1 /* GDB-specific functions for operating on agent expressions. 2 3 Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation, 4 Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 #include "symtab.h" 25 #include "symfile.h" 26 #include "gdbtypes.h" 27 #include "value.h" 28 #include "expression.h" 29 #include "command.h" 30 #include "gdbcmd.h" 31 #include "frame.h" 32 #include "target.h" 33 #include "ax.h" 34 #include "ax-gdb.h" 35 #include "gdb_string.h" 36 #include "block.h" 37 #include "regcache.h" 38 39 /* To make sense of this file, you should read doc/agentexpr.texi. 40 Then look at the types and enums in ax-gdb.h. For the code itself, 41 look at gen_expr, towards the bottom; that's the main function that 42 looks at the GDB expressions and calls everything else to generate 43 code. 44 45 I'm beginning to wonder whether it wouldn't be nicer to internally 46 generate trees, with types, and then spit out the bytecode in 47 linear form afterwards; we could generate fewer `swap', `ext', and 48 `zero_ext' bytecodes that way; it would make good constant folding 49 easier, too. But at the moment, I think we should be willing to 50 pay for the simplicity of this code with less-than-optimal bytecode 51 strings. 52 53 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */ 54 55 56 57 /* Prototypes for local functions. */ 58 59 /* There's a standard order to the arguments of these functions: 60 union exp_element ** --- pointer into expression 61 struct agent_expr * --- agent expression buffer to generate code into 62 struct axs_value * --- describes value left on top of stack */ 63 64 static struct value *const_var_ref (struct symbol *var); 65 static struct value *const_expr (union exp_element **pc); 66 static struct value *maybe_const_expr (union exp_element **pc); 67 68 static void gen_traced_pop (struct agent_expr *, struct axs_value *); 69 70 static void gen_sign_extend (struct agent_expr *, struct type *); 71 static void gen_extend (struct agent_expr *, struct type *); 72 static void gen_fetch (struct agent_expr *, struct type *); 73 static void gen_left_shift (struct agent_expr *, int); 74 75 76 static void gen_frame_args_address (struct agent_expr *); 77 static void gen_frame_locals_address (struct agent_expr *); 78 static void gen_offset (struct agent_expr *ax, int offset); 79 static void gen_sym_offset (struct agent_expr *, struct symbol *); 80 static void gen_var_ref (struct agent_expr *ax, 81 struct axs_value *value, struct symbol *var); 82 83 84 static void gen_int_literal (struct agent_expr *ax, 85 struct axs_value *value, 86 LONGEST k, struct type *type); 87 88 89 static void require_rvalue (struct agent_expr *ax, struct axs_value *value); 90 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value); 91 static int type_wider_than (struct type *type1, struct type *type2); 92 static struct type *max_type (struct type *type1, struct type *type2); 93 static void gen_conversion (struct agent_expr *ax, 94 struct type *from, struct type *to); 95 static int is_nontrivial_conversion (struct type *from, struct type *to); 96 static void gen_usual_arithmetic (struct agent_expr *ax, 97 struct axs_value *value1, 98 struct axs_value *value2); 99 static void gen_integral_promotions (struct agent_expr *ax, 100 struct axs_value *value); 101 static void gen_cast (struct agent_expr *ax, 102 struct axs_value *value, struct type *type); 103 static void gen_scale (struct agent_expr *ax, 104 enum agent_op op, struct type *type); 105 static void gen_add (struct agent_expr *ax, 106 struct axs_value *value, 107 struct axs_value *value1, 108 struct axs_value *value2, char *name); 109 static void gen_sub (struct agent_expr *ax, 110 struct axs_value *value, 111 struct axs_value *value1, struct axs_value *value2); 112 static void gen_binop (struct agent_expr *ax, 113 struct axs_value *value, 114 struct axs_value *value1, 115 struct axs_value *value2, 116 enum agent_op op, 117 enum agent_op op_unsigned, int may_carry, char *name); 118 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value); 119 static void gen_complement (struct agent_expr *ax, struct axs_value *value); 120 static void gen_deref (struct agent_expr *, struct axs_value *); 121 static void gen_address_of (struct agent_expr *, struct axs_value *); 122 static int find_field (struct type *type, char *name); 123 static void gen_bitfield_ref (struct agent_expr *ax, 124 struct axs_value *value, 125 struct type *type, int start, int end); 126 static void gen_struct_ref (struct agent_expr *ax, 127 struct axs_value *value, 128 char *field, 129 char *operator_name, char *operand_name); 130 static void gen_repeat (union exp_element **pc, 131 struct agent_expr *ax, struct axs_value *value); 132 static void gen_sizeof (union exp_element **pc, 133 struct agent_expr *ax, struct axs_value *value); 134 static void gen_expr (union exp_element **pc, 135 struct agent_expr *ax, struct axs_value *value); 136 137 static void agent_command (char *exp, int from_tty); 138 139 140 /* Detecting constant expressions. */ 141 142 /* If the variable reference at *PC is a constant, return its value. 143 Otherwise, return zero. 144 145 Hey, Wally! How can a variable reference be a constant? 146 147 Well, Beav, this function really handles the OP_VAR_VALUE operator, 148 not specifically variable references. GDB uses OP_VAR_VALUE to 149 refer to any kind of symbolic reference: function names, enum 150 elements, and goto labels are all handled through the OP_VAR_VALUE 151 operator, even though they're constants. It makes sense given the 152 situation. 153 154 Gee, Wally, don'cha wonder sometimes if data representations that 155 subvert commonly accepted definitions of terms in favor of heavily 156 context-specific interpretations are really just a tool of the 157 programming hegemony to preserve their power and exclude the 158 proletariat? */ 159 160 static struct value * 161 const_var_ref (struct symbol *var) 162 { 163 struct type *type = SYMBOL_TYPE (var); 164 165 switch (SYMBOL_CLASS (var)) 166 { 167 case LOC_CONST: 168 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var)); 169 170 case LOC_LABEL: 171 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var)); 172 173 default: 174 return 0; 175 } 176 } 177 178 179 /* If the expression starting at *PC has a constant value, return it. 180 Otherwise, return zero. If we return a value, then *PC will be 181 advanced to the end of it. If we return zero, *PC could be 182 anywhere. */ 183 static struct value * 184 const_expr (union exp_element **pc) 185 { 186 enum exp_opcode op = (*pc)->opcode; 187 struct value *v1; 188 189 switch (op) 190 { 191 case OP_LONG: 192 { 193 struct type *type = (*pc)[1].type; 194 LONGEST k = (*pc)[2].longconst; 195 (*pc) += 4; 196 return value_from_longest (type, k); 197 } 198 199 case OP_VAR_VALUE: 200 { 201 struct value *v = const_var_ref ((*pc)[2].symbol); 202 (*pc) += 4; 203 return v; 204 } 205 206 /* We could add more operators in here. */ 207 208 case UNOP_NEG: 209 (*pc)++; 210 v1 = const_expr (pc); 211 if (v1) 212 return value_neg (v1); 213 else 214 return 0; 215 216 default: 217 return 0; 218 } 219 } 220 221 222 /* Like const_expr, but guarantee also that *PC is undisturbed if the 223 expression is not constant. */ 224 static struct value * 225 maybe_const_expr (union exp_element **pc) 226 { 227 union exp_element *tentative_pc = *pc; 228 struct value *v = const_expr (&tentative_pc); 229 230 /* If we got a value, then update the real PC. */ 231 if (v) 232 *pc = tentative_pc; 233 234 return v; 235 } 236 237 238 /* Generating bytecode from GDB expressions: general assumptions */ 239 240 /* Here are a few general assumptions made throughout the code; if you 241 want to make a change that contradicts one of these, then you'd 242 better scan things pretty thoroughly. 