1 /* Native support for HPPA-RISC machine running HPUX, for GDB.
2    Copyright 1991, 1992, 1994, 1996, 1998, 1999, 2000, 2002
3    Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 struct target_ops;
23 
24 #define U_REGS_OFFSET 0
25 
26 #define KERNEL_U_ADDR 0
27 
28 /* What a coincidence! */
29 #define REGISTER_U_ADDR(addr, blockend, regno)				\
30 { addr = (int)(blockend) + DEPRECATED_REGISTER_BYTE (regno);}
31 
32 /* This isn't really correct, because ptrace is actually a 32-bit
33    interface.  However, the modern HP-UX targets all really use
34    ttrace, which is a 64-bit interface --- a debugger running in
35    either 32- or 64-bit mode can debug a 64-bit process.  BUT, the
36    code doesn't use ttrace directly --- it calls call_ptrace instead,
37    which is supposed to be drop-in substitute for ptrace.  In other
38    words, they access a 64-bit system call (ttrace) through a
39    compatibility layer which is allegedly a 32-bit interface.
40 
41    So I don't feel the least bit guilty about this.  */
42 #define PTRACE_ARG3_TYPE CORE_ADDR
43 
44 /* We need to figure out where the text region is so that we use the
45    appropriate ptrace operator to manipulate text.  Simply
46    reading/writing user space will crap out HPUX.  */
47 #define DEPRECATED_HPUX_TEXT_END deprecated_hpux_text_end
48 extern void deprecated_hpux_text_end (struct target_ops *exec_ops);
49 
50 /* In hppah-nat.c: */
51 #define FETCH_INFERIOR_REGISTERS
52 #define CHILD_XFER_MEMORY
53 #define CHILD_FOLLOW_FORK
54 
55 /* In infptrace.c or infttrace.c: */
56 #define CHILD_PID_TO_EXEC_FILE
57 #define CHILD_POST_STARTUP_INFERIOR
58 #define CHILD_ACKNOWLEDGE_CREATED_INFERIOR
59 #define CHILD_INSERT_FORK_CATCHPOINT
60 #define CHILD_REMOVE_FORK_CATCHPOINT
61 #define CHILD_INSERT_VFORK_CATCHPOINT
62 #define CHILD_REMOVE_VFORK_CATCHPOINT
63 #define CHILD_INSERT_EXEC_CATCHPOINT
64 #define CHILD_REMOVE_EXEC_CATCHPOINT
65 #define CHILD_REPORTED_EXEC_EVENTS_PER_EXEC_CALL
66 #define CHILD_POST_ATTACH
67 #define CHILD_THREAD_ALIVE
68 #define CHILD_PID_TO_STR
69 #define CHILD_WAIT
70 struct target_waitstatus;
71 extern ptid_t child_wait (ptid_t, struct target_waitstatus *);
72 
73 extern int hppa_require_attach (int);
74 extern int hppa_require_detach (int, int);
75 
76 /* So we can cleanly use code in infptrace.c.  */
77 #define PT_KILL		PT_EXIT
78 #define PT_STEP		PT_SINGLE
79 #define PT_CONTINUE	PT_CONTIN
80 
81 /* FIXME HP MERGE : Previously, PT_RDUAREA. this is actually fixed
82    in gdb-hp-snapshot-980509  */
83 #define PT_READ_U	PT_RUAREA
84 #define PT_WRITE_U	PT_WUAREA
85 #define PT_READ_I	PT_RIUSER
86 #define PT_READ_D	PT_RDUSER
87 #define PT_WRITE_I	PT_WIUSER
88 #define PT_WRITE_D	PT_WDUSER
89 
90 /* In infptrace or infttrace.c: */
91 
92 /* Starting with HP-UX 10.30, support is provided (in the form of
93    ttrace requests) for memory-protection-based hardware watchpoints.
94 
95    The 10.30 implementation of these functions reside in infttrace.c.
96 
97    Stubs of these functions will be provided in infptrace.c, so that
98    10.20 will at least link.  However, the "can I use a fast watchpoint?"
99    query will always return "No" for 10.20. */
100 
101 /* The PA can watch any number of locations (generic routines already check
102    that all intermediates are in watchable memory locations). */
103 extern int hppa_can_use_hw_watchpoint (int type, int cnt, int ot);
104 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(type, cnt, ot) \
105         hppa_can_use_hw_watchpoint(type, cnt, ot)
106 
107 /* The PA can also watch memory regions of arbitrary size, since we're
108    using a page-protection scheme.  (On some targets, apparently watch
109    registers are used, which can only accomodate regions of
110    DEPRECATED_REGISTER_SIZE.)  */
111 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
112         (1)
113 
114 /* On HP-UX, we're using page-protection to implement hardware watchpoints.
