1 /* Frame unwinder for frames with DWARF Call Frame Information. 2 3 Copyright 2003, 2004 Free Software Foundation, Inc. 4 5 Contributed by Mark Kettenis. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "dwarf2expr.h" 26 #include "elf/dwarf2.h" 27 #include "frame.h" 28 #include "frame-base.h" 29 #include "frame-unwind.h" 30 #include "gdbcore.h" 31 #include "gdbtypes.h" 32 #include "symtab.h" 33 #include "objfiles.h" 34 #include "regcache.h" 35 36 #include "gdb_assert.h" 37 #include "gdb_string.h" 38 39 #include "complaints.h" 40 #include "dwarf2-frame.h" 41 42 /* Call Frame Information (CFI). */ 43 44 /* Common Information Entry (CIE). */ 45 46 struct dwarf2_cie 47 { 48 /* Offset into the .debug_frame section where this CIE was found. 49 Used to identify this CIE. */ 50 ULONGEST cie_pointer; 51 52 /* Constant that is factored out of all advance location 53 instructions. */ 54 ULONGEST code_alignment_factor; 55 56 /* Constants that is factored out of all offset instructions. */ 57 LONGEST data_alignment_factor; 58 59 /* Return address column. */ 60 ULONGEST return_address_register; 61 62 /* Instruction sequence to initialize a register set. */ 63 unsigned char *initial_instructions; 64 unsigned char *end; 65 66 /* Encoding of addresses. */ 67 unsigned char encoding; 68 69 /* True if a 'z' augmentation existed. */ 70 unsigned char saw_z_augmentation; 71 72 struct dwarf2_cie *next; 73 }; 74 75 /* Frame Description Entry (FDE). */ 76 77 struct dwarf2_fde 78 { 79 /* CIE for this FDE. */ 80 struct dwarf2_cie *cie; 81 82 /* First location associated with this FDE. */ 83 CORE_ADDR initial_location; 84 85 /* Number of bytes of program instructions described by this FDE. */ 86 CORE_ADDR address_range; 87 88 /* Instruction sequence. */ 89 unsigned char *instructions; 90 unsigned char *end; 91 92 struct dwarf2_fde *next; 93 }; 94 95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc); 96 97 98 /* Structure describing a frame state. */ 99 100 struct dwarf2_frame_state 101 { 102 /* Each register save state can be described in terms of a CFA slot, 103 another register, or a location expression. */ 104 struct dwarf2_frame_state_reg_info 105 { 106 struct dwarf2_frame_state_reg *reg; 107 int num_regs; 108 109 /* Used to implement DW_CFA_remember_state. */ 110 struct dwarf2_frame_state_reg_info *prev; 111 } regs; 112 113 LONGEST cfa_offset; 114 ULONGEST cfa_reg; 115 unsigned char *cfa_exp; 116 enum { 117 CFA_UNSET, 118 CFA_REG_OFFSET, 119 CFA_EXP 120 } cfa_how; 121 122 /* The PC described by the current frame state. */ 123 CORE_ADDR pc; 124 125 /* Initial register set from the CIE. 126 Used to implement DW_CFA_restore. */ 127 struct dwarf2_frame_state_reg_info initial; 128 129 /* The information we care about from the CIE. */ 130 LONGEST data_align; 131 ULONGEST code_align; 132 ULONGEST retaddr_column; 133 }; 134 135 /* Store the length the expression for the CFA in the `cfa_reg' field, 136 which is unused in that case. */ 137 #define cfa_exp_len cfa_reg 138 139 /* Assert that the register set RS is large enough to store NUM_REGS 140 columns. If necessary, enlarge the register set. */ 141 142 static void 143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, 144 int num_regs) 145 { 146 size_t size = sizeof (struct dwarf2_frame_state_reg); 147 148 if (num_regs <= rs->num_regs) 149 return; 150 151 rs->reg = (struct dwarf2_frame_state_reg *) 152 xrealloc (rs->reg, num_regs * size); 153 154 /* Initialize newly allocated registers. */ 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); 156 rs->num_regs = num_regs; 157 } 158 159 /* Copy the register columns in register set RS into newly allocated 160 memory and return a pointer to this newly created copy. */ 161 162 static struct dwarf2_frame_state_reg * 163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) 164 { 165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info); 166 struct dwarf2_frame_state_reg *reg; 167 168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size); 169 memcpy (reg, rs->reg, size); 170 171 return reg; 172 } 173 174 /* Release the memory allocated to register set RS. */ 175 176 static void 177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) 178 { 179 if (rs) 180 { 181 dwarf2_frame_state_free_regs (rs->prev); 182 183 xfree (rs->reg); 184 xfree (rs); 185 } 186 } 187 188 /* Release the memory allocated to the frame state FS. */ 189 190 static void 191 dwarf2_frame_state_free (void *p) 192 { 193 struct dwarf2_frame_state *fs = p; 194 195 dwarf2_frame_state_free_regs (fs->initial.prev); 196 dwarf2_frame_state_free_regs (fs->regs.prev); 197 xfree (fs->initial.reg); 198 xfree (fs->regs.reg); 199 xfree (fs); 200 } 201 202 203 /* Helper functions for execute_stack_op. */ 204 205 static CORE_ADDR 206 read_reg (void *baton, int reg) 207 { 208 struct frame_info *next_frame = (struct frame_info *) baton; 209 struct gdbarch *gdbarch = get_frame_arch (next_frame); 210 int regnum; 211 char *buf; 212 213 regnum = DWARF2_REG_TO_REGNUM (reg); 214 215 buf = (char *) alloca (register_size (gdbarch, regnum)); 216 frame_unwind_register (next_frame, regnum, buf); 217 return extract_typed_address (buf, builtin_type_void_data_ptr); 218 } 219 220 static void 221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len) 222 { 223 read_memory (addr, buf, len); 224 } 225 226 static void 227 no_get_frame_base (void *baton, unsigned char **start, size_t *length) 228 { 229 internal_error (__FILE__, __LINE__, 230 "Support for DW_OP_fbreg is unimplemented"); 231 } 232 233 static CORE_ADDR 234 no_get_tls_address (void *baton, CORE_ADDR offset) 235 { 236 internal_error (__FILE__, __LINE__, 237 "Support for DW_OP_GNU_push_tls_address is unimplemented"); 238 } 239 240 static CORE_ADDR 241 execute_stack_op (unsigned