243 244 - We assume that all values occupy one stack element. For example, 245 sometimes we'll swap to get at the left argument to a binary 246 operator. If we decide that void values should occupy no stack 247 elements, or that synthetic arrays (whose size is determined at 248 run time, created by the `@' operator) should occupy two stack 249 elements (address and length), then this will cause trouble. 250 251 - We assume the stack elements are infinitely wide, and that we 252 don't have to worry what happens if the user requests an 253 operation that is wider than the actual interpreter's stack. 254 That is, it's up to the interpreter to handle directly all the 255 integer widths the user has access to. (Woe betide the language 256 with bignums!) 257 258 - We don't support side effects. Thus, we don't have to worry about 259 GCC's generalized lvalues, function calls, etc. 260 261 - We don't support floating point. Many places where we switch on 262 some type don't bother to include cases for floating point; there 263 may be even more subtle ways this assumption exists. For 264 example, the arguments to % must be integers. 265 266 - We assume all subexpressions have a static, unchanging type. If 267 we tried to support convenience variables, this would be a 268 problem. 269 270 - All values on the stack should always be fully zero- or 271 sign-extended. 272 273 (I wasn't sure whether to choose this or its opposite --- that 274 only addresses are assumed extended --- but it turns out that 275 neither convention completely eliminates spurious extend 276 operations (if everything is always extended, then you have to 277 extend after add, because it could overflow; if nothing is 278 extended, then you end up producing extends whenever you change 279 sizes), and this is simpler.) */ 280 281 282 /* Generating bytecode from GDB expressions: the `trace' kludge */ 283 284 /* The compiler in this file is a general-purpose mechanism for 285 translating GDB expressions into bytecode. One ought to be able to 286 find a million and one uses for it. 287 288 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake 289 of expediency. Let he who is without sin cast the first stone. 290 291 For the data tracing facility, we need to insert `trace' bytecodes 292 before each data fetch; this records all the memory that the 293 expression touches in the course of evaluation, so that memory will 294 be available when the user later tries to evaluate the expression 295 in GDB. 296 297 This should be done (I think) in a post-processing pass, that walks 298 an arbitrary agent expression and inserts `trace' operations at the 299 appropriate points. But it's much faster to just hack them 300 directly into the code. And since we're in a crunch, that's what 301 I've done. 302 303 Setting the flag trace_kludge to non-zero enables the code that 304 emits the trace bytecodes at the appropriate points. */ 305 static int trace_kludge; 306 307 /* Trace the lvalue on the stack, if it needs it. In either case, pop 308 the value. Useful on the left side of a comma, and at the end of 309 an expression being used for tracing. */ 310 static void 311 gen_traced_pop (struct agent_expr *ax, struct axs_value *value) 312 { 313 if (trace_kludge) 314 switch (value->kind) 315 { 316 case axs_rvalue: 317 /* We don't trace rvalues, just the lvalues necessary to 318 produce them. So just dispose of this value. */ 319 ax_simple (ax, aop_pop); 320 break; 321 322 case axs_lvalue_memory: 323 { 324 int length = TYPE_LENGTH (value->type); 325 326 /* There's no point in trying to use a trace_quick bytecode 327 here, since "trace_quick SIZE pop" is three bytes, whereas 328 "const8 SIZE trace" is also three bytes, does the same 329 thing, and the simplest code which generates that will also 330 work correctly for objects with large sizes. */ 331 ax_const_l (ax, length); 332 ax_simple (ax, aop_trace); 333 } 334 break; 335 336 case axs_lvalue_register: 337 /* We need to mention the register somewhere in the bytecode, 338 so ax_reqs will pick it up and add it to the mask of 339 registers used. */ 340 ax_reg (ax, value->u.reg); 341 ax_simple (ax, aop_pop); 342 break; 343 } 344 else 345 /* If we're not tracing, just pop the value. */ 346 ax_simple (ax, aop_pop); 347 } 348 349 350 351 /* Generating bytecode from GDB expressions: helper functions */ 352 353 /* Assume that the lower bits of the top of the stack is a value of 354 type TYPE, and the upper bits are zero. Sign-extend if necessary. */ 355 static void 356 gen_sign_extend (struct agent_expr *ax, struct type *type) 357 { 358 /* Do we need to sign-extend this? */ 359 if (!TYPE_UNSIGNED (type)) 360 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT); 361 } 362 363 364 /* Assume the lower bits of the top of the stack hold a value of type 365 TYPE, and the upper bits are garbage. Sign-extend or truncate as 366 needed. */ 367 static void 368 gen_extend (struct agent_expr *ax, struct type *type) 369 { 370 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT; 371 /* I just had to. */ 372 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits)); 373 } 374 375 376 /* Assume that the top of the stack contains a value of type "pointer 377 to TYPE"; generate code to fetch its value. Note that TYPE is the 378 target type, not the pointer type. */ 379 static void 380 gen_fetch (struct agent_expr *ax, struct type *type) 381 { 382 if (trace_kludge) 383 { 384 /* Record the area of memory we're about to fetch. */ 385 ax_trace_quick (ax, TYPE_LENGTH (type)); 386 } 387 388 switch (TYPE_CODE (type)) 389 { 390 case TYPE_CODE_PTR: 391 case TYPE_CODE_ENUM: 392 case TYPE_CODE_INT: 393 case TYPE_CODE_CHAR: 394 /* It's a scalar value, so we know how to dereference it. How 395 many bytes long is it? */ 396 switch (TYPE_LENGTH (type)) 397 { 398 case 8 / TARGET_CHAR_BIT: 399 ax_simple (ax, aop_ref8); 400 break; 401 case 16 / TARGET_CHAR_BIT: 402 ax_simple (ax, aop_ref16); 403 break; 404 case 32 / TARGET_CHAR_BIT: 405 ax_simple (ax, aop_ref32); 406 break; 407 case 64 / TARGET_CHAR_BIT: 408 ax_simple (ax, aop_ref64); 409 break; 410 411 /* Either our caller shouldn't have asked us to dereference 412 that pointer (other code's fault), or we're not 413 implementing something we should be (this code's fault). 414 In any case, it's a bug the user shouldn't see. */ 415 default: 416 internal_error (__FILE__, __LINE__, 417 "gen_fetch: strange size"); 418 } 419 420 gen_sign_extend (ax, type); 421 break; 422 423 default: 424 /* Either our caller shouldn't have asked us to dereference that 425 pointer (other code's fault), or we're not implementing 426 something we should be (this code's fault). In any case, 427 it's a bug the user shouldn't see. */ 428 internal_error (__FILE__, __LINE__, 429 "gen_fetch: bad type code"); 430 } 431 } 432 433 434 /* Generate code to left shift the top of the stack by DISTANCE bits, or 435 right shift it by -DISTANCE bits if DISTANCE < 0. This generates 436 unsigned (logical) right shifts. */ 437 static void 438 gen_left_shift (struct agent_expr *ax, int distance) 439 { 440 if (distance > 0) 441 { 442 ax_const_l (ax, distance); 443 ax_simple (ax, aop_lsh); 444 } 445 else if (distance < 0) 446 { 447 ax_const_l (ax, -distance); 448 ax_simple (ax, aop_rsh_unsigned); 449 } 450 } 451 452 453 454 /* Generating bytecode from GDB expressions: symbol references */ 455 456 /* Generate code to push the base address of the argument portion of 457 the top stack frame. */ 458 static void 459 