ 461 s = parse_operand (s, operand, args[1] == 'I'); 462 continue; 463 } 464 break; 465 466 case 'v': /* Trap numbers (immediate field) */ 467 if (operand->X_op == O_constant) 468 { 469 if (operand->X_add_number < 256) 470 { 471 opcode |= (operand->X_add_number << 16); 472 continue; 473 } 474 else 475 { 476 as_bad (_("Immediate value of %ld is too large"), 477 (long) operand->X_add_number); 478 continue; 479 } 480 } 481 the_insn.reloc = RELOC_8; 482 the_insn.reloc_offset = 1; /* BIG-ENDIAN Byte 1 of insn */ 483 the_insn.exp = *operand; 484 continue; 485 486 case 'b': /* A general register or 8-bit immediate */ 487 case 'i': 488 /* We treat the two cases identically since we mashed 489 them together in the opcode table. */ 490 if (operand->X_op == O_register) 491 goto general_reg; 492 493 /* Make sure the 'i' case really exists. */ 494 if ((insn->opcode | IMMEDIATE_BIT) != (insn + 1)->opcode) 495 break; 496 497 opcode |= IMMEDIATE_BIT; 498 if (operand->X_op == O_constant) 499 { 500 if (operand->X_add_number < 256) 501 { 502 opcode |= operand->X_add_number; 503 continue; 504 } 505 else 506 { 507 as_bad (_("Immediate value of %ld is too large"), 508 (long) operand->X_add_number); 509 continue; 510 } 511 } 512 the_insn.reloc = RELOC_8; 513 the_insn.reloc_offset = 3; /* BIG-ENDIAN Byte 3 of insn */ 514 the_insn.exp = *operand; 515 continue; 516 517 case 'a': /* next operand must be a register */ 518 case 'c': 519 general_reg: 520 /* lrNNN or grNNN or %%expr or a user-def register name */ 521 if (operand->X_op != O_register) 522 break; /* Only registers */ 523 know (operand->X_add_symbol == 0); 524 know (operand->X_op_symbol == 0); 525 reg = operand->X_add_number; 526 if (reg >= SREG) 527 break; /* No special registers */ 528 529 /* Got the register, now figure out where it goes in the 530 opcode. */ 531 switch (*args) 532 { 533 case 'a': 534 opcode |= reg << 8; 535 continue; 536 537 case 'b': 538 case 'i': 539 opcode |= reg; 540 continue; 541 542 case 'c': 543 opcode |= reg << 16; 544 continue; 545 } 546 as_fatal (_("failed sanity check.")); 547 break; 548 549 case 'x': /* 16 bit constant, zero-extended */ 550 case 'X': /* 16 bit constant, one-extended */ 551 if (operand->X_op == O_constant) 552 { 553 opcode |= (operand->X_add_number & 0xFF) << 0 | 554 ((operand->X_add_number & 0xFF00) << 8); 555 continue; 556 } 557 the_insn.reloc = RELOC_CONST; 558 the_insn.exp = *operand; 559 continue; 560 561 case 'h': 562 if (operand->X_op == O_constant) 563 { 564 opcode |= (operand->X_add_number & 0x00FF0000) >> 16 | 565 (((unsigned long) operand->X_add_number 566 /* avoid sign ext */ & 0xFF000000) >> 8); 567 continue; 568 } 569 the_insn.reloc = RELOC_CONSTH; 570 the_insn.exp = *operand; 571 continue; 572 573 case 'P': /* PC-relative jump address */ 574 case 'A': /* Absolute jump address */ 575 /* These two are treated together since we folded the 576 opcode table entries together. */ 577 if (operand->X_op == O_constant) 578 { 579 /* Make sure the 'A' case really exists. */ 580 if ((insn->opcode | ABSOLUTE_BIT) != (insn + 1)->opcode) 581 break; 582 { 583 bfd_vma v, mask; 584 mask = 0x1ffff; 585 v = operand->X_add_number & ~ mask; 586 if (v) 587 as_bad ("call/jmp target out of range"); 588 } 589 opcode |= ABSOLUTE_BIT | 590 (operand->X_add_number & 0x0003FC00) << 6 | 591 ((operand->X_add_number & 0x000003FC) >> 2); 592 continue; 593 } 594 the_insn.reloc = RELOC_JUMPTARG; 595 the_insn.exp = *operand; 596 the_insn.pcrel = 1; /* Assume PC-relative jump */ 597 /* FIXME-SOON, Do we figure out whether abs later, after 598 know sym val? */ 599 continue; 600 601 case 'e': /* Coprocessor enable bit for LOAD/STORE insn */ 602 if (operand->X_op == O_constant) 603 { 604 if (operand->X_add_number == 0) 605 continue; 606 if (operand->X_add_number == 1) 607 { 608 opcode |= CE_BIT; 609 continue; 610 } 611 } 612 break; 613 614 case 'n': /* Control bits for LOAD/STORE instructions */ 615 if (operand->X_op == O_constant && 616 operand->X_add_number < 128) 617 { 618 opcode |= (operand->X_add_number << 16); 619 continue; 620 } 621 break; 622 623 case 's': /* Special register number */ 624 if (operand->X_op != O_register) 625 break; /* Only registers */ 626 if (operand->X_add_number < SREG) 627 break; /* Not a special register */ 628 opcode |= (operand->X_add_number & 0xFF) << 8; 629 continue; 630 631 case 'u': /* UI bit of CONVERT */ 632 if (operand->X_op == O_constant) 633 { 634 if (operand->X_add_number == 0) 635 continue; 636 if (operand->X_add_number == 1) 637 { 638 opcode |= UI_BIT; 639 continue; 640 } 641 } 642 break; 643 644 case 'r': /* RND bits of CONVERT */ 645 if (operand->X_op == O_constant && 646 operand->X_add_number < 8) 647 { 648 opcode |= operand->X_add_number << 4; 649 continue; 650 } 651 break; 652 653 case 'I': /* ID bits of INV and IRETINV. */ 654 /* This operand is optional. */ 655 if (operand->X_op == O_absent) 656 continue; 657 else if (operand->X_op == O_constant 658 && operand->X_add_number < 4) 659 { 660 opcode |= operand->X_add_number << 16; 661 continue; 662 } 663 break; 664 665 case 'd': /* FD bits of CONVERT */ 666 if (operand->X_op == O_constant && 667 operand->X_add_number < 4) 668 { 669 opcode |= operand->X_add_number << 2; 670 continue; 671 } 672 break; 673 674 case 'f': /* FS bits of CONVERT */ 675 if (operand->X_op == O_constant && 676 operand->X_add_number < 4) 677 { 678 opcode |= operand->X_add_number << 0; 679 continue; 680 } 681 break; 682 683 case 'C': 684 if (operand->X_op == O_constant && 685 operand->X_add_number < 4) 686 { 687 opcode |= operand->X_add_number << 16; 688 continue; 689 } 690 break; 691 692 case 'F': 693 if (operand->X_op == O_constant && 694 operand->X_add_number < 16) 695 { 696 opcode |= operand->X_add_number << 18; 697 continue; 698 } 699 break; 700 701 default: 702 BAD_CASE (*args); 703 } 704 /* Types or values of args don't match. */ 705 as_bad ("Invalid operands"); 706 return; 707 } 708 } 709 710 /* This is identical to the md_atof in m68k.c. I think this is right, 711 but I'm not sure. 712 713 Turn a string in input_line_pointer into a floating point constant 714 of type TYPE, and store the appropriate bytes in *LITP. The number 715 of LITTLENUMS emitted is stored in *SIZEP. An error message is 716 returned, or NULL on OK. */ 717 718 /* Equal to MAX_PRECISION in atof-ieee.c */ 719 #define MAX_LITTLENUMS 6 720 721 char * 722 md_atof (type, litP, sizeP) 723 char type; 724 char *litP; 725 int *sizeP; 726 { 727 int prec; 728 LITTLENUM_TYPE words[MAX_LITTLENUMS]; 729 LITTLENUM_TYPE *wordP; 730 char *t; 731 732 switch (type) 733 { 734 735 case 'f': 736 case 'F': 737 case 's': 738 case 'S': 739 prec = 2; 740 break; 741 742 case 