xref: /openbsd/gnu/usr.bin/binutils/gdb/ax-gdb.c (revision 73471bf0)
1 /* GDB-specific functions for operating on agent expressions.
2 
3    Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4    Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #include "defs.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "expression.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "ax.h"
34 #include "ax-gdb.h"
35 #include "gdb_string.h"
36 #include "block.h"
37 #include "regcache.h"
38 
39 /* To make sense of this file, you should read doc/agentexpr.texi.
40    Then look at the types and enums in ax-gdb.h.  For the code itself,
41    look at gen_expr, towards the bottom; that's the main function that
42    looks at the GDB expressions and calls everything else to generate
43    code.
44 
45    I'm beginning to wonder whether it wouldn't be nicer to internally
46    generate trees, with types, and then spit out the bytecode in
47    linear form afterwards; we could generate fewer `swap', `ext', and
48    `zero_ext' bytecodes that way; it would make good constant folding
49    easier, too.  But at the moment, I think we should be willing to
50    pay for the simplicity of this code with less-than-optimal bytecode
51    strings.
52 
53    Remember, "GBD" stands for "Great Britain, Dammit!"  So be careful.  */
54 
55 
56 
57 /* Prototypes for local functions. */
58 
59 /* There's a standard order to the arguments of these functions:
60    union exp_element ** --- pointer into expression
61    struct agent_expr * --- agent expression buffer to generate code into
62    struct axs_value * --- describes value left on top of stack  */
63 
64 static struct value *const_var_ref (struct symbol *var);
65 static struct value *const_expr (union exp_element **pc);
66 static struct value *maybe_const_expr (union exp_element **pc);
67 
68 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69 
70 static void gen_sign_extend (struct agent_expr *, struct type *);
71 static void gen_extend (struct agent_expr *, struct type *);
72 static void gen_fetch (struct agent_expr *, struct type *);
73 static void gen_left_shift (struct agent_expr *, int);
74 
75 
76 static void gen_frame_args_address (struct agent_expr *);
77 static void gen_frame_locals_address (struct agent_expr *);
78 static void gen_offset (struct agent_expr *ax, int offset);
79 static void gen_sym_offset (struct agent_expr *, struct symbol *);
80 static void gen_var_ref (struct agent_expr *ax,
81 			 struct axs_value *value, struct symbol *var);
82 
83 
84 static void gen_int_literal (struct agent_expr *ax,
85 			     struct axs_value *value,
86 			     LONGEST k, struct type *type);
87 
88 
89 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
91 static int type_wider_than (struct type *type1, struct type *type2);
92 static struct type *max_type (struct type *type1, struct type *type2);
93 static void gen_conversion (struct agent_expr *ax,
94 			    struct type *from, struct type *to);
95 static int is_nontrivial_conversion (struct type *from, struct type *to);
96 static void gen_usual_arithmetic (struct agent_expr *ax,
97 				  struct axs_value *value1,
98 				  struct axs_value *value2);
99 static void gen_integral_promotions (struct agent_expr *ax,
100 				     struct axs_value *value);
101 static void gen_cast (struct agent_expr *ax,
102 		      struct axs_value *value, struct type *type);
103 static void gen_scale (struct agent_expr *ax,
104 		       enum agent_op op, struct type *type);
105 static void gen_add (struct agent_expr *ax,
106 		     struct axs_value *value,
107 		     struct axs_value *value1,
108 		     struct axs_value *value2, char *name);
109 static void gen_sub (struct agent_expr *ax,
110 		     struct axs_value *value,
111 		     struct axs_value *value1, struct axs_value *value2);
112 static void gen_binop (struct agent_expr *ax,
113 		       struct axs_value *value,
114 		       struct axs_value *value1,
115 		       struct axs_value *value2,
116 		       enum agent_op op,
117 		       enum agent_op op_unsigned, int may_carry, char *name);
118 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
119 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
120 static void gen_deref (struct agent_expr *, struct axs_value *);
121 static void gen_address_of (struct agent_expr *, struct axs_value *);
122 static int find_field (struct type *type, char *name);
123 static void gen_bitfield_ref (struct agent_expr *ax,
124 			      struct axs_value *value,
125 			      struct type *type, int start, int end);
126 static void gen_struct_ref (struct agent_expr *ax,
127 			    struct axs_value *value,
128 			    char *field,
129 			    char *operator_name, char *operand_name);
130 static void gen_repeat (union exp_element **pc,
131 			struct agent_expr *ax, struct axs_value *value);
132 static void gen_sizeof (union exp_element **pc,
133 			struct agent_expr *ax, struct axs_value *value);
134 static void gen_expr (union exp_element **pc,
135 		      struct agent_expr *ax, struct axs_value *value);
136 
137 static void agent_command (char *exp, int from_tty);
138 
139 
140 /* Detecting constant expressions.  */
141 
142 /* If the variable reference at *PC is a constant, return its value.
143    Otherwise, return zero.
144 
145    Hey, Wally!  How can a variable reference be a constant?
146 
147    Well, Beav, this function really handles the OP_VAR_VALUE operator,
148    not specifically variable references.  GDB uses OP_VAR_VALUE to
149    refer to any kind of symbolic reference: function names, enum
150    elements, and goto labels are all handled through the OP_VAR_VALUE
151    operator, even though they're constants.  It makes sense given the
152    situation.
153 
154    Gee, Wally, don'cha wonder sometimes if data representations that
155    subvert commonly accepted definitions of terms in favor of heavily
156    context-specific interpretations are really just a tool of the
157    programming hegemony to preserve their power and exclude the
158    proletariat?  */
159 
160 static struct value *
161 const_var_ref (struct symbol *var)
162 {
163   struct type *type = SYMBOL_TYPE (var);
164 
165   switch (SYMBOL_CLASS (var))
166     {
167     case LOC_CONST:
168       return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
169 
170     case LOC_LABEL:
171       return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
172 
173     default:
174       return 0;
175     }
176 }
177 
178 
179 /* If the expression starting at *PC has a constant value, return it.
180    Otherwise, return zero.  If we return a value, then *PC will be
181    advanced to the end of it.  If we return zero, *PC could be
182    anywhere.  */
183 static struct value *
184 const_expr (union exp_element **pc)
185 {
186   enum exp_opcode op = (*pc)->opcode;
187   struct value *v1;
188 
189   switch (op)
190     {
191     case OP_LONG:
192       {
193 	struct type *type = (*pc)[1].type;
194 	LONGEST k = (*pc)[2].longconst;
195 	(*pc) += 4;
196 	return value_from_longest (type, k);
197       }
198 
199     case OP_VAR_VALUE:
200       {
201 	struct value *v = const_var_ref ((*pc)[2].symbol);
202 	(*pc) += 4;
203 	return v;
204       }
205 
206       /* We could add more operators in here.  */
207 
208     case UNOP_NEG:
209       (*pc)++;
210       v1 = const_expr (pc);
211       if (v1)
212 	return value_neg (v1);
213       else
214 	return 0;
215 
216     default:
217       return 0;
218     }
219 }
220 
221 
222 /* Like const_expr, but guarantee also that *PC is undisturbed if the
223    expression is not constant.  */
224 static struct value *
225 maybe_const_expr (union exp_element **pc)
226 {
227   union exp_element *tentative_pc = *pc;
228   struct value *v = const_expr (&tentative_pc);
229 
230   /* If we got a value, then update the real PC.  */
231   if (v)
232     *pc = tentative_pc;
233 
234   return v;
235 }
236 
237 
238 /* Generating bytecode from GDB expressions: general assumptions */
239 
240 /* Here are a few general assumptions made throughout the code; if you
241    want to make a change that contradicts one of these, then you'd
242    better scan things pretty thoroughly.
243 
244    - We assume that all values occupy one stack element.  For example,
245    sometimes we'll swap to get at the left argument to a binary
246    operator.  If we decide that void values should occupy no stack
247    elements, or that synthetic arrays (whose size is determined at
248    run time, created by the `@' operator) should occupy two stack
249    elements (address and length), then this will cause trouble.
