1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001 2@c Free Software Foundation, Inc. 3@c This is part of the GAS manual. 4@c For copying conditions, see the file as.texinfo. 5@ifset GENERIC 6@page 7@node i386-Dependent 8@chapter 80386 Dependent Features 9@end ifset 10@ifclear GENERIC 11@node Machine Dependencies 12@chapter 80386 Dependent Features 13@end ifclear 14 15@cindex i386 support 16@cindex i80306 support 17@cindex x86-64 support 18 19The i386 version @code{@value{AS}} supports both the original Intel 386 20architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 21extending the Intel architecture to 64-bits. 22 23@menu 24* i386-Options:: Options 25* i386-Syntax:: AT&T Syntax versus Intel Syntax 26* i386-Mnemonics:: Instruction Naming 27* i386-Regs:: Register Naming 28* i386-Prefixes:: Instruction Prefixes 29* i386-Memory:: Memory References 30* i386-Jumps:: Handling of Jump Instructions 31* i386-Float:: Floating Point 32* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 33* i386-16bit:: Writing 16-bit Code 34* i386-Arch:: Specifying an x86 CPU architecture 35* i386-Bugs:: AT&T Syntax bugs 36* i386-Notes:: Notes 37@end menu 38 39@node i386-Options 40@section Options 41 42@cindex options for i386 43@cindex options for x86-64 44@cindex i386 options 45@cindex x86-64 options 46 47The i386 version of @code{@value{AS}} has a few machine 48dependent options: 49 50@table @code 51@cindex @samp{--32} option, i386 52@cindex @samp{--32} option, x86-64 53@cindex @samp{--64} option, i386 54@cindex @samp{--64} option, x86-64 55@item --32 | --64 56Select the word size, either 32 bits or 64 bits. Selecting 32-bit 57implies Intel i386 architecture, while 64-bit implies AMD x86-64 58architecture. 59 60These options are only available with the ELF object file format, and 61require that the necessary BFD support has been included (on a 32-bit 62platform you have to add --enable-64-bit-bfd to configure enable 64-bit 63usage and use x86-64 as target platform). 64 65@item -n 66By default, x86 GAS replaces multiple nop instructions used for 67alignment within code sections with multi-byte nop instructions such 68as leal 0(%esi,1),%esi. This switch disables the optimization. 69@end table 70 71@node i386-Syntax 72@section AT&T Syntax versus Intel Syntax 73 74@cindex i386 intel_syntax pseudo op 75@cindex intel_syntax pseudo op, i386 76@cindex i386 att_syntax pseudo op 77@cindex att_syntax pseudo op, i386 78@cindex i386 syntax compatibility 79@cindex syntax compatibility, i386 80@cindex x86-64 intel_syntax pseudo op 81@cindex intel_syntax pseudo op, x86-64 82@cindex x86-64 att_syntax pseudo op 83@cindex att_syntax pseudo op, x86-64 84@cindex x86-64 syntax compatibility 85@cindex syntax compatibility, x86-64 86 87@code{@value{AS}} now supports assembly using Intel assembler syntax. 88@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 89back to the usual AT&T mode for compatibility with the output of 90@code{@value{GCC}}. Either of these directives may have an optional 91argument, @code{prefix}, or @code{noprefix} specifying whether registers 92require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 93different from Intel syntax. We mention these differences because 94almost all 80386 documents use Intel syntax. Notable differences 95between the two syntaxes are: 96 97@cindex immediate operands, i386 98@cindex i386 immediate operands 99@cindex register operands, i386 100@cindex i386 register operands 101@cindex jump/call operands, i386 102@cindex i386 jump/call operands 103@cindex operand delimiters, i386 104 105@cindex immediate operands, x86-64 106@cindex x86-64 immediate operands 107@cindex register operands, x86-64 108@cindex x86-64 register operands 109@cindex jump/call operands, x86-64 110@cindex x86-64 jump/call operands 111@cindex operand delimiters, x86-64 112@itemize @bullet 113@item 114AT&T immediate operands are preceded by @samp{$}; Intel immediate 115operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 116AT&T register operands are preceded by @samp{%}; Intel register operands 117are undelimited. AT&T absolute (as opposed to PC relative) jump/call 118operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 119 120@cindex i386 source, destination operands 121@cindex source, destination operands; i386 122@cindex x86-64 source, destination operands 123@cindex source, destination operands; x86-64 124@item 125AT&T and Intel syntax use the opposite order for source and destination 126operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 127@samp{source, dest} convention is maintained for compatibility with 128previous Unix assemblers. Note that instructions with more than one 129source operand, such as the @samp{enter} instruction, do @emph{not} have 130reversed order. @ref{i386-Bugs}. 