'd': 743 case 'D': 744 case 'r': 745 case 'R': 746 prec = 4; 747 break; 748 749 case 'x': 750 case 'X': 751 prec = 6; 752 break; 753 754 case 'p': 755 case 'P': 756 prec = 6; 757 break; 758 759 default: 760 *sizeP = 0; 761 return "Bad call to MD_ATOF()"; 762 } 763 t = atof_ieee (input_line_pointer, type, words); 764 if (t) 765 input_line_pointer = t; 766 *sizeP = prec * sizeof (LITTLENUM_TYPE); 767 for (wordP = words; prec--;) 768 { 769 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE)); 770 litP += sizeof (LITTLENUM_TYPE); 771 } 772 return 0; 773 } 774 775 /* 776 * Write out big-endian. 777 */ 778 void 779 md_number_to_chars (buf, val, n) 780 char *buf; 781 valueT val; 782 int n; 783 { 784 number_to_chars_bigendian (buf, val, n); 785 } 786 787 void 788 md_apply_fix3 (fixP, valP, seg) 789 fixS *fixP; 790 valueT * valP; 791 segT seg ATTRIBUTE_UNUSED; 792 { 793 long val = *valP; 794 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; 795 796 fixP->fx_addnumber = val; /* Remember value for emit_reloc. */ 797 798 know (fixP->fx_size == 4); 799 know (fixP->fx_r_type < NO_RELOC); 800 801 /* This is a hack. There should be a better way to handle this. */ 802 if (fixP->fx_r_type == RELOC_WDISP30 && fixP->fx_addsy) 803 val += fixP->fx_where + fixP->fx_frag->fr_address; 804 805 switch (fixP->fx_r_type) 806 { 807 case RELOC_32: 808 buf[0] = val >> 24; 809 buf[1] = val >> 16; 810 buf[2] = val >> 8; 811 buf[3] = val; 812 break; 813 814 case RELOC_8: 815 buf[0] = val; 816 break; 817 818 case RELOC_WDISP30: 819 val = (val >> 2) + 1; 820 buf[0] |= (val >> 24) & 0x3f; 821 buf[1] = (val >> 16); 822 buf[2] = val >> 8; 823 buf[3] = val; 824 break; 825 826 case RELOC_HI22: 827 buf[1] |= (val >> 26) & 0x3f; 828 buf[2] = val >> 18; 829 buf[3] = val >> 10; 830 break; 831 832 case RELOC_LO10: 833 buf[2] |= (val >> 8) & 0x03; 834 buf[3] = val; 835 break; 836 837 case RELOC_BASE13: 838 buf[2] |= (val >> 8) & 0x1f; 839 buf[3] = val; 840 break; 841 842 case RELOC_WDISP22: 843 val = (val >> 2) + 1; 844 /* FALLTHROUGH */ 845 case RELOC_BASE22: 846 buf[1] |= (val >> 16) & 0x3f; 847 buf[2] = val >> 8; 848 buf[3] = val; 849 break; 850 851 case RELOC_JUMPTARG: /* 00XX00XX pattern in a word */ 852 if (!fixP->fx_done) 853 { 854 /* The linker tries to support both AMD and old GNU style 855 R_IREL relocs. That means that if the addend is exactly 856 the negative of the address within the section, the 857 linker will not handle it correctly. */ 858 if (fixP->fx_pcrel 859 && val != 0 860 && val == - (fixP->fx_frag->fr_address + fixP->fx_where)) 861 as_bad_where 862 (fixP->fx_file, fixP->fx_line, 863 "the linker will not handle this relocation correctly"); 864 } 865 else if (fixP->fx_pcrel) 866 { 867 long v = val >> 17; 868 869 if (v != 0 && v != -1) 870 as_bad_where (fixP->fx_file, fixP->fx_line, 871 "call/jmp target out of range"); 872 } 873 else 874 /* This case was supposed to be handled in machine_ip. */ 875 abort (); 876 buf[1] = val >> 10; /* Holds bits 0003FFFC of address */ 877 buf[3] = val >> 2; 878 break; 879 880 case RELOC_CONST: /* 00XX00XX pattern in a word */ 881 buf[1] = val >> 8; /* Holds bits 0000XXXX */ 882 buf[3] = val; 883 break; 884 885 case RELOC_CONSTH: /* 00XX00XX pattern in a word */ 886 buf[1] = val >> 24; /* Holds bits XXXX0000 */ 887 buf[3] = val >> 16; 888 break; 889 890 case