char *exp, ULONGEST len, 242 struct frame_info *next_frame, CORE_ADDR initial) 243 { 244 struct dwarf_expr_context *ctx; 245 CORE_ADDR result; 246 247 ctx = new_dwarf_expr_context (); 248 ctx->baton = next_frame; 249 ctx->read_reg = read_reg; 250 ctx->read_mem = read_mem; 251 ctx->get_frame_base = no_get_frame_base; 252 ctx->get_tls_address = no_get_tls_address; 253 254 dwarf_expr_push (ctx, initial); 255 dwarf_expr_eval (ctx, exp, len); 256 result = dwarf_expr_fetch (ctx, 0); 257 258 if (ctx->in_reg) 259 result = read_reg (next_frame, result); 260 261 free_dwarf_expr_context (ctx); 262 263 return result; 264 } 265 266 267 static void 268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end, 269 struct frame_info *next_frame, 270 struct dwarf2_frame_state *fs) 271 { 272 CORE_ADDR pc = frame_pc_unwind (next_frame); 273 int bytes_read; 274 275 while (insn_ptr < insn_end && fs->pc <= pc) 276 { 277 unsigned char insn = *insn_ptr++; 278 ULONGEST utmp, reg; 279 LONGEST offset; 280 281 if ((insn & 0xc0) == DW_CFA_advance_loc) 282 fs->pc += (insn & 0x3f) * fs->code_align; 283 else if ((insn & 0xc0) == DW_CFA_offset) 284 { 285 reg = insn & 0x3f; 286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 287 offset = utmp * fs->data_align; 288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 290 fs->regs.reg[reg].loc.offset = offset; 291 } 292 else if ((insn & 0xc0) == DW_CFA_restore) 293 { 294 gdb_assert (fs->initial.reg); 295 reg = insn & 0x3f; 296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 297 fs->regs.reg[reg] = fs->initial.reg[reg]; 298 } 299 else 300 { 301 switch (insn) 302 { 303 case DW_CFA_set_loc: 304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read); 305 insn_ptr += bytes_read; 306 break; 307 308 case DW_CFA_advance_loc1: 309 utmp = extract_unsigned_integer (insn_ptr, 1); 310 fs->pc += utmp * fs->code_align; 311 insn_ptr++; 312 break; 313 case DW_CFA_advance_loc2: 314 utmp = extract_unsigned_integer (insn_ptr, 2); 315 fs->pc += utmp * fs->code_align; 316 insn_ptr += 2; 317 break; 318 case DW_CFA_advance_loc4: 319 utmp = extract_unsigned_integer (insn_ptr, 4); 320 fs->pc += utmp * fs->code_align; 321 insn_ptr += 4; 322 break; 323 324 case DW_CFA_offset_extended: 325 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 327 offset = utmp * fs->data_align; 328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 330 fs->regs.reg[reg].loc.offset = offset; 331 break; 332 333 case DW_CFA_restore_extended: 334 gdb_assert (fs->initial.reg); 335 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 337 fs->regs.reg[reg] = fs->initial.reg[reg]; 338 break; 339 340 case DW_CFA_undefined: 341 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; 344 break; 345 346 case DW_CFA_same_value: 347 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; 350 break; 351 352 case DW_CFA_register: 353 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; 357 fs->regs.reg[reg].loc.reg = utmp; 358 break; 359 360 case DW_CFA_remember_state: 361 { 362 struct dwarf2_frame_state_reg_info *new_rs; 363 364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); 365 *new_rs = fs->regs; 366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); 367 fs->regs.prev = new_rs; 368 } 369 break; 370 371 case DW_CFA_restore_state: 372 { 373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; 374 375 if (old_rs == NULL) 376 { 377 complaint (&symfile_complaints, "\ 378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc)); 379 } 380 else 381 { 382 xfree (fs->regs.reg); 383 fs->regs = *old_rs; 384 xfree (old_rs); 385 } 386 } 387 break; 388 389 case DW_CFA_def_cfa: 390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 392 fs->cfa_offset = utmp; 393 fs->cfa_how = CFA_REG_OFFSET; 394 break; 395 396 case DW_CFA_def_cfa_register: 397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 398 fs->cfa_how = CFA_REG_OFFSET; 399 break; 400 401 case DW_CFA_def_cfa_offset: 402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset); 403 /* cfa_how deliberately not set. */ 404 break; 405 406 case DW_CFA_nop: 407 break; 408 409 case DW_CFA_def_cfa_expression: 410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len); 411 fs->cfa_exp = insn_ptr; 412 fs->cfa_how = CFA_EXP; 413 insn_ptr += fs->cfa_exp_len; 414 break; 415 416 case DW_CFA_expression: 417 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 420 fs->regs.reg[reg].loc.exp = insn_ptr; 421 fs->regs.reg[reg].exp_len = utmp; 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; 423 insn_ptr += utmp; 424 break; 425 426 case DW_CFA_offset_extended_sf: 427 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 429 offset *= fs->data_align; 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 432 fs->regs.reg[reg].loc.offset = offset; 433 break; 434 435 case DW_CFA_def_cfa_sf: 436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 438 fs->cfa_offset = offset * fs->data_align; 439 fs->cfa_how = CFA_REG_OFFSET; 440 break; 441 442 case DW_CFA_def_cfa_offset_sf: 443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 444 fs->cfa_offset = offset * fs->data_align; 445 /* cfa_how deliberately not set. */ 446 break; 447 448 case DW_CFA_val_expression: 449 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 450 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 451 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 452 fs->regs.reg[reg].loc.exp = insn_ptr; 453 fs->regs.reg[reg].exp_len = utmp; 454 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; 455 insn_ptr += utmp; 456 break; 457 458 case DW_CFA_GNU_args_size: 459 /* Ignored. */ 460 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 461 break; 462 463 default: 464 internal_error (__FILE__, __LINE__, "Unknown CFI encountered."); 465 } 466 } 467 } 468 469 /* Don't allow