250 
251    - We assume the stack elements are infinitely wide, and that we
252    don't have to worry what happens if the user requests an
253    operation that is wider than the actual interpreter's stack.
254    That is, it's up to the interpreter to handle directly all the
255    integer widths the user has access to.  (Woe betide the language
256    with bignums!)
257 
258    - We don't support side effects.  Thus, we don't have to worry about
259    GCC's generalized lvalues, function calls, etc.
260 
261    - We don't support floating point.  Many places where we switch on
262    some type don't bother to include cases for floating point; there
263    may be even more subtle ways this assumption exists.  For
264    example, the arguments to % must be integers.
265 
266    - We assume all subexpressions have a static, unchanging type.  If
267    we tried to support convenience variables, this would be a
268    problem.
269 
270    - All values on the stack should always be fully zero- or
271    sign-extended.
272 
273    (I wasn't sure whether to choose this or its opposite --- that
274    only addresses are assumed extended --- but it turns out that
275    neither convention completely eliminates spurious extend
276    operations (if everything is always extended, then you have to
277    extend after add, because it could overflow; if nothing is
278    extended, then you end up producing extends whenever you change
279    sizes), and this is simpler.)  */
280 
281 
282 /* Generating bytecode from GDB expressions: the `trace' kludge  */
283 
284 /* The compiler in this file is a general-purpose mechanism for
285    translating GDB expressions into bytecode.  One ought to be able to
286    find a million and one uses for it.
287 
288    However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
289    of expediency.  Let he who is without sin cast the first stone.
290 
291    For the data tracing facility, we need to insert `trace' bytecodes
292    before each data fetch; this records all the memory that the
293    expression touches in the course of evaluation, so that memory will
294    be available when the user later tries to evaluate the expression
295    in GDB.
296 
297    This should be done (I think) in a post-processing pass, that walks
298    an arbitrary agent expression and inserts `trace' operations at the
299    appropriate points.  But it's much faster to just hack them
300    directly into the code.  And since we're in a crunch, that's what
301    I've done.
302 
303    Setting the flag trace_kludge to non-zero enables the code that
304    emits the trace bytecodes at the appropriate points.  */
305 static int trace_kludge;
306 
307 /* Trace the lvalue on the stack, if it needs it.  In either case, pop
308    the value.  Useful on the left side of a comma, and at the end of
309    an expression being used for tracing.  */
310 static void
311 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
312 {
313   if (trace_kludge)
314     switch (value->kind)
315       {
316       case axs_rvalue:
317 	/* We don't trace rvalues, just the lvalues necessary to
318 	   produce them.  So just dispose of this value.  */
319 	ax_simple (ax, aop_pop);
320 	break;
321 
322       case axs_lvalue_memory:
323 	{
324 	  int length = TYPE_LENGTH (value->type);
325 
326 	  /* There's no point in trying to use a trace_quick bytecode
327 	     here, since "trace_quick SIZE pop" is three bytes, whereas
328 	     "const8 SIZE trace" is also three bytes, does the same
329 	     thing, and the simplest code which generates that will also
330 	     work correctly for objects with large sizes.  */
331 	  ax_const_l (ax, length);
332 	  ax_simple (ax, aop_trace);
333 	}
334 	break;
335 
336       case axs_lvalue_register:
337 	/* We need to mention the register somewhere in the bytecode,
338 	   so ax_reqs will pick it up and add it to the mask of
339 	   registers used.  */
340 	ax_reg (ax, value->u.reg);
341 	ax_simple (ax, aop_pop);
342 	break;
343       }
344   else
345     /* If we're not tracing, just pop the value.  */
346     ax_simple (ax, aop_pop);
347 }
348 
349 
350 
351 /* Generating bytecode from GDB expressions: helper functions */
352 
353 /* Assume that the lower bits of the top of the stack is a value of
354    type TYPE, and the upper bits are zero.  Sign-extend if necessary.  */
355 static void
356 gen_sign_extend (struct agent_expr *ax, struct type *type)
357 {
358   /* Do we need to sign-extend this?  */
359   if (!TYPE_UNSIGNED (type))
360     ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
361 }
362 
363 
364 /* Assume the lower bits of the top of the stack hold a value of type
365    TYPE, and the upper bits are garbage.  Sign-extend or truncate as
366    needed.  */
367 static void
368 gen_extend (struct agent_expr *ax, struct type *type)
369 {
370   int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
371   /* I just had to.  */
372   ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
373 }
374 
375 
376 /* Assume that the top of the stack contains a value of type "pointer
377    to TYPE"; generate code to fetch its value.  Note that TYPE is the
378    target type, not the pointer type.  */
379 static void
380 gen_fetch (struct agent_expr *ax, struct type *type)
381 {
382   if (trace_kludge)
383     {
384       /* Record the area of memory we're about to fetch.  */
385       ax_trace_quick (ax, TYPE_LENGTH (type));
386     }
387 
388   switch (TYPE_CODE (type))
389     {
390     case TYPE_CODE_PTR:
391     case TYPE_CODE_ENUM:
392     case TYPE_CODE_INT:
393     case TYPE_CODE_CHAR:
394       /* It's a scalar value, so we know how to dereference it.  How
395          many bytes long is it?  */
396       switch (TYPE_LENGTH (type))
397 	{
398 	case 8 / TARGET_CHAR_BIT:
399 	  ax_simple (ax, aop_ref8);
400 	  break;
401 	case 16 / TARGET_CHAR_BIT:
402 	  ax_simple (ax, aop_ref16);
403 	  break;
404 	case 32 / TARGET_CHAR_BIT:
405 	  ax_simple (ax, aop_ref32);
406 	  break;
407 	case 64 / TARGET_CHAR_BIT:
408 	  ax_simple (ax, aop_ref64);
409 	  break;
410 
411 	  /* Either our caller shouldn't have asked us to dereference
412 	     that pointer (other code's fault), or we're not
413 	     implementing something we should be (this code's fault).