NO_RELOC: 891 default: 892 as_bad (_("bad relocation type: 0x%02x"), fixP->fx_r_type); 893 break; 894 } 895 896 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0) 897 fixP->fx_done = 1; 898 } 899 900 #ifdef OBJ_COFF 901 short 902 tc_coff_fix2rtype (fixP) 903 fixS *fixP; 904 { 905 906 switch (fixP->fx_r_type) 907 { 908 case RELOC_32: 909 return (R_WORD); 910 case RELOC_8: 911 return (R_BYTE); 912 case RELOC_CONST: 913 return (R_ILOHALF); 914 case RELOC_CONSTH: 915 return (R_IHIHALF); 916 case RELOC_JUMPTARG: 917 return (R_IREL); 918 default: 919 printf (_("need %o3\n"), fixP->fx_r_type); 920 abort (); 921 } /* switch on type */ 922 923 return (0); 924 } 925 926 #endif /* OBJ_COFF */ 927 928 /* should never be called for 29k */ 929 void 930 md_convert_frag (headers, seg, fragP) 931 object_headers *headers ATTRIBUTE_UNUSED; 932 segT seg ATTRIBUTE_UNUSED; 933 register fragS *fragP ATTRIBUTE_UNUSED; 934 { 935 as_fatal (_("a29k_convert_frag\n")); 936 } 937 938 /* should never be called for a29k */ 939 int 940 md_estimate_size_before_relax (fragP, segtype) 941 register fragS *fragP ATTRIBUTE_UNUSED; 942 segT segtype ATTRIBUTE_UNUSED; 943 { 944 as_fatal (_("a29k_estimate_size_before_relax\n")); 945 return 0; 946 } 947 948 #if 0 949 /* for debugging only */ 950 static void 951 print_insn (insn) 952 struct machine_it *insn; 953 { 954 char *Reloc[] = 955 { 956 "RELOC_8", 957 "RELOC_16", 958 "RELOC_32", 959 "RELOC_DISP8", 960 "RELOC_DISP16", 961 "RELOC_DISP32", 962 "RELOC_WDISP30", 963 "RELOC_WDISP22", 964 "RELOC_HI22", 965 "RELOC_22", 966 "RELOC_13", 967 "RELOC_LO10", 968 "RELOC_SFA_BASE", 969 "RELOC_SFA_OFF13", 970 "RELOC_BASE10", 971 "RELOC_BASE13", 972 "RELOC_BASE22", 973 "RELOC_PC10", 974 "RELOC_PC22", 975 "RELOC_JMP_TBL", 976 "RELOC_SEGOFF16", 977 "RELOC_GLOB_DAT", 978 "RELOC_JMP_SLOT", 979 "RELOC_RELATIVE", 980 "NO_RELOC" 981 }; 982 983 if (insn->error) 984 { 985 fprintf (stderr, "ERROR: %s\n"); 986 } 987 fprintf (stderr, "opcode=0x%08x\n", insn->opcode); 988 fprintf (stderr, "reloc = %s\n", Reloc[insn->reloc]); 989 fprintf (stderr, "exp = {\n"); 990 fprintf (stderr, "\t\tX_add_symbol = %s\n", 991 insn->exp.X_add_symbol ? 992 (S_GET_NAME (insn->exp.X_add_symbol) ? 993 S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0"); 994 fprintf (stderr, "\t\tX_op_symbol = %s\n", 995 insn->exp.X_op_symbol ? 996 (S_GET_NAME (insn->exp.X_op_symbol) ? 997 S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0"); 998 fprintf (stderr, "\t\tX_add_number = %d\n", 999 insn->exp.X_add_number); 1000 fprintf (stderr, "}\n"); 1001 } 1002 1003 #endif 1004 1005 /* Translate internal representation of relocation info to target format. 1006 1007 On sparc/29k: first 4 bytes are normal unsigned long address, next three 1008 bytes are index, most sig. byte first. Byte 7 is broken up with 1009 bit 7 as external, bits 6 & 5 unused, and the lower 1010 five bits as relocation type. Next 4 bytes are long addend. */ 1011 /* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */ 1012 1013 #ifdef OBJ_AOUT 1014 1015 void 1016 tc_aout_fix_to_chars (where, fixP, segment_address_in_file) 1017 char *where; 1018 fixS *fixP; 1019 relax_addressT segment_address_in_file; 1020 { 1021 long r_symbolnum; 1022 1023 know (fixP->fx_r_type < NO_RELOC); 1024 know (fixP->fx_addsy != NULL); 1025 1026 md_number_to_chars (where, 1027 