115    When an instruction attempts to write to a write-protected memory page,
116    a SIGBUS is raised.  At that point, the write has not actually occurred.
117 
118    We must therefore remove page-protections; single-step the inferior (to
119    allow the write to happen); restore page-protections; and check whether
120    any watchpoint triggered.
121 
122    If none did, then the write was to a "nearby" location that just happens
123    to fall on the same page as a watched location, and so can be ignored.
124 
125    The only intended client of this macro is wait_for_inferior(), in infrun.c.
126    When HAVE_NONSTEPPABLE_WATCHPOINT is true, that function will take care
127    of the stepping & etc. */
128 
129 #define STOPPED_BY_WATCHPOINT(W) \
130         ((W.kind == TARGET_WAITKIND_STOPPED) && \
131          (stop_signal == TARGET_SIGNAL_BUS) && \
132          ! stepped_after_stopped_by_watchpoint && \
133          bpstat_have_active_hw_watchpoints ())
134 
135 /* Our implementation of "hardware" watchpoints uses memory page-protection
136    faults.  However, HP-UX has unfortunate interactions between these and
137    system calls; basically, it's unsafe to have page protections on when a
138    syscall is running.  Therefore, we also ask for notification of syscall
139    entries and returns.  When the inferior enters a syscall, we disable
140    h/w watchpoints.  When the inferior returns from a syscall, we reenable
141    h/w watchpoints.
142 
143    infptrace.c supplies dummy versions of these; infttrace.c is where the
144    meaningful implementations are.
145  */
146 #define TARGET_ENABLE_HW_WATCHPOINTS(pid) \
147         hppa_enable_page_protection_events (pid)
148 extern void hppa_enable_page_protection_events (int);
149 
150 #define TARGET_DISABLE_HW_WATCHPOINTS(pid) \
151         hppa_disable_page_protection_events (pid)
152 extern void hppa_disable_page_protection_events (int);
153 
154 /* Use these macros for watchpoint insertion/deletion.  */
155 extern int hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
156 				      int type);
157 #define target_insert_watchpoint(addr, len, type) \
158         hppa_insert_hw_watchpoint (PIDGET (inferior_ptid), addr, (LONGEST)(len), type)
159 
160 extern int hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
161 				      int type);
162 #define target_remove_watchpoint(addr, len, type) \
163         hppa_remove_hw_watchpoint (PIDGET (inferior_ptid), addr, (LONGEST)(len), type)
164 
165 /* We call our k-thread processes "threads", rather
166  * than processes.  So we need a new way to print
167  * the string.  Code is in hppah-nat.c.
168  */
169 
170 extern char *child_pid_to_str (ptid_t);
171 
172 #define target_tid_to_str( ptid ) \
173         hppa_tid_to_str( ptid )
174 extern char *hppa_tid_to_str (ptid_t);
175 
176 /* For this, ID can be either a process or thread ID, and the function
177    will describe it appropriately, returning the description as a printable
178    string.
179 
180    The function that implements this macro is defined in infptrace.c and
181    infttrace.c.
182  */
183 #define target_pid_or_tid_to_str(ID) \
184         hppa_pid_or_tid_to_str (ID)
185 extern char *hppa_pid_or_tid_to_str (ptid_t);
186 
187 /* This is used when handling events caused by a call to vfork().  On ptrace-
188    based HP-UXs, when you resume the vforked child, the parent automagically
189    begins running again.  To prevent this runaway, this function is used.
190 
191    Note that for vfork on HP-UX, we receive three events of interest:
192 
193    1. the vfork event for the new child process
194    2. the exit or exec event of the new child process (actually, you get
195    two exec events on ptrace-based HP-UXs)
196    3. the vfork event for the original parent process
197 
198    The first is always received first.  The other two may be received in any
199    order; HP-UX doesn't guarantee an order.
200  */
201 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) \
202         hppa_ensure_vforking_parent_remains_stopped (PID)
203 extern void hppa_ensure_vforking_parent_remains_stopped (int);
204 
205 /* This is used when handling events caused by a call to vfork().
206 
207    On ttrace-based HP-UXs, the parent vfork and child exec arrive more or less
208    together.  That is, you could do two wait()s without resuming either parent
209    or child, and get both events.
210 
211    On ptrace-based HP-UXs, you must resume the child after its exec event is
212    delivered or you won't get the parent's vfork.  I.e., you can't just wait()
213    and get the parent vfork, after receiving the child exec.
214  */
215 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() \
216         hppa_resume_execd_vforking_child_to_get_parent_vfork ()
217 extern int hppa_resume_execd_vforking_child_to_get_parent_vfork (void);
218 
219 #define HPUXHPPA
220 
221 #define MAY_FOLLOW_EXEC (1)
222 
223 #include "infttrace.h" /* For parent_attach_all.  */
224