414 	     In any case, it's a bug the user shouldn't see.  */
415 	default:
416 	  internal_error (__FILE__, __LINE__,
417 			  "gen_fetch: strange size");
418 	}
419 
420       gen_sign_extend (ax, type);
421       break;
422 
423     default:
424       /* Either our caller shouldn't have asked us to dereference that
425          pointer (other code's fault), or we're not implementing
426          something we should be (this code's fault).  In any case,
427          it's a bug the user shouldn't see.  */
428       internal_error (__FILE__, __LINE__,
429 		      "gen_fetch: bad type code");
430     }
431 }
432 
433 
434 /* Generate code to left shift the top of the stack by DISTANCE bits, or
435    right shift it by -DISTANCE bits if DISTANCE < 0.  This generates
436    unsigned (logical) right shifts.  */
437 static void
438 gen_left_shift (struct agent_expr *ax, int distance)
439 {
440   if (distance > 0)
441     {
442       ax_const_l (ax, distance);
443       ax_simple (ax, aop_lsh);
444     }
445   else if (distance < 0)
446     {
447       ax_const_l (ax, -distance);
448       ax_simple (ax, aop_rsh_unsigned);
449     }
450 }
451 
452 
453 
454 /* Generating bytecode from GDB expressions: symbol references */
455 
456 /* Generate code to push the base address of the argument portion of
457    the top stack frame.  */
458 static void
459 gen_frame_args_address (struct agent_expr *ax)
460 {
461   int frame_reg;
462   LONGEST frame_offset;
463 
464   TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
465   ax_reg (ax, frame_reg);
466   gen_offset (ax, frame_offset);
467 }
468 
469 
470 /* Generate code to push the base address of the locals portion of the
471    top stack frame.  */
472 static void
473 gen_frame_locals_address (struct agent_expr *ax)
474 {
475   int frame_reg;
476   LONGEST frame_offset;
477 
478   TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
479   ax_reg (ax, frame_reg);
480   gen_offset (ax, frame_offset);
481 }
482 
483 
484 /* Generate code to add OFFSET to the top of the stack.  Try to
485    generate short and readable code.  We use this for getting to
486    variables on the stack, and structure members.  If we were
487    programming in ML, it would be clearer why these are the same
488    thing.  */
489 static void
490 gen_offset (struct agent_expr *ax, int offset)
491 {
492   /* It would suffice to simply push the offset and add it, but this
493      makes it easier to read positive and negative offsets in the
494      bytecode.  */
495   if (offset > 0)
496     {
497       ax_const_l (ax, offset);
498       ax_simple (ax, aop_add);
499     }
500   else if (offset < 0)
501     {
502       ax_const_l (ax, -offset);
503       ax_simple (ax, aop_sub);
504     }
505 }
506 
507 
508 /* In many cases, a symbol's value is the offset from some other
509    address (stack frame, base register, etc.)  Generate code to add
510    VAR's value to the top of the stack.  */
511 static void
512 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
513 {
514   gen_offset (ax, SYMBOL_VALUE (var));
515 }
516 
517 
518 /* Generate code for a variable reference to AX.  The variable is the
519    symbol VAR.  Set VALUE to describe the result.  */
520 
521 static void
522 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
523 {
524   /* Dereference any typedefs. */
525   value->type = check_typedef (SYMBOL_TYPE (var));
526 
527   /* I'm imitating the code in read_var_value.  */
528   switch (SYMBOL_CLASS (var))
529     {
530     case LOC_CONST:		/* A constant, like an enum value.  */
531       ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532       value->kind = axs_rvalue;
533       break;
534 
535     case LOC_LABEL:		/* A goto label, being used as a value.  */
536       ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537       value->kind = axs_rvalue;
538       break;
539 
540     case LOC_CONST_BYTES:
541       internal_error (__FILE__, __LINE__,
542 		      "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
543 
544       /* Variable at a fixed location in memory.  Easy.  */
545     case LOC_STATIC:
546       /* Push the address of the variable.  */
547       ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548       value->kind = axs_lvalue_memory;
549       break;
550 
551     case LOC_ARG:		/* var lives in argument area of frame */
552       gen_frame_args_address (ax);
553       gen_sym_offset (ax, var);
554       value->kind = axs_lvalue_memory;
555       break;
556 
557     case LOC_REF_ARG:		/* As above, but the frame slot really
558 				   holds the address of the variable.  */
559       gen_frame_args_address (ax);
560       gen_sym_offset (ax, var);
561       /* Don't assume any particular pointer size.  */
562       gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563       value->kind = axs_lvalue_memory;
564       break;
565 
566     case LOC_LOCAL:		/* var lives in locals area of frame */
567     case LOC_LOCAL_ARG:
568       gen_frame_locals_address (ax);
569       gen_sym_offset (ax, var);
570       value->kind = axs_lvalue_memory;
571       break;
572 
573     case LOC_BASEREG:		/* relative to some base register */
574     case LOC_BASEREG_ARG:
575       ax_reg (ax, SYMBOL_BASEREG (var));
576       gen_sym_offset (ax, var);
577       value->kind = axs_lvalue_memory;
578       break;
579 
580     case LOC_TYPEDEF:
581       error ("Cannot compute value of typedef `%s'.",
582 	     SYMBOL_PRINT_NAME (var));
583       break;
584 
585     case LOC_BLOCK:
586       ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587       value->kind = axs_rvalue;
588       break;
589 
590     case LOC_REGISTER:
591     case LOC_REGPARM:
592       /* Don't generate any code at all; in the process of treating
593          this as an lvalue or rvalue, the caller will generate the
594          right code.  */
595       value->kind = axs_lvalue_register;
596       value->u.reg = SYMBOL_VALUE (var);
597       break;
598 
599       /* A lot like LOC_REF_ARG, but the pointer lives directly in a
600          register, not on the stack.  Simpler than LOC_REGISTER and
601          LOC_REGPARM, because it's just like any other case where the
602          thing has a real address.  */
603     case LOC_REGPARM_ADDR:
604       ax_reg (ax, SYMBOL_VALUE (var));
605       value->kind = axs_lvalue_memory;
606       break;
607 
608     case LOC_UNRESOLVED:
609       {
610 	struct minimal_symbol *msym
611 	= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
612 	if (!msym)
613 	  error ("Couldn't resolve symbol `%s'.", SYMBOL_PRINT_NAME (var));
614 
615 	/* Push the address of the variable.  */
616 	ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
617 	value->kind = axs_lvalue_memory;
618       }
619       break;
620 
621     case LOC_COMPUTED:
622     case LOC_COMPUTED_ARG:
623       /* FIXME: cagney/2004-01-26: It should be possible to
624 	 unconditionally call the SYMBOL_OPS method when available.
625 	 Unfortunately DWARF 2 stores the frame-base (instead of the
626 	 function) location in a function's symbol.  Oops!  For the
627 	 moment enable this when/where applicable.  */
628       SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
629       break;
630 
631     case LOC_OPTIMIZED_OUT:
632       error ("The variable `%s' has been optimized out.",
633 	     SYMBOL_PRINT_NAME (var));
634       break;
635 
636     default:
637       error ("Cannot find value of botched symbol `%s'.",
638 	     SYMBOL_PRINT_NAME (var));
639       break;
640     }
641 }
642 
643 
644 
645 /* Generating bytecode from GDB expressions: literals */
646 
647 static void
648 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
649 		 struct type *type)
650 {
651   ax_const_l (ax, k);
652   value->kind = axs_rvalue;
653   value->type = type;
654 }
655 
656 
657 
658 /* Generating bytecode from GDB expressions: unary conversions, casts */
659 
660 /* Take what's on the top of the stack (as described by VALUE), and
661    try to make an rvalue out of it.  Signal an error if we can't do
662    that.  */
663 static void
664 require_rvalue (struct agent_expr *ax, struct axs_value *value)
665 {
666   switch (value->kind)
667     {
668     case axs_rvalue:
669       /* It's already an rvalue.  */
670       break;
671 
672     case axs_lvalue_memory:
673       /* The top of stack is the address of the object.  Dereference.  */
674       gen_fetch (ax, value->type);
675       break;
676 
677     case axs_lvalue_register:
678       /* There's nothing on the stack, but value->u.reg is the
679          register number containing the value.
680 
681          When we add floating-point support, this is going to have to
682          change.  What about SPARC register pairs, for example?  */
683       ax_reg (ax, value->u.reg);
684       gen_extend (ax, value->type);
685       break;
686     }
687 
688   value->kind = axs_rvalue;
689 }
690 
691 
692 /* Assume the top of the stack is described by VALUE, and perform the
693    usual unary conversions.  This is motivated by ANSI 6.2.2, but of
694    course GDB expressions are not ANSI; they're the mishmash union of
695    a bunch of languages.  Rah.
696 
697    NOTE!  This function promises to produce an rvalue only when the
698    incoming value is of an appropriate type.  In other words, the
699    consumer of the value this function produces may assume the value
700    is an rvalue only after checking its type.