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file, 1028 4); 1029 1030 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy) 1031 ? S_GET_TYPE (fixP->fx_addsy) 1032 : fixP->fx_addsy->sy_number); 1033 1034 where[4] = (r_symbolnum >> 16) & 0x0ff; 1035 where[5] = (r_symbolnum >> 8) & 0x0ff; 1036 where[6] = r_symbolnum & 0x0ff; 1037 where[7] = (((!S_IS_DEFINED (fixP->fx_addsy)) << 7) & 0x80) | (0 & 0x60) | (fixP->fx_r_type & 0x1F); 1038 /* Also easy */ 1039 md_number_to_chars (&where[8], fixP->fx_addnumber, 4); 1040 } 1041 1042 #endif /* OBJ_AOUT */ 1043 1044 const char *md_shortopts = ""; 1045 struct option md_longopts[] = { 1046 {NULL, no_argument, NULL, 0} 1047 }; 1048 size_t md_longopts_size = sizeof (md_longopts); 1049 1050 int 1051 md_parse_option (c, arg) 1052 int c ATTRIBUTE_UNUSED; 1053 char *arg ATTRIBUTE_UNUSED; 1054 { 1055 return 0; 1056 } 1057 1058 void 1059 md_show_usage (stream) 1060 FILE *stream ATTRIBUTE_UNUSED; 1061 { 1062 } 1063 1064 /* This is called when a line is unrecognized. This is used to handle 1065 definitions of a29k style local labels. */ 1066 1067 int 1068 a29k_unrecognized_line (c) 1069 int c; 1070 { 1071 int lab; 1072 char *s; 1073 1074 if (c != '$' 1075 || ! ISDIGIT (input_line_pointer[0])) 1076 return 0; 1077 1078 s = input_line_pointer; 1079 1080 lab = 0; 1081 while (ISDIGIT (*s)) 1082 { 1083 lab = lab * 10 + *s - '0'; 1084 ++s; 1085 } 1086 1087 if (*s != ':') 1088 { 1089 /* Not a label definition. */ 1090 return 0; 1091 } 1092 1093 if (dollar_label_defined (lab)) 1094 { 1095 as_bad (_("label \"$%d\" redefined"), lab); 1096 return 0; 1097 } 1098 1099 define_dollar_label (lab); 1100 colon (dollar_label_name (lab, 0)); 1101 input_line_pointer = s + 1; 1102 1103 return 1; 1104 } 1105 1106 /* Default the values of symbols known that should be "predefined". We 1107 don't bother to predefine them unless you actually use one, since there 1108 are a lot of them. */ 1109 1110 symbolS * 1111 md_undefined_symbol (name) 1112 char *name; 1113 { 1114 long regnum; 1115 char testbuf[5 + /*SLOP*/ 5]; 1116 1117 if (name[0] == 'g' || name[0] == 'G' 1118 || name[0] == 'l' || name[0] == 'L' 1119 || name[0] == 's' || name[0] == 'S') 1120 { 1121 /* Perhaps a global or local register name */ 1122 if (name[1] == 'r' || name[1] == 'R') 1123 { 1124 long maxreg; 1125 1126 /* Parse the number, make sure it has no extra zeroes or 1127 trailing chars. */ 1128 regnum = atol (&name[2]); 1129 1130 if (name[0] == 's' || name[0] == 'S') 1131 maxreg = 255; 1132 else 1133 maxreg = 127; 1134 if (regnum > maxreg) 1135 return NULL; 1136 1137 sprintf (testbuf, "%ld", regnum); 1138 if (strcmp (testbuf, &name[2]) != 0) 1139 return NULL; /* gr007 or lr7foo or whatever */ 1140 1141 /* We have a wiener! Define and return a new symbol for it. */ 1142 if (name[0] == 'l' || name[0] == 'L') 1143 regnum += 128; 1144 else if (name[0] == 's' || name[0] == 'S') 1145 regnum += SREG; 1146 return (symbol_new (name, SEG_REGISTER, (valueT) regnum, 1147 &zero_address_frag)); 1148 } 1149 } 1150 1151 return NULL; 1152 } 1153 1154 /* Parse an operand that is machine-specific. */ 1155 1156 void 1157 md_operand (expressionP) 1158 expressionS *expressionP; 1159 { 1160 1161 if (input_line_pointer[0] == '%' && input_line_pointer[1] == '%') 1162 { 1163 /* We have a numeric register expression. No biggy. */ 