gen_frame_args_address (struct agent_expr *ax) 460 { 461 int frame_reg; 462 LONGEST frame_offset; 463 464 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset); 465 ax_reg (ax, frame_reg); 466 gen_offset (ax, frame_offset); 467 } 468 469 470 /* Generate code to push the base address of the locals portion of the 471 top stack frame. */ 472 static void 473 gen_frame_locals_address (struct agent_expr *ax) 474 { 475 int frame_reg; 476 LONGEST frame_offset; 477 478 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset); 479 ax_reg (ax, frame_reg); 480 gen_offset (ax, frame_offset); 481 } 482 483 484 /* Generate code to add OFFSET to the top of the stack. Try to 485 generate short and readable code. We use this for getting to 486 variables on the stack, and structure members. If we were 487 programming in ML, it would be clearer why these are the same 488 thing. */ 489 static void 490 gen_offset (struct agent_expr *ax, int offset) 491 { 492 /* It would suffice to simply push the offset and add it, but this 493 makes it easier to read positive and negative offsets in the 494 bytecode. */ 495 if (offset > 0) 496 { 497 ax_const_l (ax, offset); 498 ax_simple (ax, aop_add); 499 } 500 else if (offset < 0) 501 { 502 ax_const_l (ax, -offset); 503 ax_simple (ax, aop_sub); 504 } 505 } 506 507 508 /* In many cases, a symbol's value is the offset from some other 509 address (stack frame, base register, etc.) Generate code to add 510 VAR's value to the top of the stack. */ 511 static void 512 gen_sym_offset (struct agent_expr *ax, struct symbol *var) 513 { 514 gen_offset (ax, SYMBOL_VALUE (var)); 515 } 516 517 518 /* Generate code for a variable reference to AX. The variable is the 519 symbol VAR. Set VALUE to describe the result. */ 520 521 static void 522 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var) 523 { 524 /* Dereference any typedefs. */ 525 value->type = check_typedef (SYMBOL_TYPE (var)); 526 527 /* I'm imitating the code in read_var_value. */ 528 switch (SYMBOL_CLASS (var)) 529 { 530 case LOC_CONST: /* A constant, like an enum value. */ 531 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var)); 532 value->kind = axs_rvalue; 533 break; 534 535 case LOC_LABEL: /* A goto label, being used as a value. */ 536 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var)); 537 value->kind = axs_rvalue; 538 break; 539 540 case LOC_CONST_BYTES: 541 internal_error (__FILE__, __LINE__, 542 "gen_var_ref: LOC_CONST_BYTES symbols are not supported"); 543 544 /* Variable at a fixed location in memory. Easy. */ 545 case LOC_STATIC: 546 /* Push the address of the variable. */ 547 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var)); 548 value->kind = axs_lvalue_memory; 549 break; 550 551 case LOC_ARG: /* var lives in argument area of frame */ 552 gen_frame_args_address (ax); 553 gen_sym_offset (ax, var); 554 value->kind = axs_lvalue_memory; 555 break; 556 557 case LOC_REF_ARG: /* As above, but the frame slot really 558 holds the address of the variable. */ 559 gen_frame_args_address (ax); 560 gen_sym_offset (ax, var); 561 /* Don't assume any particular pointer size. */ 562 gen_fetch (ax, lookup_pointer_type (builtin_type_void)); 563 value->kind = axs_lvalue_memory; 564 break; 565 566 case LOC_LOCAL: /* var lives in locals area of frame */ 567 case LOC_LOCAL_ARG: 568 gen_frame_locals_address (ax); 569 gen_sym_offset (ax, var); 570 value->kind = axs_lvalue_memory; 571 break; 572 573 case LOC_BASEREG: /* relative to some base register */ 574 case LOC_BASEREG_ARG: 575 ax_reg (ax, SYMBOL_BASEREG (var)); 576 gen_sym_offset (ax, var); 577 value->kind = axs_lvalue_memory; 578 break; 579 580 case LOC_TYPEDEF: 581 error ("Cannot compute value of typedef `%s'.", 582 SYMBOL_PRINT_NAME (var)); 583 break; 584 585 case LOC_BLOCK: 586 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var))); 587 value->kind = axs_rvalue; 588 break; 589 590 case LOC_REGISTER: 591 case LOC_REGPARM: 592 /* Don't generate any code at all; in the process of treating 593 this as an lvalue or rvalue, the caller will generate the 594 right code. */ 595 value->kind = axs_lvalue_register; 596 value->u.reg = SYMBOL_VALUE (var); 597 break; 598 599 /* A lot like LOC_REF_ARG, but the pointer lives directly in a 600 register, not on the stack. Simpler than LOC_REGISTER and 601 LOC_REGPARM, because it's just like any other case where the 602 thing has a real address. */ 603 case LOC_REGPARM_ADDR: 604 ax_reg (ax, SYMBOL_VALUE (var)); 605 value->kind = axs_lvalue_memory; 606 break; 607 608 case LOC_UNRESOLVED: 609 { 610 struct minimal_symbol *msym 611 = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL); 612 if (!msym) 613 error ("Couldn't resolve symbol `%s'.", SYMBOL_PRINT_NAME (var)); 614 615 /* Push the address of the variable. */ 616 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym)); 617 value->kind = axs_lvalue_memory; 618 } 619 break; 620 621 case LOC_COMPUTED: 622 case LOC_COMPUTED_ARG: 623 /* FIXME: cagney/2004-01-26: It should be possible to 624 unconditionally call the SYMBOL_OPS method when available. 625 Unfortunately DWARF 2 stores the frame-base (instead of the 626 function) location in a function's symbol. Oops! For the 627 moment enable this when/where applicable. */ 628 SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value); 629 break; 630 631 case LOC_OPTIMIZED_OUT: 632 error ("The variable `%s' has been optimized out.", 633 SYMBOL_PRINT_NAME (var)); 634 break; 635 636 default: 637 error ("Cannot find value of botched symbol `%s'.", 638 SYMBOL_PRINT_NAME (var)); 639 break; 640 } 641 } 642 643 644 645 /* Generating bytecode from GDB expressions: literals */ 646 647 static void 648 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k, 649 struct type *type) 650 { 651 ax_const_l (ax, k); 652 value->kind = axs_rvalue; 653 value->type = type; 654 } 655 656 657 658 /* Generating bytecode from GDB expressions: unary conversions, casts */ 659 660 /* Take what's on the top of the stack (as described by VALUE), and 661 try to make an rvalue out of it. Signal an error if we can't do 662 that. */ 663 static void 664 require_rvalue (struct agent_expr *ax, struct axs_value *value) 665 { 666 switch (value->kind) 667 { 668 case axs_rvalue: 669 /* It's already an rvalue. */ 670 break; 671 672 case axs_lvalue_memory: 673 /* The top of stack is the address of the object. Dereference. */ 674 gen_fetch (ax, value->type); 675 break; 676 677 case axs_lvalue_register: 678 /* There's nothing on the stack, but value->u.reg is the 679 register number containing the value. 