701 
702    The immediate issue is that if the user tries to use a structure or
703    union as an operand of, say, the `+' operator, we don't want to try
704    to convert that structure to an rvalue; require_rvalue will bomb on
705    structs and unions.  Rather, we want to simply pass the struct
706    lvalue through unchanged, and let `+' raise an error.  */
707 
708 static void
709 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
710 {
711   /* We don't have to generate any code for the usual integral
712      conversions, since values are always represented as full-width on
713      the stack.  Should we tweak the type?  */
714 
715   /* Some types require special handling.  */
716   switch (TYPE_CODE (value->type))
717     {
718       /* Functions get converted to a pointer to the function.  */
719     case TYPE_CODE_FUNC:
720       value->type = lookup_pointer_type (value->type);
721       value->kind = axs_rvalue;	/* Should always be true, but just in case.  */
722       break;
723 
724       /* Arrays get converted to a pointer to their first element, and
725          are no longer an lvalue.  */
726     case TYPE_CODE_ARRAY:
727       {
728 	struct type *elements = TYPE_TARGET_TYPE (value->type);
729 	value->type = lookup_pointer_type (elements);
730 	value->kind = axs_rvalue;
731 	/* We don't need to generate any code; the address of the array
732 	   is also the address of its first element.  */
733       }
734       break;
735 
736       /* Don't try to convert structures and unions to rvalues.  Let the
737          consumer signal an error.  */
738     case TYPE_CODE_STRUCT:
739     case TYPE_CODE_UNION:
740       return;
741 
742       /* If the value is an enum, call it an integer.  */
743     case TYPE_CODE_ENUM:
744       value->type = builtin_type_int;
745       break;
746     }
747 
748   /* If the value is an lvalue, dereference it.  */
749   require_rvalue (ax, value);
750 }
751 
752 
753 /* Return non-zero iff the type TYPE1 is considered "wider" than the
754    type TYPE2, according to the rules described in gen_usual_arithmetic.  */
755 static int
756 type_wider_than (struct type *type1, struct type *type2)
757 {
758   return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
759 	  || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
760 	      && TYPE_UNSIGNED (type1)
761 	      && !TYPE_UNSIGNED (type2)));
762 }
763 
764 
765 /* Return the "wider" of the two types TYPE1 and TYPE2.  */
766 static struct type *
767 max_type (struct type *type1, struct type *type2)
768 {
769   return type_wider_than (type1, type2) ? type1 : type2;
770 }
771 
772 
773 /* Generate code to convert a scalar value of type FROM to type TO.  */
774 static void
775 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
776 {
777   /* Perhaps there is a more graceful way to state these rules.  */
778 
779   /* If we're converting to a narrower type, then we need to clear out
780      the upper bits.  */
781   if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
782     gen_extend (ax, from);
783 
784   /* If the two values have equal width, but different signednesses,
785      then we need to extend.  */
786   else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
787     {
788       if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
789 	gen_extend (ax, to);
790     }
791 
792   /* If we're converting to a wider type, and becoming unsigned, then
793      we need to zero out any possible sign bits.  */
794   else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
795     {
796       if (TYPE_UNSIGNED (to))
797 	gen_extend (ax, to);
798     }
799 }
800 
801 
802 /* Return non-zero iff the type FROM will require any bytecodes to be
803    emitted to be converted to the type TO.  */
804 static int
805 is_nontrivial_conversion (struct type *from, struct type *to)
806 {
807   struct agent_expr *ax = new_agent_expr (0);
808   int nontrivial;
809 
810   /* Actually generate the code, and see if anything came out.  At the
811      moment, it would be trivial to replicate the code in
812      gen_conversion here, but in the future, when we're supporting
813      floating point and the like, it may not be.  Doing things this
814      way allows this function to be independent of the logic in
815      gen_conversion.  */
816   gen_conversion (ax, from, to);
817   nontrivial = ax->len > 0;
818   free_agent_expr (ax);
819   return nontrivial;
820 }
821 
822 
823 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
824    6.2.1.5) for the two operands of an arithmetic operator.  This
825    effectively finds a "least upper bound" type for the two arguments,
826    and promotes each argument to that type.  *VALUE1 and *VALUE2
827    describe the values as they are passed in, and as they are left.  */
828 static void
829 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
830 		      struct axs_value *value2)
831 {
832   /* Do the usual binary conversions.  */
833   if (TYPE_CODE (value1->type) == TYPE_CODE_INT
834       && TYPE_CODE (value2->type) == TYPE_CODE_INT)
835     {
836       /* The ANSI integral promotions seem to work this way: Order the
837          integer types by size, and then by signedness: an n-bit
838          unsigned type is considered "wider" than an n-bit signed
839          type.  Promote to the "wider" of the two types, and always
840          promote at least to int.  */
841       struct type *target = max_type (builtin_type_int,
842 				      max_type (value1->type, value2->type));
843 
844       /* Deal with value2, on the top of the stack.  */
845       gen_conversion (ax, value2->type, target);
846 
847       /* Deal with value1, not on the top of the stack.  Don't
848          generate the `swap' instructions if we're not actually going
849          to do anything.  */
850       if (is_nontrivial_conversion (value1->type, target))
851 	{
852 	  ax_simple (ax, aop_swap);
853 	  gen_conversion (ax, value1->type, target);
854 	  ax_simple (ax, aop_swap);
855 	}
856 
857       value1->type = value2->type = target;
858     }
859 }
860 
861 
862 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
863    the value on the top of the stack, as described by VALUE.  Assume
864    the value has integral type.  */
865 static void
866 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
867 {
868   if (!type_wider_than (value->type, builtin_type_int))
869     {
870       gen_conversion (ax, value->type, builtin_type_int);
871       value->type = builtin_type_int;
872     }
873   else if (!type_wider_than (value->type, builtin_type_unsigned_int))
874     {
875       gen_conversion (ax, value->type, builtin_type_unsigned_int);
876       value->type = builtin_type_unsigned_int;
877     }
878 }
879 
880 
881 /* Generate code for a cast to TYPE.  */
882 static void
883 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
884 {
885   /* GCC does allow casts to yield lvalues, so this should be fixed
886      before merging these changes into the trunk.  */
887   require_rvalue (ax, value);
888   /* Dereference typedefs. */
889   type = check_typedef (type);
890 
891   switch (TYPE_CODE (type))
892     {
893     case TYPE_CODE_PTR:
894       /* It's implementation-defined, and I'll bet this is what GCC
895          does.  */
896       break;
897 
898     case TYPE_CODE_ARRAY:
899     case TYPE_CODE_STRUCT:
900     case TYPE_CODE_UNION:
901     case TYPE_CODE_FUNC:
902       error ("Illegal type cast: intended type must be scalar.");
903 
904     case TYPE_CODE_ENUM:
905       /* We don't have to worry about the size of the value, because
906          all our integral values are fully sign-extended, and when
907          casting pointers we can do anything we like.  Is there any
908          way for us to actually know what GCC actually does with a
909          cast like this?  */
910       value->type = type;
911       break;
912 
913     case TYPE_CODE_INT:
914       gen_conversion (ax, value->type, type);
915       break;
916 
917     case TYPE_CODE_VOID:
918       /* We could pop the value, and rely on everyone else to check
919          the type and notice that this value doesn't occupy a stack
920          slot.  But for now, leave the value on the stack, and
921          preserve the "value == stack element" assumption.  */
922       break;
923 
924     default:
925       error ("Casts to requested type are not yet implemented.");
926     }
927 
928   value->type = type;
929 }
930 
931 
932 
933 /* Generating bytecode from GDB expressions: arithmetic */
934 
935 /* Scale the integer on the top of the stack by the size of the target
936    of the pointer type TYPE.  */
937 static void
938 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
939 {
940   struct type *element = TYPE_TARGET_TYPE (type);
941 
942   if (TYPE_LENGTH (element) != 1)
943     {
944       ax_const_l (ax, TYPE_LENGTH (element));
945       ax_simple (ax, op);
946     }
947 }
948 
949 
950 /* Generate code for an addition; non-trivial because we deal with
951    pointer arithmetic.  We set VALUE to describe the result value; we
952    assume VALUE1 and VALUE2 describe the two operands, and that
953    they've undergone the usual binary conversions.  Used by both
954    BINOP_ADD and BINOP_SUBSCRIPT.  NAME is used in error messages.  */
955 static void