1164 input_line_pointer += 2; /* Skip %% */ 1165 (void) expression (expressionP); 1166 if (expressionP->X_op != O_constant 1167 || expressionP->X_add_number > 255) 1168 as_bad (_("Invalid expression after %%%%\n")); 1169 expressionP->X_op = O_register; 1170 } 1171 else if (input_line_pointer[0] == '&') 1172 { 1173 /* We are taking the 'address' of a register...this one is not 1174 in the manual, but it *is* in traps/fpsymbol.h! What they 1175 seem to want is the register number, as an absolute number. */ 1176 input_line_pointer++; /* Skip & */ 1177 (void) expression (expressionP); 1178 if (expressionP->X_op != O_register) 1179 as_bad (_("Invalid register in & expression")); 1180 else 1181 expressionP->X_op = O_constant; 1182 } 1183 else if (input_line_pointer[0] == '$' 1184 && ISDIGIT (input_line_pointer[1])) 1185 { 1186 long lab; 1187 char *name; 1188 symbolS *sym; 1189 1190 /* This is a local label. */ 1191 ++input_line_pointer; 1192 lab = (long) get_absolute_expression (); 1193 if (dollar_label_defined (lab)) 1194 { 1195 name = dollar_label_name (lab, 0); 1196 sym = symbol_find (name); 1197 } 1198 else 1199 { 1200 name = dollar_label_name (lab, 1); 1201 sym = symbol_find_or_make (name); 1202 } 1203 1204 expressionP->X_op = O_symbol; 1205 expressionP->X_add_symbol = sym; 1206 expressionP->X_add_number = 0; 1207 } 1208 else if (input_line_pointer[0] == '$') 1209 { 1210 char *s; 1211 char type; 1212 int fieldnum, fieldlimit; 1213 LITTLENUM_TYPE floatbuf[8]; 1214 1215 /* $float(), $doubleN(), or $extendN() convert floating values 1216 to integers. */ 1217 1218 s = input_line_pointer; 1219 1220 ++s; 1221 1222 fieldnum = 0; 1223 if (strncmp (s, "double", sizeof "double" - 1) == 0) 1224 { 1225 s += sizeof "double" - 1; 1226 type = 'd'; 1227 fieldlimit = 2; 1228 } 1229 else if (strncmp (s, "float", sizeof "float" - 1) == 0) 1230 { 1231 s += sizeof "float" - 1; 1232 type = 'f'; 1233 fieldlimit = 1; 1234 } 1235 else if (strncmp (s, "extend", sizeof "extend" - 1) == 0) 1236 { 1237 s += sizeof "extend" - 1; 1238 type = 'x'; 1239 fieldlimit = 4; 1240 } 1241 else 1242 { 1243 return; 1244 } 1245 1246 if (ISDIGIT (*s)) 1247 { 1248 fieldnum = *s - '0'; 1249 ++s; 1250 } 1251 if (fieldnum >= fieldlimit) 1252 return; 1253 1254 SKIP_WHITESPACE (); 1255 if (*s != '(') 1256 return; 1257 ++s; 1258 SKIP_WHITESPACE (); 1259 1260 s = atof_ieee (s, type, floatbuf); 1261 if (s == NULL) 1262 return; 1263 s = s; 1264 1265 SKIP_WHITESPACE (); 1266 if (*s != ')') 1267 return; 1268 ++s; 1269 SKIP_WHITESPACE (); 1270 1271 input_line_pointer = s; 1272 expressionP->X_op = O_constant; 1273 expressionP->X_unsigned = 1; 1274 expressionP->X_add_number = ((floatbuf[fieldnum * 2] 1275 << LITTLENUM_NUMBER_OF_BITS) 1276 + floatbuf[fieldnum * 2 + 1]); 1277 } 1278 } 1279 1280 /* Round up a section size to the appropriate boundary. */ 1281 valueT 1282 md_section_align (segment, size) 1283 segT segment ATTRIBUTE_UNUSED; 1284 valueT size; 1285 { 1286 return size; /* Byte alignment is fine */ 1287 } 1288 1289 /* Exactly what point is a PC-relative offset relative TO? 1290 On the 29000, they're relative to the address of the instruction, 1291 which we have set up as the address of the fixup too. */ 1292 long 1293 md_pcrel_from (fixP) 1294 fixS *fixP; 1295 { 1296 return fixP->fx_where + fixP->fx_frag->fr_address; 1297 } 1298