remember/restore between CIE and FDE programs. */ 470 dwarf2_frame_state_free_regs (fs->regs.prev); 471 fs->regs.prev = NULL; 472 } 473 474 475 /* Architecture-specific operations. */ 476 477 /* Per-architecture data key. */ 478 static struct gdbarch_data *dwarf2_frame_data; 479 480 struct dwarf2_frame_ops 481 { 482 /* Pre-initialize the register state REG for register REGNUM. */ 483 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *); 484 }; 485 486 /* Default architecture-specific register state initialization 487 function. */ 488 489 static void 490 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, 491 struct dwarf2_frame_state_reg *reg) 492 { 493 /* If we have a register that acts as a program counter, mark it as 494 a destination for the return address. If we have a register that 495 serves as the stack pointer, arrange for it to be filled with the 496 call frame address (CFA). The other registers are marked as 497 unspecified. 498 499 We copy the return address to the program counter, since many 500 parts in GDB assume that it is possible to get the return address 501 by unwinding the program counter register. However, on ISA's 502 with a dedicated return address register, the CFI usually only 503 contains information to unwind that return address register. 504 505 The reason we're treating the stack pointer special here is 506 because in many cases GCC doesn't emit CFI for the stack pointer 507 and implicitly assumes that it is equal to the CFA. This makes 508 some sense since the DWARF specification (version 3, draft 8, 509 p. 102) says that: 510 511 "Typically, the CFA is defined to be the value of the stack 512 pointer at the call site in the previous frame (which may be 513 different from its value on entry to the current frame)." 514 515 However, this isn't true for all platforms supported by GCC 516 (e.g. IBM S/390 and zSeries). Those architectures should provide 517 their own architecture-specific initialization function. */ 518 519 if (regnum == PC_REGNUM) 520 reg->how = DWARF2_FRAME_REG_RA; 521 else if (regnum == SP_REGNUM) 522 reg->how = DWARF2_FRAME_REG_CFA; 523 } 524 525 /* Return a default for the architecture-specific operations. */ 526 527 static void * 528 dwarf2_frame_init (struct obstack *obstack) 529 { 530 struct dwarf2_frame_ops *ops; 531 532 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); 533 ops->init_reg = dwarf2_frame_default_init_reg; 534 return ops; 535 } 536 537 /* Set the architecture-specific register state initialization 538 function for GDBARCH to INIT_REG. */ 539 540 void 541 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, 542 void (*init_reg) (struct gdbarch *, int, 543 struct dwarf2_frame_state_reg *)) 544 { 545 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 546 547 ops->init_reg = init_reg; 548 } 549 550 /* Pre-initialize the register state REG for register REGNUM. */ 551 552 static void 553 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 554 struct dwarf2_frame_state_reg *reg) 555 { 556 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 557 558 ops->init_reg (gdbarch, regnum, reg); 559 } 560 561 562 struct dwarf2_frame_cache 563 { 564 /* DWARF Call Frame Address. */ 565 CORE_ADDR cfa; 566 567 /* Saved registers, indexed by GDB register number, not by DWARF 568 register number. */ 569 struct dwarf2_frame_state_reg *reg; 570 }; 571 572 static struct dwarf2_frame_cache * 573 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache) 574 { 575 struct cleanup *old_chain; 576 struct gdbarch *gdbarch = get_frame_arch (next_frame); 577 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS; 578 struct dwarf2_frame_cache *cache; 579 struct dwarf2_frame_state *fs; 580 struct dwarf2_fde *fde; 581 582 if (*this_cache) 583 return *this_cache; 584 585 /* Allocate a new cache. */ 586 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); 587 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); 588 589 /* Allocate and initialize the frame state. */ 590 fs = XMALLOC (struct dwarf2_frame_state); 591 memset (fs, 0, sizeof (struct dwarf2_frame_state)); 592 old_chain = make_cleanup (dwarf2_frame_state_free, fs); 593 594 /* Unwind the PC. 595 596 Note that if NEXT_FRAME is never supposed to return (i.e. a call 597 to abort), the compiler might optimize away the instruction at 598 NEXT_FRAME's return address. As a result the return address will 599 point at some random instruction, and the CFI for that 600 instruction is probably worthless to us. GCC's unwinder solves 601 this problem by substracting 1 from the return address to get an 602 address in the middle of a presumed call instruction (or the 603 instruction in the associated delay slot). This should only be 604 done for "normal" frames and not for resume-type frames (signal 605 handlers, sentinel frames, dummy frames). The function 606 frame_unwind_address_in_block does just this. It's not clear how 607 reliable the method is though; there is the potential for the 608 register state pre-call being different to that on return. */ 609 fs->pc = frame_unwind_address_in_block (next_frame); 610 611 /* Find the correct FDE. */ 612 fde = dwarf2_frame_find_fde (&fs->pc); 613 gdb_assert (fde != NULL); 614 615 /* Extract any interesting information from the CIE. */ 616 fs->data_align = fde->cie->data_alignment_factor; 617 fs->code_align = fde->cie->code_alignment_factor; 618 fs->retaddr_column = fde->cie->return_address_register; 619 620 /* First decode all the insns in the CIE. */ 621 execute_cfa_program (fde->cie->initial_instructions, 622 fde->cie->end, next_frame, fs); 623 624 /* Save the initialized register set. */ 625 fs->initial = fs->regs; 626 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); 627 628 /* Then decode the insns in the FDE