131 132@cindex mnemonic suffixes, i386 133@cindex sizes operands, i386 134@cindex i386 size suffixes 135@cindex mnemonic suffixes, x86-64 136@cindex sizes operands, x86-64 137@cindex x86-64 size suffixes 138@item 139In AT&T syntax the size of memory operands is determined from the last 140character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 141@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 142(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes 143this by prefixing memory operands (@emph{not} the instruction mnemonics) with 144@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus, 145Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 146syntax. 147 148@cindex return instructions, i386 149@cindex i386 jump, call, return 150@cindex return instructions, x86-64 151@cindex x86-64 jump, call, return 152@item 153Immediate form long jumps and calls are 154@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 155Intel syntax is 156@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 157instruction 158is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 159@samp{ret far @var{stack-adjust}}. 160 161@cindex sections, i386 162@cindex i386 sections 163@cindex sections, x86-64 164@cindex x86-64 sections 165@item 166The AT&T assembler does not provide support for multiple section 167programs. Unix style systems expect all programs to be single sections. 168@end itemize 169 170@node i386-Mnemonics 171@section Instruction Naming 172 173@cindex i386 instruction naming 174@cindex instruction naming, i386 175@cindex x86-64 instruction naming 176@cindex instruction naming, x86-64 177 178Instruction mnemonics are suffixed with one character modifiers which 179specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 180and @samp{q} specify byte, word, long and quadruple word operands. If 181no suffix is specified by an instruction then @code{@value{AS}} tries to 182fill in the missing suffix based on the destination register operand 183(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 184to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 185@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 186assembler which assumes that a missing mnemonic suffix implies long 187operand size. (This incompatibility does not affect compiler output 188since compilers always explicitly specify the mnemonic suffix.) 189 190Almost all instructions have the same names in AT&T and Intel format. 191There are a few exceptions. The sign extend and zero extend 192instructions need two sizes to specify them. They need a size to 193sign/zero extend @emph{from} and a size to zero extend @emph{to}. This 194is accomplished by using two instruction mnemonic suffixes in AT&T 195syntax. Base names for sign extend and zero extend are 196@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} 197and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes 198are tacked on to this base name, the @emph{from} suffix before the 199@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for 200``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, 201thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), 202@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word), 203@samp{wq} (from word to quadruple word), and @samp{lq} (from long to 204quadruple word). 205 206@cindex conversion instructions, i386 207@cindex i386 conversion instructions 208@cindex conversion instructions, x86-64 209@cindex x86-64 conversion instructions 210The Intel-syntax conversion instructions 211 212@itemize @bullet 213@item 214@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 215 216@item 217@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 218 219@item 220@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 221 222@item 223@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 224 225@item 226@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 227(x86-64 only), 228 229@item 230@samp{cdo} --- sign-extend quad in @samp{%rax} to octuple in 231@samp{%rdx:%rax} (x86-64 only), 232@end itemize 233 234@noindent 235are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 236@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 237instructions. 238 239@cindex jump instructions, i386 240@cindex call instructions, i386 241@cindex jump instructions, x86-64 242@cindex call instructions, x86-64 243Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 244AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 245convention. 246 247@node i386-Regs 248@section Register Naming 249 250@cindex i386 registers 251@cindex registers, i386 252@cindex x86-64 registers 253@cindex registers, x86-64 254Register operands are always prefixed with @samp{%}. The 80386 registers 255consist of 256 257@itemize @bullet 258@item 259the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 260@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 261frame pointer), and @samp{%esp} (the stack pointer). 262 263@item 264the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 265@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 266 267@item 268the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 269@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 270are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 271@samp{%cx}, and @samp{%dx}) 272 273@item 274the 6 section registers @samp{%cs} (code section), @samp{%ds} 275(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 276and @samp{%gs}. 