956 gen_add (struct agent_expr *ax, struct axs_value *value,
957 	 struct axs_value *value1, struct axs_value *value2, char *name)
958 {
959   /* Is it INT+PTR?  */
960   if (TYPE_CODE (value1->type) == TYPE_CODE_INT
961       && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
962     {
963       /* Swap the values and proceed normally.  */
964       ax_simple (ax, aop_swap);
965       gen_scale (ax, aop_mul, value2->type);
966       ax_simple (ax, aop_add);
967       gen_extend (ax, value2->type);	/* Catch overflow.  */
968       value->type = value2->type;
969     }
970 
971   /* Is it PTR+INT?  */
972   else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
973 	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
974     {
975       gen_scale (ax, aop_mul, value1->type);
976       ax_simple (ax, aop_add);
977       gen_extend (ax, value1->type);	/* Catch overflow.  */
978       value->type = value1->type;
979     }
980 
981   /* Must be number + number; the usual binary conversions will have
982      brought them both to the same width.  */
983   else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
984 	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
985     {
986       ax_simple (ax, aop_add);
987       gen_extend (ax, value1->type);	/* Catch overflow.  */
988       value->type = value1->type;
989     }
990 
991   else
992     error ("Illegal combination of types in %s.", name);
993 
994   value->kind = axs_rvalue;
995 }
996 
997 
998 /* Generate code for an addition; non-trivial because we have to deal
999    with pointer arithmetic.  We set VALUE to describe the result
1000    value; we assume VALUE1 and VALUE2 describe the two operands, and
1001    that they've undergone the usual binary conversions.  */
1002 static void
1003 gen_sub (struct agent_expr *ax, struct axs_value *value,
1004 	 struct axs_value *value1, struct axs_value *value2)
1005 {
1006   if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
1007     {
1008       /* Is it PTR - INT?  */
1009       if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
1010 	{
1011 	  gen_scale (ax, aop_mul, value1->type);
1012 	  ax_simple (ax, aop_sub);
1013 	  gen_extend (ax, value1->type);	/* Catch overflow.  */
1014 	  value->type = value1->type;
1015 	}
1016 
1017       /* Is it PTR - PTR?  Strictly speaking, the types ought to
1018          match, but this is what the normal GDB expression evaluator
1019          tests for.  */
1020       else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1021 	       && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1022 		   == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1023 	{
1024 	  ax_simple (ax, aop_sub);
1025 	  gen_scale (ax, aop_div_unsigned, value1->type);
1026 	  value->type = builtin_type_long;	/* FIXME --- should be ptrdiff_t */
1027 	}
1028       else
1029 	error ("\
1030 First argument of `-' is a pointer, but second argument is neither\n\
1031 an integer nor a pointer of the same type.");
1032     }
1033 
1034   /* Must be number + number.  */
1035   else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1036 	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1037     {
1038       ax_simple (ax, aop_sub);
1039       gen_extend (ax, value1->type);	/* Catch overflow.  */
1040       value->type = value1->type;
1041     }
1042 
1043   else
1044     error ("Illegal combination of types in subtraction.");
1045 
1046   value->kind = axs_rvalue;
1047 }
1048 
1049 /* Generate code for a binary operator that doesn't do pointer magic.
1050    We set VALUE to describe the result value; we assume VALUE1 and
1051    VALUE2 describe the two operands, and that they've undergone the
1052    usual binary conversions.  MAY_CARRY should be non-zero iff the
1053    result needs to be extended.  NAME is the English name of the
1054    operator, used in error messages */
1055 static void
1056 gen_binop (struct agent_expr *ax, struct axs_value *value,
1057 	   struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1058 	   enum agent_op op_unsigned, int may_carry, char *name)
1059 {
1060   /* We only handle INT op INT.  */
1061   if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1062       || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1063     error ("Illegal combination of types in %s.", name);
1064 
1065   ax_simple (ax,
1066 	     TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1067   if (may_carry)
1068     gen_extend (ax, value1->type);	/* catch overflow */
1069   value->type = value1->type;
1070   value->kind = axs_rvalue;
1071 }
1072 
1073 
1074 static void
1075 gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1076 {
1077   if (TYPE_CODE (value->type) != TYPE_CODE_INT
1078       && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1079     error ("Illegal type of operand to `!'.");
1080 
1081   gen_usual_unary (ax, value);
1082   ax_simple (ax, aop_log_not);
1083   value->type = builtin_type_int;
1084 }
1085 
1086 
1087 static void
1088 gen_complement (struct agent_expr *ax, struct axs_value *value)
1089 {
1090   if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1091     error ("Illegal type of operand to `~'.");
1092 
1093   gen_usual_unary (ax, value);
1094   gen_integral_promotions (ax, value);
1095   ax_simple (ax, aop_bit_not);
1096   gen_extend (ax, value->type);
1097 }
1098 
1099 
1100 
1101 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1102 
1103 /* Dereference the value on the top of the stack.  */
1104 static void
1105 gen_deref (struct agent_expr *ax, struct axs_value *value)
1106 {
1107   /* The caller should check the type, because several operators use
1108      this, and we don't know what error message to generate.  */
1109   if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1110     internal_error (__FILE__, __LINE__,
1111 		    "gen_deref: expected a pointer");
1112 
1113   /* We've got an rvalue now, which is a pointer.  We want to yield an
1114      lvalue, whose address is exactly that pointer.  So we don't
1115      actually emit any code; we just change the type from "Pointer to
1116      T" to "T", and mark the value as an lvalue in memory.  Leave it
1117      to the consumer to actually dereference it.  */
1118   value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1119   value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1120 		 ? axs_rvalue : axs_lvalue_memory);
1121 }
1122 
1123 
1124 /* Produce the address of the lvalue on the top of the stack.  */
1125 static void
1126 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1127 {
1128   /* Special case for taking the address of a function.  The ANSI
1129      standard describes this as a special case, too, so this
1130      arrangement is not without motivation.  */
1131   if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1132     /* The value's already an rvalue on the stack, so we just need to
1133        change the type.  */
1134     value->type = lookup_pointer_type (value->type);
1135   else
1136     switch (value->kind)
1137       {
1138       case axs_rvalue:
1139 	error ("Operand of `&' is an rvalue, which has no address.");
1140 
1141       case axs_lvalue_register:
1142 	error ("Operand of `&' is in a register, and has no address.");
1143 
1144       case axs_lvalue_memory:
1145 	value->kind = axs_rvalue;
1146 	value->type = lookup_pointer_type (value->type);
1147 	break;
1148       }
1149 }
1150 
1151 
1152 /* A lot of this stuff will have to change to support C++.  But we're
1153    not going to deal with that at the moment.  */
1154 
1155 /* Find the field in the structure type TYPE named NAME, and return
1156    its index in TYPE's field array.  */
1157 static int
1158 find_field (struct type *type, char *name)
1159 {
1160   int i;
1161 
1162   CHECK_TYPEDEF (type);
1163 
1164   /* Make sure this isn't C++.  */
1165   if (TYPE_N_BASECLASSES (type) != 0)
1166     internal_error (__FILE__, __LINE__,
1167 		    "find_field: derived classes supported");
1168 
1169   for (i = 0; i < TYPE_NFIELDS (type); i++)
1170     {
1171       char *this_name = TYPE_FIELD_NAME (type, i);
1172 
1173       if (this_name && strcmp (name, this_name) == 0)
1174 	return i;
1175 
1176       if (this_name[0] == '\0')
1177 	internal_error (__FILE__, __LINE__,
1178 			"find_field: anonymous unions not supported");
1179     }
1180 
1181   error ("Couldn't find member named `%s' in struct/union `%s'",
1182 	 name, TYPE_TAG_NAME (type));
1183 
1184   return 0;
1185 }
1186 
1187 
1188 /* Generate code to push the value of a bitfield of a structure whose
1189    address is on the top of the stack.  START and END give the
1190    starting and one-past-ending *bit* numbers of the field within the
1191    structure.  */
1192 static void
1193 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1194 		  struct type *type, int start, int end)
1195 {
1196   /* Note that ops[i] fetches 8 << i bits.  */
1197   static enum agent_op ops[]
1198   =
1199   {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1200   static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1201 
1202   /* We don't want to touch any byte that the bitfield doesn't
1203      actually occupy; we shouldn't make any accesses we're not
1204      explicitly permitted to.  We rely here on the fact that the
1205      bytecode `ref' operators work on unaligned addresses.