up to our target PC. */ 629 execute_cfa_program (fde->instructions, fde->end, next_frame, fs); 630 631 /* Caclulate the CFA. */ 632 switch (fs->cfa_how) 633 { 634 case CFA_REG_OFFSET: 635 cache->cfa = read_reg (next_frame, fs->cfa_reg); 636 cache->cfa += fs->cfa_offset; 637 break; 638 639 case CFA_EXP: 640 cache->cfa = 641 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0); 642 break; 643 644 default: 645 internal_error (__FILE__, __LINE__, "Unknown CFA rule."); 646 } 647 648 /* Initialize the register state. */ 649 { 650 int regnum; 651 652 for (regnum = 0; regnum < num_regs; regnum++) 653 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]); 654 } 655 656 /* Go through the DWARF2 CFI generated table and save its register 657 location information in the cache. Note that we don't skip the 658 return address column; it's perfectly all right for it to 659 correspond to a real register. If it doesn't correspond to a 660 real register, or if we shouldn't treat it as such, 661 DWARF2_REG_TO_REGNUM should be defined to return a number outside 662 the range [0, NUM_REGS). */ 663 { 664 int column; /* CFI speak for "register number". */ 665 666 for (column = 0; column < fs->regs.num_regs; column++) 667 { 668 /* Use the GDB register number as the destination index. */ 669 int regnum = DWARF2_REG_TO_REGNUM (column); 670 671 /* If there's no corresponding GDB register, ignore it. */ 672 if (regnum < 0 || regnum >= num_regs) 673 continue; 674 675 /* NOTE: cagney/2003-09-05: CFI should specify the disposition 676 of all debug info registers. If it doesn't, complain (but 677 not too loudly). It turns out that GCC assumes that an 678 unspecified register implies "same value" when CFI (draft 679 7) specifies nothing at all. Such a register could equally 680 be interpreted as "undefined". Also note that this check 681 isn't sufficient; it only checks that all registers in the 682 range [0 .. max column] are specified, and won't detect 683 problems when a debug info register falls outside of the 684 table. We need a way of iterating through all the valid 685 DWARF2 register numbers. */ 686 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) 687 complaint (&symfile_complaints, 688 "Incomplete CFI data; unspecified registers at 0x%s", 689 paddr (fs->pc)); 690 else 691 cache->reg[regnum] = fs->regs.reg[column]; 692 } 693 } 694 695 /* Eliminate any DWARF2_FRAME_REG_RA rules. */ 696 { 697 int regnum; 698 699 for (regnum = 0; regnum < num_regs; regnum++) 700 { 701 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) 702 { 703 struct dwarf2_frame_state_reg *retaddr_reg = 704 &fs->regs.reg[fs->retaddr_column]; 705 706 /* It seems rather bizarre to specify an "empty" column as 707 the return adress column. However, this is exactly 708 what GCC does on some targets. It turns out that GCC 709 assumes that the return address can be found in the 710 register corresponding to the return address column. 711 Incidentally, that's how should treat a return address 712 column specifying "same value" too. */ 713 if (fs->retaddr_column < fs->regs.num_regs 714 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED 715 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) 716 cache->reg[regnum] = *retaddr_reg; 717 else 718 { 719 cache->reg[regnum].loc.reg = fs->retaddr_column; 720 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; 721 } 722 } 723 } 724 } 725 726 do_cleanups (old_chain); 727 728 *this_cache = cache; 729 return cache; 730 } 731 732 static void 733 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache, 734 struct frame_id *this_id) 735 { 736 struct dwarf2_frame_cache *cache = 737 dwarf2_frame_cache (next_frame, this_cache); 738 739 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame)); 740 } 741 742 static void 743 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache, 744 int regnum, int *optimizedp, 745 enum lval_type *lvalp, CORE_ADDR *addrp, 746 int *realnump, void *valuep) 747 { 748 struct gdbarch *gdbarch = get_frame_arch (next_frame); 749 struct dwarf2_frame_cache *cache = 750 dwarf2_frame_cache (next_frame, this_cache); 751 CORE_ADDR value; 752 753 switch (cache->reg[regnum].how) 754 { 755 case DWARF2_FRAME_REG_UNDEFINED: 756 /* If CFI explicitly specified that the value isn't defined, 757 mark it as optimized away; the value isn't available. */ 758 *optimizedp = 1; 759 *lvalp = not_lval; 760 *addrp = 0; 761 *realnump = -1; 762 if (valuep) 763 { 764 /* In some cases, for example %eflags on the i386, we have 765 to provide a sane value, even though this register wasn't 766 saved. Assume we can get it from NEXT_FRAME. */ 767 frame_unwind_register (next_frame, regnum, valuep); 768 } 769 break; 770 771 case DWARF2_FRAME_REG_SAVED_OFFSET: 772 *optimizedp = 0; 773 *lvalp = lval_memory; 774 *addrp = cache->cfa + cache->reg[regnum].loc.offset; 775 *realnump = -1; 776 if (valuep) 777 { 778 /* Read the value in from memory. */ 779 read_memory (*addrp, valuep, register_size (gdbarch, regnum)); 780 } 781 break; 782 783 case DWARF2_FRAME_REG_SAVED_REG: 784 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg); 785 frame_register_unwind (next_frame, regnum, 786 optimizedp, lvalp, addrp, realnump, valuep); 787 break; 788 789 case DWARF2_FRAME_REG_SAVED_EXP: 790 *optimizedp = 0; 791 *lvalp = lval_memory; 792 *addrp = execute_stack_op (cache->reg[regnum].loc.exp, 793 cache->reg[regnum].exp_len, 794 next_frame, cache->cfa); 795 *realnump = -1; 796 if (valuep) 797 { 798 /* Read the value in from memory. */ 799 read_memory (*addrp, valuep, register_size (gdbarch, regnum)); 800 } 801 break; 802 803 case DWARF2_FRAME_REG_SAVED_VAL_EXP: 804 *optimizedp = 0; 805 *lvalp = not_lval; 806 *addrp = 0; 807 value = execute_stack_op (cache->reg[regnum].loc.exp, 808 