680 681 When we add floating-point support, this is going to have to 682 change. What about SPARC register pairs, for example? */ 683 ax_reg (ax, value->u.reg); 684 gen_extend (ax, value->type); 685 break; 686 } 687 688 value->kind = axs_rvalue; 689 } 690 691 692 /* Assume the top of the stack is described by VALUE, and perform the 693 usual unary conversions. This is motivated by ANSI 6.2.2, but of 694 course GDB expressions are not ANSI; they're the mishmash union of 695 a bunch of languages. Rah. 696 697 NOTE! This function promises to produce an rvalue only when the 698 incoming value is of an appropriate type. In other words, the 699 consumer of the value this function produces may assume the value 700 is an rvalue only after checking its type. 701 702 The immediate issue is that if the user tries to use a structure or 703 union as an operand of, say, the `+' operator, we don't want to try 704 to convert that structure to an rvalue; require_rvalue will bomb on 705 structs and unions. Rather, we want to simply pass the struct 706 lvalue through unchanged, and let `+' raise an error. */ 707 708 static void 709 gen_usual_unary (struct agent_expr *ax, struct axs_value *value) 710 { 711 /* We don't have to generate any code for the usual integral 712 conversions, since values are always represented as full-width on 713 the stack. Should we tweak the type? */ 714 715 /* Some types require special handling. */ 716 switch (TYPE_CODE (value->type)) 717 { 718 /* Functions get converted to a pointer to the function. */ 719 case TYPE_CODE_FUNC: 720 value->type = lookup_pointer_type (value->type); 721 value->kind = axs_rvalue; /* Should always be true, but just in case. */ 722 break; 723 724 /* Arrays get converted to a pointer to their first element, and 725 are no longer an lvalue. */ 726 case TYPE_CODE_ARRAY: 727 { 728 struct type *elements = TYPE_TARGET_TYPE (value->type); 729 value->type = lookup_pointer_type (elements); 730 value->kind = axs_rvalue; 731 /* We don't need to generate any code; the address of the array 732 is also the address of its first element. */ 733 } 734 break; 735 736 /* Don't try to convert structures and unions to rvalues. Let the 737 consumer signal an error. */ 738 case TYPE_CODE_STRUCT: 739 case TYPE_CODE_UNION: 740 return; 741 742 /* If the value is an enum, call it an integer. */ 743 case TYPE_CODE_ENUM: 744 value->type = builtin_type_int; 745 break; 746 } 747 748 /* If the value is an lvalue, dereference it. */ 749 require_rvalue (ax, value); 750 } 751 752 753 /* Return non-zero iff the type TYPE1 is considered "wider" than the 754 type TYPE2, according to the rules described in gen_usual_arithmetic. */ 755 static int 756 type_wider_than (struct type *type1, struct type *type2) 757 { 758 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2) 759 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2) 760 && TYPE_UNSIGNED (type1) 761 && !TYPE_UNSIGNED (type2))); 762 } 763 764 765 /* Return the "wider" of the two types TYPE1 and TYPE2. */ 766 static struct type * 767 max_type (struct type *type1, struct type *type2) 768 { 769 return type_wider_than (type1, type2) ? type1 : type2; 770 } 771 772 773 /* Generate code to convert a scalar value of type FROM to type TO. */ 774 static void 775 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to) 776 { 777 /* Perhaps there is a more graceful way to state these rules. */ 778 779 /* If we're converting to a narrower type, then we need to clear out 780 the upper bits. */ 781 if (TYPE_LENGTH (to) < TYPE_LENGTH (from)) 782 gen_extend (ax, from); 783 784 /* If the two values have equal width, but different signednesses, 785 then we need to extend. */ 786 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from)) 787 { 788 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to)) 789 gen_extend (ax, to); 790 } 791 792 /* If we're converting to a wider type, and becoming unsigned, then 793 we need to zero out any possible sign bits. */ 794 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from)) 795 { 796 if (TYPE_UNSIGNED (to)) 797 gen_extend (ax, to); 798 } 799 } 800 801 802 /* Return non-zero iff the type FROM will require any bytecodes to be 803 emitted to be converted to the type TO. */ 804 static int 805 is_nontrivial_conversion (struct type *from, struct type *to) 806 { 807 struct agent_expr *ax = new_agent_expr (0); 808 int nontrivial; 809 810 /* Actually generate the code, and see if anything came out. At the 811 moment, it would be trivial to replicate the code in 812 gen_conversion here, but in the future, when we're supporting 813 floating point and the like, it may not be. Doing things this 814 way allows this function to be independent of the logic in 815 gen_conversion. */ 816 gen_conversion (ax, from, to); 817 nontrivial = ax->len > 0; 818 free_agent_expr (ax); 819 return nontrivial; 820 } 821 822 823 /* Generate code to perform the "usual arithmetic conversions" (ANSI C 824 6.2.1.5) for the two operands of an arithmetic operator. This 825 effectively finds a "least upper bound" type for the two arguments, 826 and promotes each argument to that type. *VALUE1 and *VALUE2 827 describe the values as they are passed in, and as they are left. */ 828 static void 829 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1, 830 struct axs_value *value2) 831 { 832 /* Do the usual binary conversions. */ 833 if (TYPE_CODE (value1->type) == TYPE_CODE_INT 834 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 835 { 836 /* The ANSI integral promotions seem to work this way: Order the 837 integer types by size, and then by signedness: an n-bit 838 unsigned type is considered "wider" than an n-bit signed 839 type. Promote to the "wider" of the two types, and always 840 promote at least to int. */ 841 struct type *target = max_type (builtin_type_int, 842 max_type (value1->type, value2->type)); 843 844 /* Deal with value2, on the top of the stack. */ 845 gen_conversion (ax, value2->type, target); 846 847 /* Deal with value1, not on the top of the stack. Don't 848 generate the `swap' instructions if we're not actually going 849 to do anything. */ 850 if (is_nontrivial_conversion (value1->type, target)) 851 { 852 ax_simple (ax, aop_swap); 853 gen_conversion (ax, value1->type, target); 854 ax_simple (ax, aop_swap); 855 } 856 857 value1->type = value2->type = target; 858 } 859 } 860 861 862 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on 863 the value on the top of the stack, as described by VALUE. Assume 864 the value has integral type. */ 865 static void 866 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value) 867 { 868 if (!type_wider_than (value->type, builtin_type_int)) 869 { 870 gen_conversion (ax, value->type, builtin_type_int); 871 value->type = builtin_type_int; 872 } 873 else if (!type_wider_than (value->type, builtin_type_unsigned_int)) 874 { 875 gen_conversion (ax, value->type, builtin_type_unsigned_int); 876 value->type = builtin_type_unsigned_int; 877 } 878 } 879 880 881 /* Generate code for a cast to TYPE. */ 882 static void 883 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type) 884 { 885 /* GCC does allow casts to yield lvalues, so this should be fixed 886 before merging these changes into the trunk. */ 887 require_rvalue (ax, value); 888 /* Dereference typedefs. */ 889 type = check_typedef (type); 890 891 switch (TYPE_CODE (type)) 892 { 893 case TYPE_CODE_PTR: 894 /* It's implementation-defined, and I'll bet this is what GCC 895 does. */ 896 break; 897 898 case TYPE_CODE_ARRAY: 899 case TYPE_CODE_STRUCT: 900 case TYPE_CODE_UNION: 901 case TYPE_CODE_FUNC: 902 error ("Illegal type cast: intended type must be scalar."); 903 904 case TYPE_CODE_ENUM: 905 /* We don't have to worry about the size of the value, because 906 all our integral values are fully sign-extended, and when 907 casting pointers we can do anything we like. Is there any 908 way for us to actually know what GCC actually does with a 909 cast like this? */ 910 value->type = type; 911 break; 912 913 case TYPE_CODE_INT: 914 gen_conversion (ax, value->type, type); 915 break; 916 917 case TYPE_CODE_VOID: 918 /* We could pop the value, and rely on everyone else to check 919 the type and notice that this value doesn't occupy a stack 920 slot. But for now, leave the value on the stack, and 921 preserve the "value == stack element" assumption. */ 922 break; 923 924 default: 925 error ("Casts to requested type are not yet implemented."); 926 } 927 928 value->type = type; 929 } 930 931 932 933 /* Generating bytecode from GDB expressions: arithmetic */ 934 935 /* Scale the integer on the top of the stack by the size of the target 936 of the pointer type TYPE. */ 937 static void 938 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type) 