1 /* DWARF debugging format support for GDB. 2 3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 5 6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, 7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. 8 9 This file is part of GDB. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 2 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program; if not, write to the Free Software 23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 24 25 /* 26 If you are looking for DWARF-2 support, you are in the wrong file. 27 Go look in dwarf2read.c. This file is for the original DWARF, 28 also known as DWARF-1. 29 30 DWARF-1 is slowly headed for obsoletion. 31 32 In gcc 3.4.0, support for dwarf-1 has been removed. 33 34 In gcc 3.3.2, these targets prefer dwarf-1: 35 36 i[34567]86-sequent-ptx4* 37 i[34567]86-sequent-sysv4* 38 mips-sni-sysv4 39 sparc-hal-solaris2* 40 41 In gcc 3.2.2, these targets prefer dwarf-1: 42 43 i[34567]86-dg-dgux* 44 i[34567]86-sequent-ptx4* 45 i[34567]86-sequent-sysv4* 46 m88k-dg-dgux* 47 mips-sni-sysv4 48 sparc-hal-solaris2* 49 50 In gcc 2.95.3, these targets prefer dwarf-1: 51 52 i[34567]86-dg-dgux* 53 i[34567]86-ncr-sysv4* 54 i[34567]86-sequent-ptx4* 55 i[34567]86-sequent-sysv4* 56 i[34567]86-*-osf1* 57 i[34567]86-*-sco3.2v5* 58 i[34567]86-*-sysv4* 59 i860-alliant-* 60 i860-*-sysv4* 61 m68k-atari-sysv4* 62 m68k-cbm-sysv4* 63 m68k-*-sysv4* 64 m88k-dg-dgux* 65 m88k-*-sysv4* 66 mips-sni-sysv4 67 mips-*-gnu* 68 sh-*-elf* 69 sh-*-rtemself* 70 sparc-hal-solaris2* 71 sparc-*-sysv4* 72 73 Some non-gcc compilers produce dwarf-1: 74 75 PR gdb/1179 was from a user with Diab C++ 4.3. 76 On 2003-07-25 the gdb list received a report from a user 77 with Diab Compiler 4.4b. 78 Other users have also reported using Diab compilers with dwarf-1. 79 80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++. 81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00, 82 Wind River Systems, 2002-07-31). 83 84 On 2003-06-09 the gdb list received a report from a user 85 with Absoft ProFortran f77 which is dwarf-1. 86 87 Absoft ProFortran Linux[sic] Fortran User Guide (no version, 88 but copyright dates are 1991-2001) says that Absoft ProFortran 89 supports -gdwarf1 and -gdwarf2. 90 91 -- chastain 2004-04-24 92 */ 93 94 /* 95 96 FIXME: Do we need to generate dependencies in partial symtabs? 97 (Perhaps we don't need to). 98 99 FIXME: Resolve minor differences between what information we put in the 100 partial symbol table and what dbxread puts in. For example, we don't yet 101 put enum constants there. And dbxread seems to invent a lot of typedefs 102 we never see. Use the new printpsym command to see the partial symbol table 103 contents. 104 105 FIXME: Figure out a better way to tell gdb about the name of the function 106 contain the user's entry point (I.E. main()) 107 108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for 109 other things to work on, if you get bored. :-) 110 111 */ 112 113 #include "defs.h" 114 #include "symtab.h" 115 #include "gdbtypes.h" 116 #include "objfiles.h" 117 #include "elf/dwarf.h" 118 #include "buildsym.h" 119 #include "demangle.h" 120 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ 121 #include "language.h" 122 #include "complaints.h" 123 124 #include <fcntl.h> 125 #include "gdb_string.h" 126 127 /* Some macros to provide DIE info for complaints. */ 128 129 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) 130 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" 131 132 /* Complaints that can be issued during DWARF debug info reading. */ 133 134 static void 135 bad_die_ref_complaint (int arg1, const char *arg2, int arg3) 136 { 137 complaint (&symfile_complaints, 138 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 139 arg1, arg2, arg3); 140 } 141 142 static void 143 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3) 144 { 145 complaint (&symfile_complaints, 146 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2, 147 arg3); 148 } 149 150 static void 151 dup_user_type_definition_complaint (int arg1, const char *arg2) 152 { 153 complaint (&symfile_complaints, 154 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 155 arg1, arg2); 156 } 157 158 static void 159 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3) 160 { 161 complaint (&symfile_complaints, 162 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1, 163 arg2, arg3); 164 } 165 166 typedef unsigned int DIE_REF; /* Reference to a DIE */ 167 168 #ifndef GCC_PRODUCER 169 #define GCC_PRODUCER "GNU C " 170 #endif 171 172 #ifndef GPLUS_PRODUCER 173 #define GPLUS_PRODUCER "GNU C++ " 174 #endif 175 176 #ifndef LCC_PRODUCER 177 #define LCC_PRODUCER "NCR C/C++" 178 #endif 179 180 /* Flags to target_to_host() that tell whether or not the data object is 181 expected to be signed. Used, for example, when fetching a signed 182 