cache->reg[regnum].exp_len, 809 next_frame, cache->cfa); 810 *realnump = -1; 811 if (valuep) 812 { 813 /* Store the value. */ 814 store_typed_address (valuep, builtin_type_void_data_ptr, value); 815 } 816 break; 817 818 case DWARF2_FRAME_REG_UNSPECIFIED: 819 /* GCC, in its infinite wisdom decided to not provide unwind 820 information for registers that are "same value". Since 821 DWARF2 (3 draft 7) doesn't define such behavior, said 822 registers are actually undefined (which is different to CFI 823 "undefined"). Code above issues a complaint about this. 824 Here just fudge the books, assume GCC, and that the value is 825 more inner on the stack. */ 826 frame_register_unwind (next_frame, regnum, 827 optimizedp, lvalp, addrp, realnump, valuep); 828 break; 829 830 case DWARF2_FRAME_REG_SAME_VALUE: 831 frame_register_unwind (next_frame, regnum, 832 optimizedp, lvalp, addrp, realnump, valuep); 833 break; 834 835 case DWARF2_FRAME_REG_CFA: 836 *optimizedp = 0; 837 *lvalp = not_lval; 838 *addrp = 0; 839 *realnump = -1; 840 if (valuep) 841 { 842 /* Store the value. */ 843 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa); 844 } 845 break; 846 847 default: 848 internal_error (__FILE__, __LINE__, "Unknown register rule."); 849 } 850 } 851 852 static const struct frame_unwind dwarf2_frame_unwind = 853 { 854 NORMAL_FRAME, 855 dwarf2_frame_this_id, 856 dwarf2_frame_prev_register 857 }; 858 859 const struct frame_unwind * 860 dwarf2_frame_sniffer (struct frame_info *next_frame) 861 { 862 /* Grab an address that is guarenteed to reside somewhere within the 863 function. frame_pc_unwind(), for a no-return next function, can 864 end up returning something past the end of this function's body. */ 865 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame); 866 if (dwarf2_frame_find_fde (&block_addr)) 867 return &dwarf2_frame_unwind; 868 869 return NULL; 870 } 871 872 873 /* There is no explicitly defined relationship between the CFA and the 874 location of frame's local variables and arguments/parameters. 875 Therefore, frame base methods on this page should probably only be 876 used as a last resort, just to avoid printing total garbage as a 877 response to the "info frame" command. */ 878 879 static CORE_ADDR 880 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache) 881 { 882 struct dwarf2_frame_cache *cache = 883 dwarf2_frame_cache (next_frame, this_cache); 884 885 return cache->cfa; 886 } 887 888 static const struct frame_base dwarf2_frame_base = 889 { 890 &dwarf2_frame_unwind, 891 dwarf2_frame_base_address, 892 dwarf2_frame_base_address, 893 dwarf2_frame_base_address 894 }; 895 896 const struct frame_base * 897 dwarf2_frame_base_sniffer (struct frame_info *next_frame) 898 { 899 CORE_ADDR pc = frame_pc_unwind (next_frame); 900 if (dwarf2_frame_find_fde (&pc)) 901 return &dwarf2_frame_base; 902 903 return NULL; 904 } 905 906 /* A minimal decoding of DWARF2 compilation units. We only decode 907 what's needed to get to the call frame information. */ 908 909 struct comp_unit 910 { 911 /* Keep the bfd convenient. */ 912 bfd *abfd; 913 914 struct objfile *objfile; 915 916 /* Linked list of CIEs for this object. */ 917 struct dwarf2_cie *cie; 918 919 /* Pointer to the .debug_frame section loaded into memory. */ 920 char *dwarf_frame_buffer; 921 922 /* Length of the loaded .debug_frame section. */ 923 unsigned long dwarf_frame_size; 924 925 /* Pointer to the .debug_frame section. */ 926 asection *dwarf_frame_section; 927 928 /* Base for DW_EH_PE_datarel encodings. */ 929 bfd_vma dbase; 930 931 /* Base for DW_EH_PE_textrel encodings. */ 932 bfd_vma tbase; 933 }; 934 935 const struct objfile_data *dwarf2_frame_objfile_data; 936 937 static unsigned int 938 read_1_byte (bfd *bfd, char *buf) 939 { 940 return bfd_get_8 (abfd, (bfd_byte *) buf); 941 } 942 943 static unsigned int 944 read_4_bytes (bfd *abfd, char *buf) 945 { 946 return bfd_get_32 (abfd, (bfd_byte *) buf); 947 } 948 949 static ULONGEST 950 read_8_bytes (bfd *abfd, char *buf) 951 { 952 return bfd_get_64 (abfd, (bfd_byte *) buf); 953 } 954 955 static ULONGEST 956 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 957 { 958 ULONGEST result; 959 unsigned int num_read; 960 int shift; 961 unsigned char byte; 962 963 result = 0; 964 shift = 0; 965 num_read = 0; 966 967 do 968 { 969 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 970 buf++; 971 num_read++; 972 result |= ((byte & 0x7f) << shift); 973 shift += 7; 974 } 975 while (byte & 0x80); 976 977 *bytes_read_ptr = num_read; 978 979 return result; 980 } 981 982 static LONGEST 983 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 984 { 985 LONGEST result; 986 int shift; 987 unsigned int num_read; 988 unsigned char byte; 989 990 result = 0; 991 shift = 0; 992 num_read = 0; 993 994 do 995 { 996 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 997 buf++; 998 num_read++; 999 result |= ((byte & 0x7f) << shift); 1000 shift += 7; 1001 } 1002 while (byte & 0x80); 1003 1004 if ((shift < 32) && (byte & 0x40)) 1005 result |= -(1 << shift); 1006 1007 *bytes_read_ptr = num_read; 1008 1009 return result; 1010 } 1011 1012 static ULONGEST 1013 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 1014 { 1015 LONGEST result; 1016 1017 result = bfd_get_32 (abfd, (bfd_byte *) buf); 1018 if (result == 0xffffffff) 1019 { 1020 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4); 1021 *bytes_read_ptr = 12; 1022 } 1023 else 1024 *bytes_read_ptr = 4; 1025 1026 return result; 1027 } 1028 1029 1030 /* Pointer encoding helper functions. */ 1031 1032 /* GCC supports exception handling based on DWARF2 CFI. However, for 1033 technical reasons, it encodes addresses in its FDE's in a different 1034 way. Several "pointer encodings" are supported. The encoding 1035 that's used for a