277 278@item 279the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and 280@samp{%cr3}. 281 282@item 283the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 284@samp{%db3}, @samp{%db6}, and @samp{%db7}. 285 286@item 287the 2 test registers @samp{%tr6} and @samp{%tr7}. 288 289@item 290the 8 floating point register stack @samp{%st} or equivalently 291@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 292@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 293These registers are overloaded by 8 MMX registers @samp{%mm0}, 294@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 295@samp{%mm6} and @samp{%mm7}. 296 297@item 298the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 299@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 300@end itemize 301 302The AMD x86-64 architecture extends the register set by: 303 304@itemize @bullet 305@item 306enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 307accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 308@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 309pointer) 310 311@item 312the 8 extended registers @samp{%r8}--@samp{%r15}. 313 314@item 315the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d} 316 317@item 318the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w} 319 320@item 321the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b} 322 323@item 324the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 325 326@item 327the 8 debug registers: @samp{%db8}--@samp{%db15}. 328 329@item 330the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}. 331@end itemize 332 333@node i386-Prefixes 334@section Instruction Prefixes 335 336@cindex i386 instruction prefixes 337@cindex instruction prefixes, i386 338@cindex prefixes, i386 339Instruction prefixes are used to modify the following instruction. They 340are used to repeat string instructions, to provide section overrides, to 341perform bus lock operations, and to change operand and address sizes. 342(Most instructions that normally operate on 32-bit operands will use 34316-bit operands if the instruction has an ``operand size'' prefix.) 344Instruction prefixes are best written on the same line as the instruction 345they act upon. For example, the @samp{scas} (scan string) instruction is 346repeated with: 347 348@smallexample 349 repne scas %es:(%edi),%al 350@end smallexample 351 352You may also place prefixes on the lines immediately preceding the 353instruction, but this circumvents checks that @code{@value{AS}} does 354with prefixes, and will not work with all prefixes. 355 356Here is a list of instruction prefixes: 357 358@cindex section override prefixes, i386 359@itemize @bullet 360@item 361Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 362@samp{fs}, @samp{gs}. These are automatically added by specifying 363using the @var{section}:@var{memory-operand} form for memory references. 364 365@cindex size prefixes, i386 366@item 367Operand/Address size prefixes @samp{data16} and @samp{addr16} 368change 32-bit operands/addresses into 16-bit operands/addresses, 369while @samp{data32} and @samp{addr32} change 16-bit ones (in a 370@code{.code16} section) into 32-bit operands/addresses. These prefixes 371@emph{must} appear on the same line of code as the instruction they 372modify. For example, in a 16-bit @code{.code16} section, you might 373write: 374 375@smallexample 376 addr32 jmpl *(%ebx) 377@end smallexample 378 379@cindex bus lock prefixes, i386 380@cindex inhibiting interrupts, i386 381@item 382The bus lock prefix @samp{lock} inhibits interrupts during execution of 383the instruction it precedes. (This is only valid with certain 384instructions; see a 80386 manual for details). 385 386@cindex coprocessor wait, i386 387@item 388The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 389complete the current instruction. This should never be needed for the 39080386/80387 combination. 391 392@cindex repeat prefixes, i386 393@item 394The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 395to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 396times if the current address size is 16-bits). 397@cindex REX prefixes, i386 398@item 399The @samp{rex} family of prefixes is used by x86-64 to encode 400extensions to i386 instruction set. The @samp{rex} prefix has four 401bits --- an operand size overwrite (@code{64}) used to change operand size 402from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 403register set. 404 405You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 406instruction emits @samp{rex} prefix with all the bits set. By omitting 407the @code{64}, @code{x}, @code{y} or @code{z} you may write other 408prefixes as well. Normally, there is no need to write the prefixes 409explicitly, since gas will automatically generate them based on the 410instruction operands. 