integer in the target environment which is used as a signed integer 183 in the host environment, and the two environments have different sized 184 ints. In this case, *somebody* has to sign extend the smaller sized 185 int. */ 186 187 #define GET_UNSIGNED 0 /* No sign extension required */ 188 #define GET_SIGNED 1 /* Sign extension required */ 189 190 /* Defines for things which are specified in the document "DWARF Debugging 191 Information Format" published by UNIX International, Programming Languages 192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ 193 194 #define SIZEOF_DIE_LENGTH 4 195 #define SIZEOF_DIE_TAG 2 196 #define SIZEOF_ATTRIBUTE 2 197 #define SIZEOF_FORMAT_SPECIFIER 1 198 #define SIZEOF_FMT_FT 2 199 #define SIZEOF_LINETBL_LENGTH 4 200 #define SIZEOF_LINETBL_LINENO 4 201 #define SIZEOF_LINETBL_STMT 2 202 #define SIZEOF_LINETBL_DELTA 4 203 #define SIZEOF_LOC_ATOM_CODE 1 204 205 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ 206 207 /* Macros that return the sizes of various types of data in the target 208 environment. 209 210 FIXME: Currently these are just compile time constants (as they are in 211 other parts of gdb as well). They need to be able to get the right size 212 either from the bfd or possibly from the DWARF info. It would be nice if 213 the DWARF producer inserted DIES that describe the fundamental types in 214 the target environment into the DWARF info, similar to the way dbx stabs 215 producers produce information about their fundamental types. */ 216 217 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) 218 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) 219 220 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a 221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler. 222 However, the Issue 2 DWARF specification from AT&T defines it as 223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG. 224 For backwards compatibility with the AT&T compiler produced executables 225 we define AT_short_element_list for this variant. */ 226 227 #define AT_short_element_list (0x00f0|FORM_BLOCK2) 228 229 /* The DWARF debugging information consists of two major pieces, 230 one is a block of DWARF Information Entries (DIE's) and the other 231 is a line number table. The "struct dieinfo" structure contains 232 the information for a single DIE, the one currently being processed. 233 234 In order to make it easier to randomly access the attribute fields 235 of the current DIE, which are specifically unordered within the DIE, 236 each DIE is scanned and an instance of the "struct dieinfo" 237 structure is initialized. 238 239 Initialization is done in two levels. The first, done by basicdieinfo(), 240 just initializes those fields that are vital to deciding whether or not 241 to use this DIE, how to skip past it, etc. The second, done by the 242 function completedieinfo(), fills in the rest of the information. 243 244 Attributes which have block forms are not interpreted at the time 245 the DIE is scanned, instead we just save pointers to the start 246 of their value fields. 247 248 Some fields have a flag <name>_p that is set when the value of the 249 field is valid (I.E. we found a matching attribute in the DIE). Since 250 we may want to test for the presence of some attributes in the DIE, 251 such as AT_low_pc, without restricting the values of the field, 252 we need someway to note that we found such an attribute. 253 254 */ 255 256 typedef char BLOCK; 257 258 struct dieinfo 259 { 260 char *die; /* Pointer to the raw DIE data */ 261 unsigned long die_length; /* Length of the raw DIE data */ 262 DIE_REF die_ref; /* Offset of this DIE */ 263 unsigned short die_tag; /* Tag for this DIE */ 264 unsigned long at_padding; 265 unsigned long at_sibling; 266 BLOCK *at_location; 267 char *at_name; 268 unsigned short at_fund_type; 269 BLOCK *at_mod_fund_type; 270 unsigned long at_user_def_type; 271 BLOCK *at_mod_u_d_type; 272 unsigned short at_ordering; 273 BLOCK *at_subscr_data; 274 unsigned long at_byte_size; 275 unsigned short at_bit_offset; 276 unsigned long at_bit_size; 277 BLOCK *at_element_list; 278 unsigned long at_stmt_list; 279 CORE_ADDR at_low_pc; 280 CORE_ADDR at_high_pc; 281 unsigned long at_language; 282 unsigned long at_member; 283 unsigned long at_discr; 284 BLOCK *at_discr_value; 285 BLOCK *at_string_length; 286 char *at_comp_dir; 287 char *at_producer; 288 unsigned long at_start_scope; 289 unsigned long at_stride_size; 290 unsigned long at_src_info; 291 char *at_prototyped; 292 unsigned int has_at_low_pc:1; 293 unsigned int has_at_stmt_list:1; 294 unsigned int has_at_byte_size:1; 295 unsigned int short_element_list:1; 296 297 /* Kludge to identify register variables */ 298 299 unsigned int isreg; 300 301 /* Kludge to identify optimized out variables */ 302 303 unsigned int optimized_out; 304 305 /* Kludge to identify basereg references. 