1206 
1207      It takes some fancy footwork to get the stack to work the way
1208      we'd like.  Say we're retrieving a bitfield that requires three
1209      fetches.  Initially, the stack just contains the address:
1210      addr
1211      For the first fetch, we duplicate the address
1212      addr addr
1213      then add the byte offset, do the fetch, and shift and mask as
1214      needed, yielding a fragment of the value, properly aligned for
1215      the final bitwise or:
1216      addr frag1
1217      then we swap, and repeat the process:
1218      frag1 addr                    --- address on top
1219      frag1 addr addr               --- duplicate it
1220      frag1 addr frag2              --- get second fragment
1221      frag1 frag2 addr              --- swap again
1222      frag1 frag2 frag3             --- get third fragment
1223      Notice that, since the third fragment is the last one, we don't
1224      bother duplicating the address this time.  Now we have all the
1225      fragments on the stack, and we can simply `or' them together,
1226      yielding the final value of the bitfield.  */
1227 
1228   /* The first and one-after-last bits in the field, but rounded down
1229      and up to byte boundaries.  */
1230   int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1231   int bound_end = (((end + TARGET_CHAR_BIT - 1)
1232 		    / TARGET_CHAR_BIT)
1233 		   * TARGET_CHAR_BIT);
1234 
1235   /* current bit offset within the structure */
1236   int offset;
1237 
1238   /* The index in ops of the opcode we're considering.  */
1239   int op;
1240 
1241   /* The number of fragments we generated in the process.  Probably
1242      equal to the number of `one' bits in bytesize, but who cares?  */
1243   int fragment_count;
1244 
1245   /* Dereference any typedefs. */
1246   type = check_typedef (type);
1247 
1248   /* Can we fetch the number of bits requested at all?  */
1249   if ((end - start) > ((1 << num_ops) * 8))
1250     internal_error (__FILE__, __LINE__,
1251 		    "gen_bitfield_ref: bitfield too wide");
1252 
1253   /* Note that we know here that we only need to try each opcode once.
1254      That may not be true on machines with weird byte sizes.  */
1255   offset = bound_start;
1256   fragment_count = 0;
1257   for (op = num_ops - 1; op >= 0; op--)
1258     {
1259       /* number of bits that ops[op] would fetch */
1260       int op_size = 8 << op;
1261 
1262       /* The stack at this point, from bottom to top, contains zero or
1263          more fragments, then the address.  */
1264 
1265       /* Does this fetch fit within the bitfield?  */
1266       if (offset + op_size <= bound_end)
1267 	{
1268 	  /* Is this the last fragment?  */
1269 	  int last_frag = (offset + op_size == bound_end);
1270 
1271 	  if (!last_frag)
1272 	    ax_simple (ax, aop_dup);	/* keep a copy of the address */
1273 
1274 	  /* Add the offset.  */
1275 	  gen_offset (ax, offset / TARGET_CHAR_BIT);
1276 
1277 	  if (trace_kludge)
1278 	    {
1279 	      /* Record the area of memory we're about to fetch.  */
1280 	      ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1281 	    }
1282 
1283 	  /* Perform the fetch.  */
1284 	  ax_simple (ax, ops[op]);
1285 
1286 	  /* Shift the bits we have to their proper position.
1287 	     gen_left_shift will generate right shifts when the operand
1288 	     is negative.
1289 
1290 	     A big-endian field diagram to ponder:
1291 	     byte 0  byte 1  byte 2  byte 3  byte 4  byte 5  byte 6  byte 7
1292 	     +------++------++------++------++------++------++------++------+
1293 	     xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1294 	     ^               ^               ^    ^
1295 	     bit number      16              32              48   53
1296 	     These are bit numbers as supplied by GDB.  Note that the
1297 	     bit numbers run from right to left once you've fetched the
1298 	     value!
1299 
1300 	     A little-endian field diagram to ponder:
1301 	     byte 7  byte 6  byte 5  byte 4  byte 3  byte 2  byte 1  byte 0
1302 	     +------++------++------++------++------++------++------++------+
1303 	     xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1304 	     ^               ^               ^           ^   ^
1305 	     bit number     48              32              16          4   0
1306 
1307 	     In both cases, the most significant end is on the left
1308 	     (i.e. normal numeric writing order), which means that you
1309 	     don't go crazy thinking about `left' and `right' shifts.
1310 
1311 	     We don't have to worry about masking yet:
1312 	     - If they contain garbage off the least significant end, then we
1313 	     must be looking at the low end of the field, and the right
1314 	     shift will wipe them out.
1315 	     - If they contain garbage off the most significant end, then we
1316 	     must be looking at the most significant end of the word, and
1317 	     the sign/zero extension will wipe them out.
1318 	     - If we're in the interior of the word, then there is no garbage
1319 	     on either end, because the ref operators zero-extend.  */
1320 	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1321 	    gen_left_shift (ax, end - (offset + op_size));
1322 	  else
1323 	    gen_left_shift (ax, offset - start);
1324 
1325 	  if (!last_frag)
1326 	    /* Bring the copy of the address up to the top.  */
1327 	    ax_simple (ax, aop_swap);
1328 
1329 	  offset += op_size;
1330 	  fragment_count++;
1331 	}
1332     }
1333 
1334   /* Generate enough bitwise `or' operations to combine all the
1335      fragments we left on the stack.  */
1336   while (fragment_count-- > 1)
1337     ax_simple (ax, aop_bit_or);
1338 
1339   /* Sign- or zero-extend the value as appropriate.  */
1340   ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1341 
1342   /* This is *not* an lvalue.  Ugh.  */
1343   value->kind = axs_rvalue;
1344   value->type = type;
1345 }
1346 
1347 
1348 /* Generate code to reference the member named FIELD of a structure or
1349    union.  The top of the stack, as described by VALUE, should have
1350    type (pointer to a)* struct/union.  OPERATOR_NAME is the name of
1351    the operator being compiled, and OPERAND_NAME is the kind of thing
1352    it operates on; we use them in error messages.  */
1353 static void
1354 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1355 		char *operator_name, char *operand_name)
1356 {
1357   struct type *type;
1358   int i;
1359 
1360   /* Follow pointers until we reach a non-pointer.  These aren't the C
1361      semantics, but they're what the normal GDB evaluator does, so we
1362      should at least be consistent.  */
1363   while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1364     {
1365       gen_usual_unary (ax, value);
1366       gen_deref (ax, value);
1367     }
1368   type = check_typedef (value->type);
1369 
1370   /* This must yield a structure or a union.  */
1371   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1372       && TYPE_CODE (type) != TYPE_CODE_UNION)
1373     error ("The left operand of `%s' is not a %s.",
1374 	   operator_name, operand_name);
1375 
1376   /* And it must be in memory; we don't deal with structure rvalues,
1377      or structures living in registers.  */
1378   if (value->kind != axs_lvalue_memory)
1379     error ("Structure does not live in memory.");
1380 
1381   i = find_field (type, field);
1382 
1383   /* Is this a bitfield?  */
1384   if (TYPE_FIELD_PACKED (type, i))
1385     gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1386 		      TYPE_FIELD_BITPOS (type, i),
1387 		      (TYPE_FIELD_BITPOS (type, i)
1388 		       + TYPE_FIELD_BITSIZE (type, i)));
1389   else
1390     {
1391       gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1392       value->kind = axs_lvalue_memory;
1393       value->type = TYPE_FIELD_TYPE (type, i);
1394     }
1395 }
1396 
1397 
1398 /* Generate code for GDB's magical `repeat' operator.
1399    LVALUE @ INT creates an array INT elements long, and whose elements
1400    have the same type as LVALUE, located in memory so that LVALUE is
1401    its first element.  For example, argv[0]@argc gives you the array
1402    of command-line arguments.