411@end itemize 412 413@node i386-Memory 414@section Memory References 415 416@cindex i386 memory references 417@cindex memory references, i386 418@cindex x86-64 memory references 419@cindex memory references, x86-64 420An Intel syntax indirect memory reference of the form 421 422@smallexample 423@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 424@end smallexample 425 426@noindent 427is translated into the AT&T syntax 428 429@smallexample 430@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 431@end smallexample 432 433@noindent 434where @var{base} and @var{index} are the optional 32-bit base and 435index registers, @var{disp} is the optional displacement, and 436@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 437to calculate the address of the operand. If no @var{scale} is 438specified, @var{scale} is taken to be 1. @var{section} specifies the 439optional section register for the memory operand, and may override the 440default section register (see a 80386 manual for section register 441defaults). Note that section overrides in AT&T syntax @emph{must} 442be preceded by a @samp{%}. If you specify a section override which 443coincides with the default section register, @code{@value{AS}} does @emph{not} 444output any section register override prefixes to assemble the given 445instruction. Thus, section overrides can be specified to emphasize which 446section register is used for a given memory operand. 447 448Here are some examples of Intel and AT&T style memory references: 449 450@table @asis 451@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 452@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 453missing, and the default section is used (@samp{%ss} for addressing with 454@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 455 456@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 457@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 458@samp{foo}. All other fields are missing. The section register here 459defaults to @samp{%ds}. 460 461@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 462This uses the value pointed to by @samp{foo} as a memory operand. 463Note that @var{base} and @var{index} are both missing, but there is only 464@emph{one} @samp{,}. This is a syntactic exception. 465 466@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 467This selects the contents of the variable @samp{foo} with section 468register @var{section} being @samp{%gs}. 469@end table 470 471Absolute (as opposed to PC relative) call and jump operands must be 472prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 473always chooses PC relative addressing for jump/call labels. 474 475Any instruction that has a memory operand, but no register operand, 476@emph{must} specify its size (byte, word, long, or quadruple) with an 477instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 478respectively). 479 480The x86-64 architecture adds an RIP (instruction pointer relative) 481addressing. This addressing mode is specified by using @samp{rip} as a 482base register. Only constant offsets are valid. For example: 483 484@table @asis 485@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 486Points to the address 1234 bytes past the end of the current 487instruction. 488 489@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 490Points to the @code{symbol} in RIP relative way, this is shorter than 491the default absolute addressing. 492@end table 493 494Other addressing modes remain unchanged in x86-64 architecture, except 495registers used are 64-bit instead of 32-bit. 496 497@node i386-Jumps 498@section Handling of Jump Instructions 499 500@cindex jump optimization, i386 501@cindex i386 jump optimization 502@cindex jump optimization, x86-64 503@cindex x86-64 jump optimization 504Jump instructions are always optimized to use the smallest possible 505displacements. This is accomplished by using byte (8-bit) displacement 506jumps whenever the target is sufficiently close. If a byte displacement 507is insufficient a long displacement is used. We do not support 508word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 509instruction with the @samp{data16} instruction prefix), since the 80386 510insists upon masking @samp{%eip} to 16 bits after the word displacement 511is added. (See also @pxref{i386-Arch}) 512 513Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 514@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 515displacements, so that if you use these instructions (@code{@value{GCC}} does 516not use them) you may get an error message (and incorrect code). The AT&T 51780386 assembler tries to get around this problem by expanding @samp{jcxz foo} 518to 519 520@smallexample 521 jcxz cx_zero 522 jmp cx_nonzero 523cx_zero: jmp foo 524cx_nonzero: 525@end smallexample 526 527@node i386-Float 528@section Floating Point 529 530@cindex i386 floating point 531@cindex floating point, i386 532@cindex x86-64 floating point 533@cindex floating point, x86-64 534All 80387 floating point types except packed BCD are supported. 