939 { 940 struct type *element = TYPE_TARGET_TYPE (type); 941 942 if (TYPE_LENGTH (element) != 1) 943 { 944 ax_const_l (ax, TYPE_LENGTH (element)); 945 ax_simple (ax, op); 946 } 947 } 948 949 950 /* Generate code for an addition; non-trivial because we deal with 951 pointer arithmetic. We set VALUE to describe the result value; we 952 assume VALUE1 and VALUE2 describe the two operands, and that 953 they've undergone the usual binary conversions. Used by both 954 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */ 955 static void 956 gen_add (struct agent_expr *ax, struct axs_value *value, 957 struct axs_value *value1, struct axs_value *value2, char *name) 958 { 959 /* Is it INT+PTR? */ 960 if (TYPE_CODE (value1->type) == TYPE_CODE_INT 961 && TYPE_CODE (value2->type) == TYPE_CODE_PTR) 962 { 963 /* Swap the values and proceed normally. */ 964 ax_simple (ax, aop_swap); 965 gen_scale (ax, aop_mul, value2->type); 966 ax_simple (ax, aop_add); 967 gen_extend (ax, value2->type); /* Catch overflow. */ 968 value->type = value2->type; 969 } 970 971 /* Is it PTR+INT? */ 972 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR 973 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 974 { 975 gen_scale (ax, aop_mul, value1->type); 976 ax_simple (ax, aop_add); 977 gen_extend (ax, value1->type); /* Catch overflow. */ 978 value->type = value1->type; 979 } 980 981 /* Must be number + number; the usual binary conversions will have 982 brought them both to the same width. */ 983 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT 984 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 985 { 986 ax_simple (ax, aop_add); 987 gen_extend (ax, value1->type); /* Catch overflow. */ 988 value->type = value1->type; 989 } 990 991 else 992 error ("Illegal combination of types in %s.", name); 993 994 value->kind = axs_rvalue; 995 } 996 997 998 /* Generate code for an addition; non-trivial because we have to deal 999 with pointer arithmetic. We set VALUE to describe the result 1000 value; we assume VALUE1 and VALUE2 describe the two operands, and 1001 that they've undergone the usual binary conversions. */ 1002 static void 1003 gen_sub (struct agent_expr *ax, struct axs_value *value, 1004 struct axs_value *value1, struct axs_value *value2) 1005 { 1006 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR) 1007 { 1008 /* Is it PTR - INT? */ 1009 if (TYPE_CODE (value2->type) == TYPE_CODE_INT) 1010 { 1011 gen_scale (ax, aop_mul, value1->type); 1012 ax_simple (ax, aop_sub); 1013 gen_extend (ax, value1->type); /* Catch overflow. */ 1014 value->type = value1->type; 1015 } 1016 1017 /* Is it PTR - PTR? Strictly speaking, the types ought to 1018 match, but this is what the normal GDB expression evaluator 1019 tests for. */ 1020 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR 1021 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type)) 1022 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))) 1023 { 1024 ax_simple (ax, aop_sub); 1025 gen_scale (ax, aop_div_unsigned, value1->type); 1026 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */ 1027 } 1028 else 1029 error ("\ 1030 First argument of `-' is a pointer, but second argument is neither\n\ 1031 an integer nor a pointer of the same type."); 1032 } 1033 1034 /* Must be number + number. */ 1035 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT 1036 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 1037 { 1038 ax_simple (ax, aop_sub); 1039 gen_extend (ax, value1->type); /* Catch overflow. */ 1040 value->type = value1->type; 1041 } 1042 1043 else 1044 error ("Illegal combination of types in subtraction."); 1045 1046 value->kind = axs_rvalue; 1047 } 1048 1049 /* Generate code for a binary operator that doesn't do pointer magic. 1050 We set VALUE to describe the result value; we assume VALUE1 and 1051 VALUE2 describe the two operands, and that they've undergone the 1052 usual binary conversions. MAY_CARRY should be non-zero iff the 1053 result needs to be extended. NAME is the English name of the 1054 operator, used in error messages */ 1055 static void 1056 gen_binop (struct agent_expr *ax, struct axs_value *value, 1057 struct axs_value *value1, struct axs_value *value2, enum agent_op op, 1058 enum agent_op op_unsigned, int may_carry, char *name) 1059 { 1060 /* We only handle INT op INT. */ 1061 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT) 1062 || (TYPE_CODE (value2->type) != TYPE_CODE_INT)) 1063 error ("Illegal combination of types in %s.", name); 1064 1065 ax_simple (ax, 1066 TYPE_UNSIGNED (value1->type) ? op_unsigned : op); 1067 if (may_carry) 1068 gen_extend (ax, value1->type); /* catch overflow */ 1069 value->type = value1->type; 1070 value->kind = axs_rvalue; 1071 } 1072 1073 1074 static void 1075 gen_logical_not (struct agent_expr *ax, struct axs_value *value) 1076 { 1077 if (TYPE_CODE (value->type) != TYPE_CODE_INT 1078 && TYPE_CODE (value->type) != TYPE_CODE_PTR) 1079 error ("Illegal type of operand to `!'."); 1080 1081 gen_usual_unary (ax, value); 1082 ax_simple (ax, aop_log_not); 1083 value->type = builtin_type_int; 1084 } 1085 1086 1087 static void 1088 gen_complement (struct agent_expr *ax, struct axs_value *value) 1089 { 1090 if (TYPE_CODE (value->type) != TYPE_CODE_INT) 1091 error ("Illegal type of operand to `~'."); 1092 1093 gen_usual_unary (ax, value); 1094 gen_integral_promotions (ax, value); 1095 ax_simple (ax, aop_bit_not); 1096 gen_extend (ax, value->type); 1097 } 1098 1099 1100 1101 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */ 1102 1103 /* Dereference the value on the top of the stack. */ 1104 static void 1105 gen_deref (struct agent_expr *ax, struct axs_value *value) 1106 { 1107 /* The caller should check the type, because several operators use 1108 this, and we don't know what error message to generate. */ 1109 if (TYPE_CODE (value->type) != TYPE_CODE_PTR) 1110 internal_error (__FILE__, __LINE__, 1111 "gen_deref: expected a pointer"); 1112 1113 /* We've got an rvalue now, which is a pointer. We want to yield an 1114 lvalue, whose address is exactly that pointer. So we don't 1115 actually emit any code; we just change the type from "Pointer to 1116 T" to "T", and mark the value as an lvalue in memory. Leave it 1117 to the consumer to actually dereference it. */ 1118 value->type = check_typedef (TYPE_TARGET_TYPE (value->type)); 1119 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC) 1120 ? axs_rvalue : axs_lvalue_memory); 1121 } 1122 1123 1124 /* Produce the address of the lvalue on the top of the stack. */ 1125 static void 1126 gen_address_of (struct agent_expr *ax, struct axs_value *value) 1127 { 1128 /* Special case for taking the address of a function. The ANSI 1129 standard describes this as a special case, too, so this 1130 arrangement is not without motivation. */ 1131 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC) 1132 /* The value's already an rvalue on the stack, so we just need to 1133 change the type. */ 1134 value->type = lookup_pointer_type (value->type); 1135 else 1136 switch (value->kind) 1137 { 1138 case axs_rvalue: 1139 error ("Operand of `&' is an rvalue, which has no address."); 1140 1141 case axs_lvalue_register: 1142 error ("Operand of `&' is in a register, and has no address."); 1143 1144 case axs_lvalue_memory: 1145 value->kind = axs_rvalue; 1146 value->type = lookup_pointer_type (value->type); 1147 break; 1148 } 1149 } 1150 1151 1152 /* A lot of this stuff will have to change to support C++. But we're 1153 not going to deal with that at the moment. */ 1154 1155 /* Find the field in the structure type TYPE named NAME, and return 1156 its index in TYPE's field array. */ 1157 static int 1158 