1403 
1404    Unfortunately, because we have to know the types before we actually
1405    have a value for the expression, we can't implement this perfectly
1406    without changing the type system, having values that occupy two
1407    stack slots, doing weird things with sizeof, etc.  So we require
1408    the right operand to be a constant expression.  */
1409 static void
1410 gen_repeat (union exp_element **pc, struct agent_expr *ax,
1411 	    struct axs_value *value)
1412 {
1413   struct axs_value value1;
1414   /* We don't want to turn this into an rvalue, so no conversions
1415      here.  */
1416   gen_expr (pc, ax, &value1);
1417   if (value1.kind != axs_lvalue_memory)
1418     error ("Left operand of `@' must be an object in memory.");
1419 
1420   /* Evaluate the length; it had better be a constant.  */
1421   {
1422     struct value *v = const_expr (pc);
1423     int length;
1424 
1425     if (!v)
1426       error ("Right operand of `@' must be a constant, in agent expressions.");
1427     if (TYPE_CODE (v->type) != TYPE_CODE_INT)
1428       error ("Right operand of `@' must be an integer.");
1429     length = value_as_long (v);
1430     if (length <= 0)
1431       error ("Right operand of `@' must be positive.");
1432 
1433     /* The top of the stack is already the address of the object, so
1434        all we need to do is frob the type of the lvalue.  */
1435     {
1436       /* FIXME-type-allocation: need a way to free this type when we are
1437          done with it.  */
1438       struct type *range
1439       = create_range_type (0, builtin_type_int, 0, length - 1);
1440       struct type *array = create_array_type (0, value1.type, range);
1441 
1442       value->kind = axs_lvalue_memory;
1443       value->type = array;
1444     }
1445   }
1446 }
1447 
1448 
1449 /* Emit code for the `sizeof' operator.
1450    *PC should point at the start of the operand expression; we advance it
1451    to the first instruction after the operand.  */
1452 static void
1453 gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1454 	    struct axs_value *value)
1455 {
1456   /* We don't care about the value of the operand expression; we only
1457      care about its type.  However, in the current arrangement, the
1458      only way to find an expression's type is to generate code for it.
1459      So we generate code for the operand, and then throw it away,
1460      replacing it with code that simply pushes its size.  */
1461   int start = ax->len;
1462   gen_expr (pc, ax, value);
1463 
1464   /* Throw away the code we just generated.  */
1465   ax->len = start;
1466 
1467   ax_const_l (ax, TYPE_LENGTH (value->type));
1468   value->kind = axs_rvalue;
1469   value->type = builtin_type_int;
1470 }
1471 
1472 
1473 /* Generating bytecode from GDB expressions: general recursive thingy  */
1474 
1475 /* A gen_expr function written by a Gen-X'er guy.
1476    Append code for the subexpression of EXPR starting at *POS_P to AX.  */
1477 static void
1478 gen_expr (union exp_element **pc, struct agent_expr *ax,
1479 	  struct axs_value *value)
1480 {
1481   /* Used to hold the descriptions of operand expressions.  */
1482   struct axs_value value1, value2;
1483   enum exp_opcode op = (*pc)[0].opcode;
1484 
1485   /* If we're looking at a constant expression, just push its value.  */
1486   {
1487     struct value *v = maybe_const_expr (pc);
1488 
1489     if (v)
1490       {
1491 	ax_const_l (ax, value_as_long (v));
1492 	value->kind = axs_rvalue;
1493 	value->type = check_typedef (VALUE_TYPE (v));
1494 	return;
1495       }
1496   }
1497 
1498   /* Otherwise, go ahead and generate code for it.  */
1499   switch (op)
1500     {
1501       /* Binary arithmetic operators.  */
1502     case BINOP_ADD:
1503     case BINOP_SUB:
1504     case BINOP_MUL:
1505     case BINOP_DIV:
1506     case BINOP_REM:
1507     case BINOP_SUBSCRIPT:
1508     case BINOP_BITWISE_AND:
1509     case BINOP_BITWISE_IOR:
1510     case BINOP_BITWISE_XOR:
1511       (*pc)++;
1512       gen_expr (pc, ax, &value1);
1513       gen_usual_unary (ax, &value1);
1514       gen_expr (pc, ax, &value2);
1515       gen_usual_unary (ax, &value2);
1516       gen_usual_arithmetic (ax, &value1, &value2);
1517       switch (op)
1518 	{
1519 	case BINOP_ADD:
1520 	  gen_add (ax, value, &value1, &value2, "addition");
1521 	  break;
1522 	case BINOP_SUB:
1523 	  gen_sub (ax, value, &value1, &value2);
1524 	  break;
1525 	case BINOP_MUL:
1526 	  gen_binop (ax, value, &value1, &value2,
1527 		     aop_mul, aop_mul, 1, "multiplication");
1528 	  break;
1529 	case BINOP_DIV:
1530 	  gen_binop (ax, value, &value1, &value2,
1531 		     aop_div_signed, aop_div_unsigned, 1, "division");
1532 	  break;
1533 	case BINOP_REM:
1534 	  gen_binop (ax, value, &value1, &value2,
1535 		     aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1536 	  break;
1537 	case BINOP_SUBSCRIPT:
1538 	  gen_add (ax, value, &value1, &value2, "array subscripting");
1539 	  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1540 	    error ("Illegal combination of types in array subscripting.");
1541 	  gen_deref (ax, value);
1542 	  break;
1543 	case BINOP_BITWISE_AND:
1544 	  gen_binop (ax, value, &value1, &value2,
1545 		     aop_bit_and, aop_bit_and, 0, "bitwise and");
1546 	  break;
1547 
1548 	case BINOP_BITWISE_IOR:
1549 	  gen_binop (ax, value, &value1, &value2,
1550 		     aop_bit_or, aop_bit_or, 0, "bitwise or");
1551 	  break;
1552 
1553 	case BINOP_BITWISE_XOR:
1554 	  gen_binop (ax, value, &value1, &value2,
1555 		     aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1556 	  break;
1557 
1558 	default:
1559 	  /* We should only list operators in the outer case statement
1560 	     that we actually handle in the inner case statement.  */
1561 	  internal_error (__FILE__, __LINE__,
1562 			  "gen_expr: op case sets don't match");
1563 	}
1564       break;
1565 
1566       /* Note that we need to be a little subtle about generating code
1567          for comma.  In C, we can do some optimizations here because
1568          we know the left operand is only being evaluated for effect.