306 Nonzero if we have an offset relative to a basereg. */ 307 308 unsigned int offreg; 309 310 /* Kludge to identify which base register is it relative to. */ 311 312 unsigned int basereg; 313 }; 314 315 static int diecount; /* Approximate count of dies for compilation unit */ 316 static struct dieinfo *curdie; /* For warnings and such */ 317 318 static char *dbbase; /* Base pointer to dwarf info */ 319 static int dbsize; /* Size of dwarf info in bytes */ 320 static int dbroff; /* Relative offset from start of .debug section */ 321 static char *lnbase; /* Base pointer to line section */ 322 323 /* This value is added to each symbol value. FIXME: Generalize to 324 the section_offsets structure used by dbxread (once this is done, 325 pass the appropriate section number to end_symtab). */ 326 static CORE_ADDR baseaddr; /* Add to each symbol value */ 327 328 /* The section offsets used in the current psymtab or symtab. FIXME, 329 only used to pass one value (baseaddr) at the moment. */ 330 static struct section_offsets *base_section_offsets; 331 332 /* We put a pointer to this structure in the read_symtab_private field 333 of the psymtab. */ 334 335 struct dwfinfo 336 { 337 /* Always the absolute file offset to the start of the ".debug" 338 section for the file containing the DIE's being accessed. */ 339 file_ptr dbfoff; 340 /* Relative offset from the start of the ".debug" section to the 341 first DIE to be accessed. When building the partial symbol 342 table, this value will be zero since we are accessing the 343 entire ".debug" section. When expanding a partial symbol 344 table entry, this value will be the offset to the first 345 DIE for the compilation unit containing the symbol that 346 triggers the expansion. */ 347 int dbroff; 348 /* The size of the chunk of DIE's being examined, in bytes. */ 349 int dblength; 350 /* The absolute file offset to the line table fragment. Ignored 351 when building partial symbol tables, but used when expanding 352 them, and contains the absolute file offset to the fragment 353 of the ".line" section containing the line numbers for the 354 current compilation unit. */ 355 file_ptr lnfoff; 356 }; 357 358 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) 359 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) 360 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) 361 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) 362 363 /* The generic symbol table building routines have separate lists for 364 file scope symbols and all all other scopes (local scopes). So 365 we need to select the right one to pass to add_symbol_to_list(). 366 We do it by keeping a pointer to the correct list in list_in_scope. 367 368 FIXME: The original dwarf code just treated the file scope as the first 369 local scope, and all other local scopes as nested local scopes, and worked 370 fine. Check to see if we really need to distinguish these in buildsym.c */ 371 372 struct pending **list_in_scope = &file_symbols; 373 374 /* DIES which have user defined types or modified user defined types refer to 375 other DIES for the type information. Thus we need to associate the offset 376 of a DIE for a user defined type with a pointer to the type information. 377 378 Originally this was done using a simple but expensive algorithm, with an 379 array of unsorted structures, each containing an offset/type-pointer pair. 380 This array was scanned linearly each time a lookup was done. The result 381 was that gdb was spending over half it's startup time munging through this 382 array of pointers looking for a structure that had the right offset member. 383 384 The second attempt used the same array of structures, but the array was 385 sorted using qsort each time a new offset/type was recorded, and a binary 386 search was used to find the type pointer for a given DIE offset. This was 387 even slower, due to the overhead of sorting the array each time a new 388 offset/type pair was entered. 389 390 The third attempt uses a fixed size array of type pointers, indexed by a 391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes, 392 we can divide any DIE offset by 4 to obtain a unique index into this fixed 393 size array. Since each element is a 4 byte pointer, it takes exactly as 394 much memory to hold this array as to hold the DWARF info for a given 395 compilation unit. But it gets freed as soon as we are done with it. 396 This has worked well in practice, as a reasonable tradeoff between memory 397 consumption and speed, without having to resort to much more complicated 398 algorithms. */ 399 400 static struct type **utypes; /* Pointer to array of user type pointers */ 401 static int numutypes; /* Max number of user type pointers */ 402 403 /* Maintain an array of referenced fundamental types for the current 