find_field (struct type *type, char *name) 1159 { 1160 int i; 1161 1162 CHECK_TYPEDEF (type); 1163 1164 /* Make sure this isn't C++. */ 1165 if (TYPE_N_BASECLASSES (type) != 0) 1166 internal_error (__FILE__, __LINE__, 1167 "find_field: derived classes supported"); 1168 1169 for (i = 0; i < TYPE_NFIELDS (type); i++) 1170 { 1171 char *this_name = TYPE_FIELD_NAME (type, i); 1172 1173 if (this_name && strcmp (name, this_name) == 0) 1174 return i; 1175 1176 if (this_name[0] == '\0') 1177 internal_error (__FILE__, __LINE__, 1178 "find_field: anonymous unions not supported"); 1179 } 1180 1181 error ("Couldn't find member named `%s' in struct/union `%s'", 1182 name, TYPE_TAG_NAME (type)); 1183 1184 return 0; 1185 } 1186 1187 1188 /* Generate code to push the value of a bitfield of a structure whose 1189 address is on the top of the stack. START and END give the 1190 starting and one-past-ending *bit* numbers of the field within the 1191 structure. */ 1192 static void 1193 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value, 1194 struct type *type, int start, int end) 1195 { 1196 /* Note that ops[i] fetches 8 << i bits. */ 1197 static enum agent_op ops[] 1198 = 1199 {aop_ref8, aop_ref16, aop_ref32, aop_ref64}; 1200 static int num_ops = (sizeof (ops) / sizeof (ops[0])); 1201 1202 /* We don't want to touch any byte that the bitfield doesn't 1203 actually occupy; we shouldn't make any accesses we're not 1204 explicitly permitted to. We rely here on the fact that the 1205 bytecode `ref' operators work on unaligned addresses. 1206 1207 It takes some fancy footwork to get the stack to work the way 1208 we'd like. Say we're retrieving a bitfield that requires three 1209 fetches. Initially, the stack just contains the address: 1210 addr 1211 For the first fetch, we duplicate the address 1212 addr addr 1213 then add the byte offset, do the fetch, and shift and mask as 1214 needed, yielding a fragment of the value, properly aligned for 1215 the final bitwise or: 1216 addr frag1 1217 then we swap, and repeat the process: 1218 frag1 addr --- address on top 1219 frag1 addr addr --- duplicate it 1220 frag1 addr frag2 --- get second fragment 1221 frag1 frag2 addr --- swap again 1222 frag1 frag2 frag3 --- get third fragment 1223 Notice that, since the third fragment is the last one, we don't 1224 bother duplicating the address this time. Now we have all the 1225 fragments on the stack, and we can simply `or' them together, 1226 yielding the final value of the bitfield. */ 1227 1228 /* The first and one-after-last bits in the field, but rounded down 1229 and up to byte boundaries. */ 1230 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT; 1231 int bound_end = (((end + TARGET_CHAR_BIT - 1) 1232 / TARGET_CHAR_BIT) 1233 * TARGET_CHAR_BIT); 1234 1235 /* current bit offset within the structure */ 1236 int offset; 1237 1238 /* The index in ops of the opcode we're considering. */ 1239 int op; 1240 1241 /* The number of fragments we generated in the process. Probably 1242 equal to the number of `one' bits in bytesize, but who cares? */ 1243 int fragment_count; 1244 1245 /* Dereference any typedefs. */ 1246 type = check_typedef (type); 1247 1248 /* Can we fetch the number of bits requested at all? */ 1249 if ((end - start) > ((1 << num_ops) * 8)) 1250 internal_error (__FILE__, __LINE__, 1251 "gen_bitfield_ref: bitfield too wide"); 1252 1253 /* Note that we know here that we only need to try each opcode once. 1254 That may not be true on machines with weird byte sizes. */ 1255 offset = bound_start; 1256 fragment_count = 0; 1257 for (op = num_ops - 1; op >= 0; op--) 1258 { 1259 /* number of bits that ops[op] would fetch */ 1260 int op_size = 8 << op; 1261 1262 /* The stack at this point, from bottom to top, contains zero or 1263 more fragments, then the address. */ 1264 1265 /* Does this fetch fit within the bitfield? */ 1266 if (offset + op_size <= bound_end) 1267 { 1268 /* Is this the last fragment? */ 1269 int last_frag = (offset + op_size == bound_end); 1270 1271 if (!last_frag) 1272 ax_simple (ax, aop_dup); /* keep a copy of the address */ 1273 1274 /* Add the offset. */ 1275 gen_offset (ax, offset / TARGET_CHAR_BIT); 1276 1277 if (trace_kludge) 1278 { 1279 /* Record the area of memory we're about to fetch. */ 1280 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT); 1281 } 1282 1283 /* Perform the fetch. */ 1284 ax_simple (ax, ops[op]); 1285 1286 /* Shift the bits we have to their proper position. 1287 gen_left_shift will generate right shifts when the operand 1288 is negative. 1289 1290 A big-endian field diagram to ponder: 1291 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 1292 +------++------++------++------++------++------++------++------+ 1293 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx 1294 ^ ^ ^ ^ 1295 bit number 16 32 48 53 1296 These are bit numbers as supplied by GDB. Note that the 1297 bit numbers run from right to left once you've fetched the 1298 value! 1299 1300 A little-endian field diagram to ponder: 1301 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 1302 +------++------++------++------++------++------++------++------+ 1303 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx 1304 ^ ^ ^ ^ ^ 1305 bit number 48 32 16 4 0 1306 1307 In both cases, the most significant end is on the left 1308 (i.e. normal numeric writing order), which means that you 1309 don't go crazy thinking about `left' and `right' shifts. 1310 1311 We don't have to worry about masking yet: 1312 - If they contain garbage off the least significant end, then we 1313 must be looking at the low end of the field, and the right 1314 shift will wipe them out. 1315 - If they contain garbage off the most significant end, then we 1316 must be looking at the most significant end of the word, and 1317 the sign/zero extension will wipe them out. 1318 - If we're in the interior of the word, then there is no garbage 1319 on either end, because the ref operators zero-extend. */ 1320 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) 1321 gen_left_shift (ax, end - (offset + op_size)); 1322 else 1323 gen_left_shift (ax, offset - start); 1324 1325 if (!last_frag) 1326 /* Bring the copy of the address up to the top. */ 1327 ax_simple (ax, aop_swap); 1328 1329 offset += op_size; 1330 fragment_count++; 1331 } 1332 } 1333 1334 /* Generate enough bitwise `or' operations to combine all the 1335 fragments we left on the stack. */ 1336 while (fragment_count-- > 1) 1337 ax_simple (ax, aop_bit_or); 1338 1339 /* Sign- or zero-extend the value as appropriate. */ 1340 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start)); 1341 1342 /* This is *not* an lvalue. Ugh. */ 1343 value->kind = axs_rvalue; 1344 value->type = type; 1345 } 1346 1347 1348 /* Generate code to reference the member named FIELD of a structure or 1349 union. The top of the stack, as described by VALUE, should have 1350 type (pointer to a)* struct/union. OPERATOR_NAME is the name of 1351 the operator being compiled, and OPERAND_NAME is the kind of thing 1352 it operates on; we use them in error messages. */ 1353 static void 1354 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field, 1355 char *operator_name, char *operand_name) 1356 { 1357 struct type *type; 1358 int i; 1359 1360 /* Follow pointers until we reach a non-pointer. These aren't the C 1361 semantics, but they're what the normal GDB evaluator does, so we 1362 should at least be consistent. */ 1363 while (TYPE_CODE (value->type) == TYPE_CODE_PTR) 1364 { 1365 gen_usual_unary (ax, value); 1366 gen_deref (ax, value); 1367 } 1368 type = check_typedef (value->type); 1369 1370 /* This must yield a structure or a union. */ 1371 if (TYPE_CODE (type) != TYPE_CODE_STRUCT 1372 && TYPE_CODE (type) != TYPE_CODE_UNION) 1373 error ("The left operand of `%s' is not a %s.", 1374 operator_name, operand_name); 1375 1376 /* And it must be in memory; we don't deal with structure rvalues, 1377 or structures living in registers. */ 1378 if (value->kind != axs_lvalue_memory) 1379 error ("Structure does not live in memory."); 1380 1381 i = find_field (type, field); 1382 1383 /* Is this a bitfield? */ 1384 if (TYPE_FIELD_PACKED (type, i)) 1385 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i), 1386 TYPE_FIELD_BITPOS (type, i), 1387 (TYPE_FIELD_BITPOS (type, i) 1388 + TYPE_FIELD_BITSIZE (type, i))); 1389 else 1390 { 1391 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT); 1392 value->kind = axs_lvalue_memory; 1393 value->type = TYPE_FIELD_TYPE (type, i); 1394 } 1395 } 1396 1397 1398 /* Generate code for GDB's magical `repeat' operator. 