1569          However, if the tracing kludge is in effect, then we always
1570          need to evaluate the left hand side fully, so that all the
1571          variables it mentions get traced.  */
1572     case BINOP_COMMA:
1573       (*pc)++;
1574       gen_expr (pc, ax, &value1);
1575       /* Don't just dispose of the left operand.  We might be tracing,
1576          in which case we want to emit code to trace it if it's an
1577          lvalue.  */
1578       gen_traced_pop (ax, &value1);
1579       gen_expr (pc, ax, value);
1580       /* It's the consumer's responsibility to trace the right operand.  */
1581       break;
1582 
1583     case OP_LONG:		/* some integer constant */
1584       {
1585 	struct type *type = (*pc)[1].type;
1586 	LONGEST k = (*pc)[2].longconst;
1587 	(*pc) += 4;
1588 	gen_int_literal (ax, value, k, type);
1589       }
1590       break;
1591 
1592     case OP_VAR_VALUE:
1593       gen_var_ref (ax, value, (*pc)[2].symbol);
1594       (*pc) += 4;
1595       break;
1596 
1597     case OP_REGISTER:
1598       {
1599 	int reg = (int) (*pc)[1].longconst;
1600 	(*pc) += 3;
1601 	value->kind = axs_lvalue_register;
1602 	value->u.reg = reg;
1603 	value->type = register_type (current_gdbarch, reg);
1604       }
1605       break;
1606 
1607     case OP_INTERNALVAR:
1608       error ("GDB agent expressions cannot use convenience variables.");
1609 
1610       /* Weirdo operator: see comments for gen_repeat for details.  */
1611     case BINOP_REPEAT:
1612       /* Note that gen_repeat handles its own argument evaluation.  */
1613       (*pc)++;
1614       gen_repeat (pc, ax, value);
1615       break;
1616 
1617     case UNOP_CAST:
1618       {
1619 	struct type *type = (*pc)[1].type;
1620 	(*pc) += 3;
1621 	gen_expr (pc, ax, value);
1622 	gen_cast (ax, value, type);
1623       }
1624       break;
1625 
1626     case UNOP_MEMVAL:
1627       {
1628 	struct type *type = check_typedef ((*pc)[1].type);
1629 	(*pc) += 3;
1630 	gen_expr (pc, ax, value);
1631 	/* I'm not sure I understand UNOP_MEMVAL entirely.  I think
1632 	   it's just a hack for dealing with minsyms; you take some
1633 	   integer constant, pretend it's the address of an lvalue of
1634 	   the given type, and dereference it.  */
1635 	if (value->kind != axs_rvalue)
1636 	  /* This would be weird.  */
1637 	  internal_error (__FILE__, __LINE__,
1638 			  "gen_expr: OP_MEMVAL operand isn't an rvalue???");
1639 	value->type = type;
1640 	value->kind = axs_lvalue_memory;
1641       }
1642       break;
1643 
1644     case UNOP_NEG:
1645       (*pc)++;
1646       /* -FOO is equivalent to 0 - FOO.  */
1647       gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1648       gen_usual_unary (ax, &value1);	/* shouldn't do much */
1649       gen_expr (pc, ax, &value2);
1650       gen_usual_unary (ax, &value2);
1651       gen_usual_arithmetic (ax, &value1, &value2);
1652       gen_sub (ax, value, &value1, &value2);
1653       break;
1654 
1655     case UNOP_LOGICAL_NOT:
1656       (*pc)++;
1657       gen_expr (pc, ax, value);
1658       gen_logical_not (ax, value);
1659       break;
1660 
1661     case UNOP_COMPLEMENT:
1662       (*pc)++;
1663       gen_expr (pc, ax, value);
1664       gen_complement (ax, value);
1665       break;
1666 
1667     case UNOP_IND:
1668       (*pc)++;
1669       gen_expr (pc, ax, value);
1670       gen_usual_unary (ax, value);
1671       if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1672 	error ("Argument of unary `*' is not a pointer.");
1673       gen_deref (ax, value);
1674       break;
1675 
1676     case UNOP_ADDR:
1677       (*pc)++;
1678       gen_expr (pc, ax, value);
1679       gen_address_of (ax, value);
1680       break;
1681 
1682     case UNOP_SIZEOF:
1683       (*pc)++;
1684       /* Notice that gen_sizeof handles its own operand, unlike most
1685          of the other unary operator functions.  This is because we
1686          have to throw away the code we generate.  */
1687       gen_sizeof (pc, ax, value);
1688       break;
1689 
1690     case STRUCTOP_STRUCT:
1691     case STRUCTOP_PTR:
1692       {
1693 	int length = (*pc)[1].longconst;
1694 	char *name = &(*pc)[2].string;
1695 
1696 	(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1697 	gen_expr (pc, ax, value);
1698 	if (op == STRUCTOP_STRUCT)
1699 	  gen_struct_ref (ax, value, name, ".", "structure or union");
1700 	else if (op == STRUCTOP_PTR)
1701 	  gen_struct_ref (ax, value, name, "->",
1702 			  "pointer to a structure or union");
1703 	else
1704 	  /* If this `if' chain doesn't handle it, then the case list
1705 	     shouldn't mention it, and we shouldn't be here.  */
1706 	  internal_error (__FILE__, __LINE__,
1707 			  "gen_expr: unhandled struct case");
1708       }
1709       break;
1710 
1711     case OP_TYPE:
1712       error ("Attempt to use a type name as an expression.");
1713 
1714     default:
1715       error ("Unsupported operator in expression.");
1716     }
1717 }
1718 
1719 
1720 
1721 /* Generating bytecode from GDB expressions: driver */
1722 
1723 /* Given a GDB expression EXPR, produce a string of agent bytecode
1724    which computes its value.  Return the agent expression, and set
1725    *VALUE to describe its type, and whether it's an lvalue or rvalue.  */
1726 struct agent_expr *
1727 expr_to_agent (struct expression *expr, struct axs_value *value)
1728 {
1729   struct cleanup *old_chain = 0;
1730   struct agent_expr *ax = new_agent_expr (0);
1731   union exp_element *pc;
1732 
1733   old_chain = make_cleanup_free_agent_expr (ax);
1734 
1735   pc = expr->elts;
1736   trace_kludge = 0;
1737   gen_expr (&pc, ax, value);
1738 
1739   /* We have successfully built the agent expr, so cancel the cleanup
1740      request.  If we add more cleanups that we always want done, this
1741      will have to get more complicated.  */
1742   discard_cleanups (old_chain);
1743   return ax;
1744 }
1745 
1746 
1747 #if 0				/* not used */
1748 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1749    string of agent bytecode which will leave its address and size on
1750    the top of stack.  Return the agent expression.
1751 
1752    Not sure this function is useful at all.  */
1753 struct agent_expr *
1754 expr_to_address_and_size (struct expression *expr)
1755 {
1756   struct axs_value value;
1757   struct agent_expr *ax = expr_to_agent (expr, &value);
1758 
1759   /* Complain if the result is not a memory lvalue.  */
1760   if (value.kind != axs_lvalue_memory)
1761     {
1762       free_agent_expr (ax);
1763       error ("Expression does not denote an object in memory.");
1764     }
1765 
1766   /* Push the object's size on the stack.  */
1767   ax_const_l (ax, TYPE_LENGTH (value.type));
1768 
1769   return ax;
1770 }
1771 #endif
1772 
1773 /* Given a GDB expression EXPR, return bytecode to trace its value.
1774    The result will use the `trace' and `trace_quick' bytecodes to
1775    record the value of all memory touched by the expression.  The
1776    caller can then use the ax_reqs function to discover which
1777    registers it relies upon.  */
1778 struct agent_expr *
1779 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1780 {
1781   struct cleanup *old_chain = 0;
1782   struct agent_expr *ax = new_agent_expr (scope);
1783   union exp_element *pc;
1784   struct axs_value value;
1785 
1786   old_chain = make_cleanup_free_agent_expr (ax);
1787 
1788   pc = expr->elts;
1789   trace_kludge = 1;
1790   gen_expr (&pc, ax, &value);
1791 
1792   /* Make sure we record the final object, and get rid of it.  */
1793   gen_traced_pop (ax, &value);
1794 
1795   /* Oh, and terminate.  */
1796   ax_simple (ax, aop_end);
1797 
1798   /* We have successfully built the agent expr, so cancel the cleanup
1799      request.  If we add more cleanups that we always want done, this
1800      will have to get more complicated.  */
1801   discard_cleanups (old_chain);
1802   return ax;
1803 }
1804 
1805 static void
1806 agent_command (char *exp, int from_tty)
1807 {
1808   struct cleanup *old_chain = 0;
1809   struct expression *expr;
1810   struct agent_expr *agent;
1811   struct frame_info *fi = get_current_frame ();	/* need current scope */
1812 
1813   /* We don't deal with overlay debugging at the moment.  We need to
1814      think more carefully about this.  If you copy this code into
1815      another command, change the error message; the user shouldn't
1816      have to know anything about agent expressions.  */
1817   if (overlay_debugging)
1818     error ("GDB can't do agent expression translation with overlays.");
1819 
1820   if (exp == 0)
1821     error_no_arg ("expression to translate");
1822 
1823   expr = parse_expression (exp);
1824   old_chain = make_cleanup (free_current_contents, &expr);
1825   agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1826   make_cleanup_free_agent_expr (agent);
1827   ax_print (gdb_stdout, agent);
1828 
1829   /* It would be nice to call ax_reqs here to gather some general info
1830      about the expression, and then print out the result.  */
1831 
1832   do_cleanups (old_chain);
1833   dont_repeat ();
1834 }
1835 
1836 
1837 /* Initialization code.  */
1838 
1839 void _initialize_ax_gdb (void);
1840 void
1841 _initialize_ax_gdb (void)
1842 {
1843   add_cmd ("agent", class_maintenance, agent_command,
1844 	   "Translate an expression into remote agent bytecode.",
1845 	   &maintenancelist);
1846 }
1847