particular FDE is determined by the 'R' 1036 augmentation in the associated CIE. The argument of this 1037 augmentation is a single byte. 1038 1039 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a 1040 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether 1041 the address is signed or unsigned. Bits 4, 5 and 6 encode how the 1042 address should be interpreted (absolute, relative to the current 1043 position in the FDE, ...). Bit 7, indicates that the address 1044 should be dereferenced. */ 1045 1046 static unsigned char 1047 encoding_for_size (unsigned int size) 1048 { 1049 switch (size) 1050 { 1051 case 2: 1052 return DW_EH_PE_udata2; 1053 case 4: 1054 return DW_EH_PE_udata4; 1055 case 8: 1056 return DW_EH_PE_udata8; 1057 default: 1058 internal_error (__FILE__, __LINE__, "Unsupported address size"); 1059 } 1060 } 1061 1062 static unsigned int 1063 size_of_encoded_value (unsigned char encoding) 1064 { 1065 if (encoding == DW_EH_PE_omit) 1066 return 0; 1067 1068 switch (encoding & 0x07) 1069 { 1070 case DW_EH_PE_absptr: 1071 return TYPE_LENGTH (builtin_type_void_data_ptr); 1072 case DW_EH_PE_udata2: 1073 return 2; 1074 case DW_EH_PE_udata4: 1075 return 4; 1076 case DW_EH_PE_udata8: 1077 return 8; 1078 default: 1079 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1080 } 1081 } 1082 1083 static CORE_ADDR 1084 read_encoded_value (struct comp_unit *unit, unsigned char encoding, 1085 char *buf, unsigned int *bytes_read_ptr) 1086 { 1087 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr); 1088 ptrdiff_t offset; 1089 CORE_ADDR base; 1090 1091 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for 1092 FDE's. */ 1093 if (encoding & DW_EH_PE_indirect) 1094 internal_error (__FILE__, __LINE__, 1095 "Unsupported encoding: DW_EH_PE_indirect"); 1096 1097 *bytes_read_ptr = 0; 1098 1099 switch (encoding & 0x70) 1100 { 1101 case DW_EH_PE_absptr: 1102 base = 0; 1103 break; 1104 case DW_EH_PE_pcrel: 1105 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section); 1106 base += (buf - unit->dwarf_frame_buffer); 1107 break; 1108 case DW_EH_PE_datarel: 1109 base = unit->dbase; 1110 break; 1111 case DW_EH_PE_textrel: 1112 base = unit->tbase; 1113 break; 1114 case DW_EH_PE_funcrel: 1115 /* FIXME: kettenis/20040501: For now just pretend 1116 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For 1117 reading the initial location of an FDE it should be treated 1118 as such, and currently that's the only place where this code 1119 is used. */ 1120 base = 0; 1121 break; 1122 case DW_EH_PE_aligned: 1123 base = 0; 1124 offset = buf - unit->dwarf_frame_buffer; 1125 if ((offset % ptr_len) != 0) 1126 { 1127 *bytes_read_ptr = ptr_len - (offset % ptr_len); 1128 buf += *bytes_read_ptr; 1129 } 1130 break; 1131 default: 1132 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1133 } 1134 1135 if ((encoding & 0x07) == 0x00) 1136 encoding |= encoding_for_size (ptr_len); 1137 1138 switch (encoding & 0x0f) 1139 { 1140 case DW_EH_PE_udata2: 1141 *bytes_read_ptr += 2; 1142 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); 1143 case DW_EH_PE_udata4: 1144 *bytes_read_ptr += 4; 1145 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); 1146 case DW_EH_PE_udata8: 1147 *bytes_read_ptr += 8; 1148 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); 1149 case DW_EH_PE_sdata2: 1150 *bytes_read_ptr += 2; 1151 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); 1152 case DW_EH_PE_sdata4: 1153 *bytes_read_ptr += 4; 1154 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); 1155 case DW_EH_PE_sdata8: 1156 *bytes_read_ptr += 8; 1157 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); 1158 default: 1159 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1160 } 1161 } 1162 1163 1164 /* GCC uses a single CIE for all FDEs in a .debug_frame section. 1165 That's why we use a simple linked list here. */ 1166 1167 static struct dwarf2_cie * 1168 find_cie (struct comp_unit *unit, ULONGEST cie_pointer) 1169 { 1170 struct dwarf2_cie *cie = unit->cie; 1171 1172 while (cie) 1173 { 1174 if (cie->cie_pointer == cie_pointer) 1175 return cie; 1176 1177 cie = cie->next; 1178 } 1179 1180 return NULL; 1181 } 1182 1183 static void 1184 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie) 1185 { 1186 cie->next = unit->cie; 1187 unit->cie = cie; 1188 } 1189 1190 /* Find the FDE for *PC. Return a pointer to the FDE, and store the 1191 inital location associated with it into *PC. */ 1192 1193 static struct dwarf2_fde * 1194 dwarf2_frame_find_fde (CORE_ADDR *pc) 1195 { 1196 struct objfile *objfile; 1197 1198 ALL_OBJFILES (objfile) 1199 { 1200 struct dwarf2_fde *fde; 1201 CORE_ADDR offset; 1202 1203 fde = objfile_data (objfile, dwarf2_frame_objfile_data); 1204 if (fde == NULL) 1205 continue; 1206 1207 gdb_assert (objfile->section_offsets); 1208 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 1209 1210 while (fde) 1211 { 1212 if (*pc >= fde->initial_location + offset 1213 && *pc < fde->initial_location + offset + fde->address_range) 1214 { 1215 *pc = fde->initial_location + offset; 1216 return fde; 1217 } 1218 1219 fde = fde->next; 1220 } 1221 } 1222 1223 return NULL; 1224 } 1225 1226 static void 1227 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde) 1228 { 1229 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data); 1230 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde); 1231 } 1232 1233 #ifdef CC_HAS_LONG_LONG 1234 #define DW64_CIE_ID 0xffffffffffffffffULL 1235 #else 1236 #define DW64_CIE_ID ~0 1237 #endif 1238 1239 static char *decode_frame_entry (struct comp_unit *unit, char *start, 1240 int eh_frame_p); 1241 1242 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise 1243 the next byte to be processed. */ 1244 static char * 1245 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p) 