1399 LVALUE @ INT creates an array INT elements long, and whose elements 1400 have the same type as LVALUE, located in memory so that LVALUE is 1401 its first element. For example, argv[0]@argc gives you the array 1402 of command-line arguments. 1403 1404 Unfortunately, because we have to know the types before we actually 1405 have a value for the expression, we can't implement this perfectly 1406 without changing the type system, having values that occupy two 1407 stack slots, doing weird things with sizeof, etc. So we require 1408 the right operand to be a constant expression. */ 1409 static void 1410 gen_repeat (union exp_element **pc, struct agent_expr *ax, 1411 struct axs_value *value) 1412 { 1413 struct axs_value value1; 1414 /* We don't want to turn this into an rvalue, so no conversions 1415 here. */ 1416 gen_expr (pc, ax, &value1); 1417 if (value1.kind != axs_lvalue_memory) 1418 error ("Left operand of `@' must be an object in memory."); 1419 1420 /* Evaluate the length; it had better be a constant. */ 1421 { 1422 struct value *v = const_expr (pc); 1423 int length; 1424 1425 if (!v) 1426 error ("Right operand of `@' must be a constant, in agent expressions."); 1427 if (TYPE_CODE (v->type) != TYPE_CODE_INT) 1428 error ("Right operand of `@' must be an integer."); 1429 length = value_as_long (v); 1430 if (length <= 0) 1431 error ("Right operand of `@' must be positive."); 1432 1433 /* The top of the stack is already the address of the object, so 1434 all we need to do is frob the type of the lvalue. */ 1435 { 1436 /* FIXME-type-allocation: need a way to free this type when we are 1437 done with it. */ 1438 struct type *range 1439 = create_range_type (0, builtin_type_int, 0, length - 1); 1440 struct type *array = create_array_type (0, value1.type, range); 1441 1442 value->kind = axs_lvalue_memory; 1443 value->type = array; 1444 } 1445 } 1446 } 1447 1448 1449 /* Emit code for the `sizeof' operator. 1450 *PC should point at the start of the operand expression; we advance it 1451 to the first instruction after the operand. */ 1452 static void 1453 gen_sizeof (union exp_element **pc, struct agent_expr *ax, 1454 struct axs_value *value) 1455 { 1456 /* We don't care about the value of the operand expression; we only 1457 care about its type. However, in the current arrangement, the 1458 only way to find an expression's type is to generate code for it. 1459 So we generate code for the operand, and then throw it away, 1460 replacing it with code that simply pushes its size. */ 1461 int start = ax->len; 1462 gen_expr (pc, ax, value); 1463 1464 /* Throw away the code we just generated. */ 1465 ax->len = start; 1466 1467 ax_const_l (ax, TYPE_LENGTH (value->type)); 1468 value->kind = axs_rvalue; 1469 value->type = builtin_type_int; 1470 } 1471 1472 1473 /* Generating bytecode from GDB expressions: general recursive thingy */ 1474 1475 /* A gen_expr function written by a Gen-X'er guy. 1476 Append code for the subexpression of EXPR starting at *POS_P to AX. */ 1477 static void 1478 gen_expr (union exp_element **pc, struct agent_expr *ax, 1479 struct axs_value *value) 1480 { 1481 /* Used to hold the descriptions of operand expressions. */ 1482 struct axs_value value1, value2; 1483 enum exp_opcode op = (*pc)[0].opcode; 1484 1485 /* If we're looking at a constant expression, just push its value. */ 1486 { 1487 struct value *v = maybe_const_expr (pc); 1488 1489 if (v) 1490 { 1491 ax_const_l (ax, value_as_long (v)); 1492 value->kind = axs_rvalue; 1493 value->type = check_typedef (VALUE_TYPE (v)); 1494 return; 1495 } 1496 } 1497 1498 /* Otherwise, go ahead and generate code for it. */ 1499 switch (op) 1500 { 1501 /* Binary arithmetic operators. */ 1502 case BINOP_ADD: 1503 case BINOP_SUB: 1504 case BINOP_MUL: 1505 case BINOP_DIV: 1506 case BINOP_REM: 1507 case BINOP_SUBSCRIPT: 1508 case BINOP_BITWISE_AND: 1509 case BINOP_BITWISE_IOR: 1510 case BINOP_BITWISE_XOR: 1511 (*pc)++; 1512 gen_expr (pc, ax, &value1); 1513 gen_usual_unary (ax, &value1); 1514 gen_expr (pc, ax, &value2); 1515 gen_usual_unary (ax, &value2); 1516 gen_usual_arithmetic (ax, &value1, &value2); 1517 switch (op) 1518 { 1519 case BINOP_ADD: 1520 gen_add (ax, value, &value1, &value2, "addition"); 1521 break; 1522 case BINOP_SUB: 1523 gen_sub (ax, value, &value1, &value2); 1524 break; 1525 case BINOP_MUL: 1526 gen_binop (ax, value, &value1, &value2, 1527 aop_mul, aop_mul, 1, "multiplication"); 1528 break; 1529 case BINOP_DIV: 1530 gen_binop (ax, value, &value1, &value2, 1531 aop_div_signed, aop_div_unsigned, 1, "division"); 1532 break; 1533 case BINOP_REM: 1534 gen_binop (ax, value, &value1, &value2, 1535 aop_rem_signed, aop_rem_unsigned, 1, "remainder"); 1536 break; 1537 case BINOP_SUBSCRIPT: 1538 gen_add (ax, value, &value1, &value2, "array subscripting"); 1539 if (TYPE_CODE (value->type) != TYPE_CODE_PTR) 1540 error ("Illegal combination of types in array subscripting."); 1541 gen_deref (ax, value); 1542 break; 1543 case BINOP_BITWISE_AND: 1544 gen_binop (ax, value, &value1, &value2, 1545 aop_bit_and, aop_bit_and, 0, "bitwise and"); 1546 break; 1547 1548 case BINOP_BITWISE_IOR: 1549 gen_binop (ax, value, &value1, &value2, 1550 aop_bit_or, aop_bit_or, 0, "bitwise or"); 1551 break; 1552 1553 case BINOP_BITWISE_XOR: 1554 gen_binop (ax, value, &value1, &value2, 1555 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or"); 1556 break; 1557 1558 default: 1559 /* We should only list operators in the outer case statement 1560 that we actually handle in the inner case statement. */ 1561 internal_error (__FILE__, __LINE__, 1562 "gen_expr: op case sets don't match"); 1563 } 1564 break; 1565 1566 /* Note that we need to be a little subtle about generating code 1567 for comma. In C, we can do some optimizations here because 1568 we know the left operand is only being evaluated for effect. 