535(BCD support may be added without much difficulty). These data 536types are 16-, 32-, and 64- bit integers, and single (32-bit), 537double (64-bit), and extended (80-bit) precision floating point. 538Each supported type has an instruction mnemonic suffix and a constructor 539associated with it. Instruction mnemonic suffixes specify the operand's 540data type. Constructors build these data types into memory. 541 542@cindex @code{float} directive, i386 543@cindex @code{single} directive, i386 544@cindex @code{double} directive, i386 545@cindex @code{tfloat} directive, i386 546@cindex @code{float} directive, x86-64 547@cindex @code{single} directive, x86-64 548@cindex @code{double} directive, x86-64 549@cindex @code{tfloat} directive, x86-64 550@itemize @bullet 551@item 552Floating point constructors are @samp{.float} or @samp{.single}, 553@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. 554These correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, 555and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387 556only supports this format via the @samp{fldt} (load 80-bit real to stack 557top) and @samp{fstpt} (store 80-bit real and pop stack) instructions. 558 559@cindex @code{word} directive, i386 560@cindex @code{long} directive, i386 561@cindex @code{int} directive, i386 562@cindex @code{quad} directive, i386 563@cindex @code{word} directive, x86-64 564@cindex @code{long} directive, x86-64 565@cindex @code{int} directive, x86-64 566@cindex @code{quad} directive, x86-64 567@item 568Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 569@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 570corresponding instruction mnemonic suffixes are @samp{s} (single), 571@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 572the 64-bit @samp{q} format is only present in the @samp{fildq} (load 573quad integer to stack top) and @samp{fistpq} (store quad integer and pop 574stack) instructions. 575@end itemize 576 577Register to register operations should not use instruction mnemonic suffixes. 578@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 579wrote @samp{fst %st, %st(1)}, since all register to register operations 580use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 581which converts @samp{%st} from 80-bit to 64-bit floating point format, 582then stores the result in the 4 byte location @samp{mem}) 583 584@node i386-SIMD 585@section Intel's MMX and AMD's 3DNow! SIMD Operations 586 587@cindex MMX, i386 588@cindex 3DNow!, i386 589@cindex SIMD, i386 590@cindex MMX, x86-64 591@cindex 3DNow!, x86-64 592@cindex SIMD, x86-64 593 594@code{@value{AS}} supports Intel's MMX instruction set (SIMD 595instructions for integer data), available on Intel's Pentium MMX 596processors and Pentium II processors, AMD's K6 and K6-2 processors, 597Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow! 598instruction set (SIMD instructions for 32-bit floating point data) 599available on AMD's K6-2 processor and possibly others in the future. 600 601Currently, @code{@value{AS}} does not support Intel's floating point 602SIMD, Katmai (KNI). 603 604The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 605@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 60616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 607floating point values. The MMX registers cannot be used at the same time 608as the floating point stack. 609 610See Intel and AMD documentation, keeping in mind that the operand order in 611instructions is reversed from the Intel syntax. 612 613@node i386-16bit 614@section Writing 16-bit Code 615 616@cindex i386 16-bit code 617@cindex 16-bit code, i386 618@cindex real-mode code, i386 619@cindex @code{code16gcc} directive, i386 620@cindex @code{code16} directive, i386 621@cindex @code{code32} directive, i386 622@cindex @code{code64} directive, i386 623@cindex @code{code64} directive, x86-64 624While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 625or 64-bit x86-64 code depending on the default configuration, 626it also supports writing code to run in real mode or in 16-bit protected 627mode code segments. To do this, put a @samp{.code16} or 628@samp{.code16gcc} directive before the assembly language instructions to 629be run in 16-bit mode. You can switch @code{@value{AS}} back to writing 630normal 32-bit code with the @samp{.code32} directive. 631 632@samp{.code16gcc} provides experimental support for generating 16-bit 633code from gcc, and differs from @samp{.code16} in that @samp{call}, 634@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 635@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 636default to 32-bit size. This is so that the stack pointer is 637manipulated in the same way over function calls, allowing access to 638function parameters at the same stack offsets as in 32-bit mode. 639@samp{.code16gcc} also automatically adds address size prefixes where 640necessary to use the 32-bit addressing modes that gcc generates. 