1246 { 1247 char *buf; 1248 LONGEST length; 1249 unsigned int bytes_read; 1250 int dwarf64_p; 1251 ULONGEST cie_id; 1252 ULONGEST cie_pointer; 1253 char *end; 1254 1255 buf = start; 1256 length = read_initial_length (unit->abfd, buf, &bytes_read); 1257 buf += bytes_read; 1258 end = buf + length; 1259 1260 /* Are we still within the section? */ 1261 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) 1262 return NULL; 1263 1264 if (length == 0) 1265 return end; 1266 1267 /* Distinguish between 32 and 64-bit encoded frame info. */ 1268 dwarf64_p = (bytes_read == 12); 1269 1270 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ 1271 if (eh_frame_p) 1272 cie_id = 0; 1273 else if (dwarf64_p) 1274 cie_id = DW64_CIE_ID; 1275 else 1276 cie_id = DW_CIE_ID; 1277 1278 if (dwarf64_p) 1279 { 1280 cie_pointer = read_8_bytes (unit->abfd, buf); 1281 buf += 8; 1282 } 1283 else 1284 { 1285 cie_pointer = read_4_bytes (unit->abfd, buf); 1286 buf += 4; 1287 } 1288 1289 if (cie_pointer == cie_id) 1290 { 1291 /* This is a CIE. */ 1292 struct dwarf2_cie *cie; 1293 char *augmentation; 1294 unsigned int cie_version; 1295 1296 /* Record the offset into the .debug_frame section of this CIE. */ 1297 cie_pointer = start - unit->dwarf_frame_buffer; 1298 1299 /* Check whether we've already read it. */ 1300 if (find_cie (unit, cie_pointer)) 1301 return end; 1302 1303 cie = (struct dwarf2_cie *) 1304 obstack_alloc (&unit->objfile->objfile_obstack, 1305 sizeof (struct dwarf2_cie)); 1306 cie->initial_instructions = NULL; 1307 cie->cie_pointer = cie_pointer; 1308 1309 /* The encoding for FDE's in a normal .debug_frame section 1310 depends on the target address size. */ 1311 cie->encoding = DW_EH_PE_absptr; 1312 1313 /* Check version number. */ 1314 cie_version = read_1_byte (unit->abfd, buf); 1315 if (cie_version != 1 && cie_version != 3) 1316 return NULL; 1317 buf += 1; 1318 1319 /* Interpret the interesting bits of the augmentation. */ 1320 augmentation = buf; 1321 buf = augmentation + strlen (augmentation) + 1; 1322 1323 /* The GCC 2.x "eh" augmentation has a pointer immediately 1324 following the augmentation string, so it must be handled 1325 first. */ 1326 if (augmentation[0] == 'e' && augmentation[1] == 'h') 1327 { 1328 /* Skip. */ 1329 buf += TYPE_LENGTH (builtin_type_void_data_ptr); 1330 augmentation += 2; 1331 } 1332 1333 cie->code_alignment_factor = 1334 read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1335 buf += bytes_read; 1336 1337 cie->data_alignment_factor = 1338 read_signed_leb128 (unit->abfd, buf, &bytes_read); 1339 buf += bytes_read; 1340 1341 if (cie_version == 1) 1342 { 1343 cie->return_address_register = read_1_byte (unit->abfd, buf); 1344 bytes_read = 1; 1345 } 1346 else 1347 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf, 1348 &bytes_read); 1349 buf += bytes_read; 1350 1351 cie->saw_z_augmentation = (*augmentation == 'z'); 1352 if (cie->saw_z_augmentation) 1353 { 1354 ULONGEST length; 1355 1356 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1357 buf += bytes_read; 1358 if (buf > end) 1359 return NULL; 1360 cie->initial_instructions = buf + length; 1361 augmentation++; 1362 } 1363 1364 while (*augmentation) 1365 { 1366 /* "L" indicates a byte showing how the LSDA pointer is encoded. */ 1367 if (*augmentation == 'L') 1368 { 1369 /* Skip. */ 1370 buf++; 1371 augmentation++; 1372 } 1373 1374 /* "R" indicates a byte indicating how FDE addresses are encoded. */ 1375 else if (*augmentation == 'R') 1376 { 1377 cie->encoding = *buf++; 1378 augmentation++; 1379 } 1380 1381 /* "P" indicates a personality routine in the CIE augmentation. */ 1382 else if (*augmentation == 'P') 1383 { 1384 /* Skip. */ 1385 buf += size_of_encoded_value (*buf++); 1386 augmentation++; 1387 } 1388 1389 /* Otherwise we have an unknown augmentation. 1390 Bail out unless we saw a 'z' prefix. */ 1391 else 1392 { 1393 if (cie->initial_instructions == NULL) 1394 return end; 1395 1396 /* Skip unknown augmentations. */ 1397 buf = cie->initial_instructions; 1398 break; 1399 } 1400 } 1401 1402 cie->initial_instructions = buf; 1403 cie->end = end; 1404 1405 add_cie (unit, cie); 1406 } 1407 else 1408 { 1409 /* This is a FDE. */ 1410 struct dwarf2_fde *fde; 1411 1412 /* In an .eh_frame section, the CIE pointer is the delta between the 1413 address within the FDE where the CIE pointer is stored and the 1414 address of the CIE. Convert it to an offset into the .eh_frame 1415 section. */ 1416 if (eh_frame_p) 1417 { 1418 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; 1419 cie_pointer -= (dwarf64_p ? 8 : 4); 1420 } 1421 1422 /* In either case, validate the result is still within the section. */ 1423 if (cie_pointer >= unit->dwarf_frame_size) 1424 return NULL; 1425 1426 fde = (struct dwarf2_fde *) 1427 obstack_alloc (&unit->objfile->objfile_obstack, 1428 sizeof (struct dwarf2_fde)); 1429 fde->cie = find_cie (unit, cie_pointer); 1430 if (fde->cie == NULL) 1431 { 1432 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, 1433 eh_frame_p); 1434 fde->cie = find_cie (unit, cie_pointer); 1435 } 1436 1437 gdb_assert (fde->cie != NULL); 1438 1439 fde->initial_location = 1440 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read); 1441 buf += bytes_read; 1442 1443 fde->address_range = 1444 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read); 1445 buf += bytes_read; 1446 1447 /* A 'z' augmentation in the CIE implies the presence of an 1448 augmentation field in the FDE as well. The only thing known 1449 to be in here at present is the LSDA entry for EH. So we 1450 can skip the whole thing. */ 1451 if (fde->cie->saw_z_augmentation) 1452 { 1453 ULONGEST length; 1454 1455 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1456 buf += bytes_read + length; 1457 if (buf > end) 1458 return NULL; 1459 } 1460 1461 fde->instructions = buf; 1462 fde->end = end; 1463 1464 add_fde (unit, fde); 1465 } 1466 1467 return end; 1468 } 1469 1470 /* Read a CIE or FDE in BUF and decode it. */ 1471 static char * 1472 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p) 1473 { 1474 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; 1475 char *ret; 1476 const char *msg; 1477 ptrdiff_t start_offset; 1478 1479 while (1) 1480 { 1481 ret = decode_frame_entry_1 (unit, start, eh_frame_p); 1482 if (ret != NULL) 1483 break; 1484 1485 /* We have corrupt input data of some form. */ 1486 1487 /* ??? Try, weakly, to work around compiler/assembler/linker bugs 1488 and mismatches wrt padding and alignment of debug sections. */ 1489 /* Note that there is no requirement in the standard for any 1490 alignment at all in the frame unwind sections. Testing for 1491 alignment before trying to interpret data would be incorrect. 1492 1493 However, GCC traditionally arranged for frame sections to be 1494 sized such that the FDE length and CIE fields happen to be 1495 aligned (in theory, for performance). This, unfortunately, 1496 was done with .align directives, which had the side effect of 1497 forcing the section to be aligned by the linker. 1498 1499 This becomes a problem when you have some other producer that 1500 creates frame sections that are not as strictly aligned. That 1501 produces a hole in the frame info that gets filled by the 1502 linker with zeros. 1503 1504 The GCC behaviour is arguably a bug, but it's effectively now 1505 part of the ABI, so we're now stuck with it, at least at the 1506 object file level. A smart linker may decide, in the process 1507 of compressing duplicate CIE information, that it can rewrite 1508 the entire output section without this extra padding. */ 1509 1510 start_offset = start - unit->dwarf_frame_buffer; 1511 if (workaround < ALIGN4 && (start_offset & 3) != 0) 1512 { 1513 start += 4 - (start_offset & 3); 1514 workaround = ALIGN4; 1515 continue; 1516 } 1517 if (workaround < ALIGN8 && (start_offset & 7) != 0) 1518 { 1519 start += 8 - (start_offset & 7); 1520 workaround = ALIGN8; 1521 continue; 1522 } 1523 1524 /* Nothing left to try. Arrange to return as if we've consumed 1525 the entire input section. Hopefully we'll get valid info from 1526 the other of .debug_frame/.eh_frame. */ 1527 workaround = FAIL; 1528 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; 1529 break; 1530 } 1531 1532 switch (workaround) 1533 { 1534 case NONE: 1535 break; 1536 1537 case ALIGN4: 1538 complaint (&symfile_complaints, 1539 "Corrupt data in %s:%s; align 4 workaround apparently succeeded", 1540 unit->dwarf_frame_section->owner->filename, 1541 unit->dwarf_frame_section->name); 1542 break; 1543 1544 case ALIGN8: 1545 complaint (&symfile_complaints, 1546 "Corrupt data in %s:%s; align 8 workaround apparently succeeded", 1547 unit->dwarf_frame_section->owner->filename, 1548 unit->dwarf_frame_section->name); 1549 break; 1550 1551 default: 1552 complaint (&symfile_complaints, 1553 "Corrupt data in %s:%s", 1554 unit->dwarf_frame_section->owner->filename, 1555 unit->dwarf_frame_section->name); 1556 break; 1557 } 1558 1559 return ret; 1560 } 1561 1562 1563 /* FIXME: kettenis/20030504: This still needs to be integrated with 1564 dwarf2read.c in a better way. */ 1565 1566 /* Imported from dwarf2read.c. */ 1567 extern asection *dwarf_frame_section; 1568 extern asection *dwarf_eh_frame_section; 1569 1570 /* Imported from dwarf2read.c. */ 1571 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp); 1572 1573 void 1574 dwarf2_build_frame_info (struct objfile *objfile) 1575 { 1576 struct comp_unit unit; 1577 char *frame_ptr; 1578 1579 /* Build a minimal decoding of the DWARF2 compilation unit. */ 1580 unit.abfd = objfile->obfd; 1581 unit.objfile = objfile; 1582 unit.dbase = 0; 1583 unit.tbase = 0; 1584 1585 /* First add the information from the .eh_frame section. That way, 1586 the FDEs from that section are searched last. */ 1587 if (dwarf_eh_frame_section) 1588 { 1589 asection *got, *txt; 1590 1591 unit.cie = NULL; 1592 unit.dwarf_frame_buffer = dwarf2_read_section (objfile, 1593 dwarf_eh_frame_section); 1594 1595 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section); 1596 unit.dwarf_frame_section = dwarf_eh_frame_section; 1597 1598 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base 1599 that is used for the i386/amd64 target, which currently is 1600 the only target in GCC that supports/uses the 1601 DW_EH_PE_datarel encoding. */ 1602 got = bfd_get_section_by_name (unit.abfd, ".got"); 1603 if (got) 1604 unit.dbase = got->vma; 1605 1606 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 1607 so far. */ 1608 txt = bfd_get_section_by_name (unit.abfd, ".text"); 1609 if (txt) 1610 unit.tbase = txt->vma; 1611 1612 frame_ptr = unit.dwarf_frame_buffer; 1613 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size) 1614 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1); 1615 } 1616 1617 if (dwarf_frame_section) 1618 { 1619 unit.cie = NULL; 1620 unit.dwarf_frame_buffer = dwarf2_read_section (objfile, 1621 dwarf_frame_section); 1622 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section); 1623 unit.dwarf_frame_section = dwarf_frame_section; 1624 1625 frame_ptr = unit.dwarf_frame_buffer; 1626 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size) 1627 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0); 1628 } 1629 } 1630 1631 /* Provide a prototype to silence -Wmissing-prototypes. */ 1632 void _initialize_dwarf2_frame (void); 1633 1634 void 1635 _initialize_dwarf2_frame (void) 1636 { 1637 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); 1638 dwarf2_frame_objfile_data = register_objfile_data (); 1639 } 1640