1569 However, if the tracing kludge is in effect, then we always 1570 need to evaluate the left hand side fully, so that all the 1571 variables it mentions get traced. */ 1572 case BINOP_COMMA: 1573 (*pc)++; 1574 gen_expr (pc, ax, &value1); 1575 /* Don't just dispose of the left operand. We might be tracing, 1576 in which case we want to emit code to trace it if it's an 1577 lvalue. */ 1578 gen_traced_pop (ax, &value1); 1579 gen_expr (pc, ax, value); 1580 /* It's the consumer's responsibility to trace the right operand. */ 1581 break; 1582 1583 case OP_LONG: /* some integer constant */ 1584 { 1585 struct type *type = (*pc)[1].type; 1586 LONGEST k = (*pc)[2].longconst; 1587 (*pc) += 4; 1588 gen_int_literal (ax, value, k, type); 1589 } 1590 break; 1591 1592 case OP_VAR_VALUE: 1593 gen_var_ref (ax, value, (*pc)[2].symbol); 1594 (*pc) += 4; 1595 break; 1596 1597 case OP_REGISTER: 1598 { 1599 int reg = (int) (*pc)[1].longconst; 1600 (*pc) += 3; 1601 value->kind = axs_lvalue_register; 1602 value->u.reg = reg; 1603 value->type = register_type (current_gdbarch, reg); 1604 } 1605 break; 1606 1607 case OP_INTERNALVAR: 1608 error ("GDB agent expressions cannot use convenience variables."); 1609 1610 /* Weirdo operator: see comments for gen_repeat for details. */ 1611 case BINOP_REPEAT: 1612 /* Note that gen_repeat handles its own argument evaluation. */ 1613 (*pc)++; 1614 gen_repeat (pc, ax, value); 1615 break; 1616 1617 case UNOP_CAST: 1618 { 1619 struct type *type = (*pc)[1].type; 1620 (*pc) += 3; 1621 gen_expr (pc, ax, value); 1622 gen_cast (ax, value, type); 1623 } 1624 break; 1625 1626 case UNOP_MEMVAL: 1627 { 1628 struct type *type = check_typedef ((*pc)[1].type); 1629 (*pc) += 3; 1630 gen_expr (pc, ax, value); 1631 /* I'm not sure I understand UNOP_MEMVAL entirely. I think 1632 it's just a hack for dealing with minsyms; you take some 1633 integer constant, pretend it's the address of an lvalue of 1634 the given type, and dereference it. */ 1635 if (value->kind != axs_rvalue) 1636 /* This would be weird. */ 1637 internal_error (__FILE__, __LINE__, 1638 "gen_expr: OP_MEMVAL operand isn't an rvalue???"); 1639 value->type = type; 1640 value->kind = axs_lvalue_memory; 1641 } 1642 break; 1643 1644 case UNOP_NEG: 1645 (*pc)++; 1646 /* -FOO is equivalent to 0 - FOO. */ 1647 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int); 1648 gen_usual_unary (ax, &value1); /* shouldn't do much */ 1649 gen_expr (pc, ax, &value2); 1650 gen_usual_unary (ax, &value2); 1651 gen_usual_arithmetic (ax, &value1, &value2); 1652 gen_sub (ax, value, &value1, &value2); 1653 break; 1654 1655 case UNOP_LOGICAL_NOT: 1656 (*pc)++; 1657 gen_expr (pc, ax, value); 1658 gen_logical_not (ax, value); 1659 break; 1660 1661 case UNOP_COMPLEMENT: 1662 (*pc)++; 1663 gen_expr (pc, ax, value); 1664 gen_complement (ax, value); 1665 break; 1666 1667 case UNOP_IND: 1668 (*pc)++; 1669 gen_expr (pc, ax, value); 1670 gen_usual_unary (ax, value); 1671 if (TYPE_CODE (value->type) != TYPE_CODE_PTR) 1672 error ("Argument of unary `*' is not a pointer."); 1673 gen_deref (ax, value); 1674 break; 1675 1676 case UNOP_ADDR: 1677 (*pc)++; 1678 gen_expr (pc, ax, value); 1679 gen_address_of (ax, value); 1680 break; 1681 1682 case UNOP_SIZEOF: 1683 (*pc)++; 1684 /* Notice that gen_sizeof handles its own operand, unlike most 1685 of the other unary operator functions. This is because we 1686 have to throw away the code we generate. */ 1687 gen_sizeof (pc, ax, value); 1688 break; 1689 1690 case STRUCTOP_STRUCT: 1691 case STRUCTOP_PTR: 1692 { 1693 int length = (*pc)[1].longconst; 1694 char *name = &(*pc)[2].string; 1695 1696 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1); 1697 gen_expr (pc, ax, value); 1698 if (op == STRUCTOP_STRUCT) 1699 gen_struct_ref (ax, value, name, ".", "structure or union"); 1700 else if (op == STRUCTOP_PTR) 1701 gen_struct_ref (ax, value, name, "->", 1702 "pointer to a structure or union"); 1703 else 1704 /* If this `if' chain doesn't handle it, then the case list 1705 shouldn't mention it, and we shouldn't be here. */ 1706 internal_error (__FILE__, __LINE__, 1707 "gen_expr: unhandled struct case"); 1708 } 1709 break; 1710 1711 case OP_TYPE: 1712 error ("Attempt to use a type name as an expression."); 1713 1714 default: 1715 error ("Unsupported operator in expression."); 1716 } 1717 } 1718 1719 1720 1721 /* Generating bytecode from GDB expressions: driver */ 1722 1723 /* Given a GDB expression EXPR, produce a string of agent bytecode 1724 which computes its value. Return the agent expression, and set 1725 *VALUE to describe its type, and whether it's an lvalue or rvalue. */ 1726 struct agent_expr * 1727 expr_to_agent (struct expression *expr, struct axs_value *value) 1728 { 1729 struct cleanup *old_chain = 0; 1730 struct agent_expr *ax = new_agent_expr (0); 1731 union exp_element *pc; 1732 1733 old_chain = make_cleanup_free_agent_expr (ax); 1734 1735 pc = expr->elts; 1736 trace_kludge = 0; 1737 gen_expr (&pc, ax, value); 1738 1739 /* We have successfully built the agent expr, so cancel the cleanup 1740 request. If we add more cleanups that we always want done, this 1741 will have to get more complicated. */ 1742 discard_cleanups (old_chain); 1743 return ax; 1744 } 1745 1746 1747 #if 0 /* not used */ 1748 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a 1749 string of agent bytecode which will leave its address and size on 1750 the top of stack. Return the agent expression. 1751 1752 Not sure this function is useful at all. */ 1753 struct agent_expr * 1754 expr_to_address_and_size (struct expression *expr) 1755 { 1756 struct axs_value value; 1757 struct agent_expr *ax = expr_to_agent (expr, &value); 1758 1759 /* Complain if the result is not a memory lvalue. */ 1760 if (value.kind != axs_lvalue_memory) 1761 { 1762 free_agent_expr (ax); 1763 error ("Expression does not denote an object in memory."); 1764 } 1765 1766 /* Push the object's size on the stack. */ 1767 ax_const_l (ax, TYPE_LENGTH (value.type)); 1768 1769 return ax; 1770 } 1771 #endif 1772 1773 /* Given a GDB expression EXPR, return bytecode to trace its value. 1774 The result will use the `trace' and `trace_quick' bytecodes to 1775 record the value of all memory touched by the expression. The 1776 caller can then use the ax_reqs function to discover which 1777 registers it relies upon. */ 1778 struct agent_expr * 1779 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr) 1780 { 1781 struct cleanup *old_chain = 0; 1782 struct agent_expr *ax = new_agent_expr (scope); 1783 union exp_element *pc; 1784 struct axs_value value; 1785 1786 old_chain = make_cleanup_free_agent_expr (ax); 1787 1788 pc = expr->elts; 1789 trace_kludge = 1; 1790 gen_expr (&pc, ax, &value); 1791 1792 /* Make sure we record the final object, and get rid of it. */ 1793 gen_traced_pop (ax, &value); 1794 1795 /* Oh, and terminate. */ 1796 ax_simple (ax, aop_end); 1797 1798 /* We have successfully built the agent expr, so cancel the cleanup 1799 request. If we add more cleanups that we always want done, this 1800 will have to get more complicated. */ 1801 discard_cleanups (old_chain); 1802 return ax; 1803 } 1804 1805 static void 1806 agent_command (char *exp, int from_tty) 1807 { 1808 struct cleanup *old_chain = 0; 1809 struct expression *expr; 1810 struct agent_expr *agent; 1811 struct frame_info *fi = get_current_frame (); /* need current scope */ 1812 1813 /* We don't deal with overlay debugging at the moment. We need to 1814 think more carefully about this. If you copy this code into 1815 another command, change the error message; the user shouldn't 1816 have to know anything about agent expressions. */ 1817 if (overlay_debugging) 1818 error ("GDB can't do agent expression translation with overlays."); 1819 1820 if (exp == 0) 1821 error_no_arg ("expression to translate"); 1822 1823 expr = parse_expression (exp); 1824 old_chain = make_cleanup (free_current_contents, &expr); 1825 agent = gen_trace_for_expr (get_frame_pc (fi), expr); 1826 make_cleanup_free_agent_expr (agent); 1827 ax_print (gdb_stdout, agent); 1828 1829 /* It would be nice to call ax_reqs here to gather some general info 1830 about the expression, and then print out the result. */ 1831 1832 do_cleanups (old_chain); 1833 dont_repeat (); 1834 } 1835 1836 1837 /* Initialization code. */ 1838 1839 void _initialize_ax_gdb (void); 1840 void 1841 _initialize_ax_gdb (void) 1842 { 1843 add_cmd ("agent", class_maintenance, agent_command, 1844 "Translate an expression into remote agent bytecode.", 1845 &maintenancelist); 1846 } 1847