641 642The code which @code{@value{AS}} generates in 16-bit mode will not 643necessarily run on a 16-bit pre-80386 processor. To write code that 644runs on such a processor, you must refrain from using @emph{any} 32-bit 645constructs which require @code{@value{AS}} to output address or operand 646size prefixes. 647 648Note that writing 16-bit code instructions by explicitly specifying a 649prefix or an instruction mnemonic suffix within a 32-bit code section 650generates different machine instructions than those generated for a 65116-bit code segment. In a 32-bit code section, the following code 652generates the machine opcode bytes @samp{66 6a 04}, which pushes the 653value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 654 655@smallexample 656 pushw $4 657@end smallexample 658 659The same code in a 16-bit code section would generate the machine 660opcode bytes @samp{6a 04} (ie. without the operand size prefix), which 661is correct since the processor default operand size is assumed to be 16 662bits in a 16-bit code section. 663 664@node i386-Bugs 665@section AT&T Syntax bugs 666 667The UnixWare assembler, and probably other AT&T derived ix86 Unix 668assemblers, generate floating point instructions with reversed source 669and destination registers in certain cases. Unfortunately, gcc and 670possibly many other programs use this reversed syntax, so we're stuck 671with it. 672 673For example 674 675@smallexample 676 fsub %st,%st(3) 677@end smallexample 678@noindent 679results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 680than the expected @samp{%st(3) - %st}. This happens with all the 681non-commutative arithmetic floating point operations with two register 682operands where the source register is @samp{%st} and the destination 683register is @samp{%st(i)}. 684 685@node i386-Arch 686@section Specifying CPU Architecture 687 688@cindex arch directive, i386 689@cindex i386 arch directive 690@cindex arch directive, x86-64 691@cindex x86-64 arch directive 692 693@code{@value{AS}} may be told to assemble for a particular CPU 694architecture with the @code{.arch @var{cpu_type}} directive. This 695directive enables a warning when gas detects an instruction that is not 696supported on the CPU specified. The choices for @var{cpu_type} are: 697 698@multitable @columnfractions .20 .20 .20 .20 699@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 700@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 701@item @samp{pentiumpro} @tab @samp{pentium4} @tab @samp{k6} @tab @samp{athlon} 702@item @samp{sledgehammer} 703@end multitable 704 705Apart from the warning, there are only two other effects on 706@code{@value{AS}} operation; Firstly, if you specify a CPU other than 707@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 708will automatically use a two byte opcode sequence. The larger three 709byte opcode sequence is used on the 486 (and when no architecture is 710specified) because it executes faster on the 486. Note that you can 711explicitly request the two byte opcode by writing @samp{sarl %eax}. 712Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 713@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 714conditional jumps will be promoted when necessary to a two instruction 715sequence consisting of a conditional jump of the opposite sense around 716an unconditional jump to the target. 717 718Following the CPU architecture, you may specify @samp{jumps} or 719@samp{nojumps} to control automatic promotion of conditional jumps. 720@samp{jumps} is the default, and enables jump promotion; All external 721jumps will be of the long variety, and file-local jumps will be promoted 722as necessary. (@pxref{i386-Jumps}) @samp{nojumps} leaves external 723conditional jumps as byte offset jumps, and warns about file-local 724conditional jumps that @code{@value{AS}} promotes. 725Unconditional jumps are treated as for @samp{jumps}. 726 727For example 728 729@smallexample 730 .arch i8086,nojumps 731@end smallexample 732 733@node i386-Notes 734@section Notes 735 736@cindex i386 @code{mul}, @code{imul} instructions 737@cindex @code{mul} instruction, i386 738@cindex @code{imul} instruction, i386 739@cindex @code{mul} instruction, x86-64 740@cindex @code{imul} instruction, x86-64 741There is some trickery concerning the @samp{mul} and @samp{imul} 742instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 743multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 744for @samp{imul}) can be output only in the one operand form. Thus, 745@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 746the expanding multiply would clobber the @samp{%edx} register, and this 747would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 74864-bit product in @samp{%edx:%eax}. 749 750We have added a two operand form of @samp{imul} when the first operand 751is an immediate mode expression and the second operand is a register. 752This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 753example, can be done with @samp{imul $69, %eax} rather than @samp{imul 754$69, %eax, %eax}. 755 756