404 compilation unit being read. For DWARF version 1, we have to construct 405 the fundamental types on the fly, since no information about the 406 fundamental types is supplied. Each such fundamental type is created by 407 calling a language dependent routine to create the type, and then a 408 pointer to that type is then placed in the array at the index specified 409 by it's FT_<TYPENAME> value. The array has a fixed size set by the 410 FT_NUM_MEMBERS compile time constant, which is the number of predefined 411 fundamental types gdb knows how to construct. */ 412 413 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ 414 415 /* Record the language for the compilation unit which is currently being 416 processed. We know it once we have seen the TAG_compile_unit DIE, 417 and we need it while processing the DIE's for that compilation unit. 418 It is eventually saved in the symtab structure, but we don't finalize 419 the symtab struct until we have processed all the DIE's for the 420 compilation unit. We also need to get and save a pointer to the 421 language struct for this language, so we can call the language 422 dependent routines for doing things such as creating fundamental 423 types. */ 424 425 static enum language cu_language; 426 static const struct language_defn *cu_language_defn; 427 428 /* Forward declarations of static functions so we don't have to worry 429 about ordering within this file. */ 430 431 static void free_utypes (void *); 432 433 static int attribute_size (unsigned int); 434 435 static CORE_ADDR target_to_host (char *, int, int, struct objfile *); 436 437 static void add_enum_psymbol (struct dieinfo *, struct objfile *); 438 439 static void handle_producer (char *); 440 441 static void read_file_scope (struct dieinfo *, char *, char *, 442 struct objfile *); 443 444 static void read_func_scope (struct dieinfo *, char *, char *, 445 struct objfile *); 446 447 static void read_lexical_block_scope (struct dieinfo *, char *, char *, 448 struct objfile *); 449 450 static void scan_partial_symbols (char *, char *, struct objfile *); 451 452 static void scan_compilation_units (char *, char *, file_ptr, file_ptr, 453 struct objfile *); 454 455 static void add_partial_symbol (struct dieinfo *, struct objfile *); 456 457 static void basicdieinfo (struct dieinfo *, char *, struct objfile *); 458 459 static void completedieinfo (struct dieinfo *, struct objfile *); 460 461 static void dwarf_psymtab_to_symtab (struct partial_symtab *); 462 463 static void psymtab_to_symtab_1 (struct partial_symtab *); 464 465 static void read_ofile_symtab (struct partial_symtab *); 466 467 static void process_dies (char *, char *, struct objfile *); 468 469 static void read_structure_scope (struct dieinfo *, char *, char *, 470 struct objfile *); 471 472 static struct type *decode_array_element_type (char *); 473 474 static struct type *decode_subscript_data_item (char *, char *); 475 476 static void dwarf_read_array_type (struct dieinfo *); 477 478 static void read_tag_pointer_type (struct dieinfo *dip); 479 480 static void read_tag_string_type (struct dieinfo *dip); 481 482 static void read_subroutine_type (struct dieinfo *, char *, char *); 483 484 static void read_enumeration (struct dieinfo *, char *, char *, 485 struct objfile *); 486 487 static struct type *struct_type (struct dieinfo *, char *, char *, 488 struct objfile *); 489 490 static struct type *enum_type (struct dieinfo *, struct objfile *); 491 492 static void decode_line_numbers (char *); 493 494 static struct type *decode_die_type (struct dieinfo *); 495 496 static struct type *decode_mod_fund_type (char *); 497 498 static struct type *decode_mod_u_d_type (char *); 499 500 static struct type *decode_modified_type (char *, unsigned int, int); 501 502 static struct type *decode_fund_type (unsigned int); 503 504 static char *create_name (char *, struct obstack *); 505 506 static struct type *lookup_utype (DIE_REF); 507 508 static struct type *alloc_utype (DIE_REF, struct type *); 509 510 static struct symbol *new_symbol (struct dieinfo *, struct objfile *); 511 512 static void synthesize_typedef (struct dieinfo *, struct objfile *, 513 struct type *); 514 515 static int locval (struct dieinfo *); 516 517 static void set_cu_language (struct dieinfo *); 518 519 static struct type *dwarf_fundamental_type (struct objfile *, int); 520 521 522 /* 523 524 LOCAL FUNCTION 525 526 dwarf_fundamental_type -- lookup or create a fundamental type 527 528 SYNOPSIS 529 530 struct type * 531 dwarf_fundamental_type (struct objfile *objfile, int typeid) 532 533 DESCRIPTION 534 535 DWARF version 1 doesn't supply any fundamental type information, 536 so gdb has to construct such types. It has a fixed number of 537 fundamental types that it knows how to construct, which is the 538 union of all types that it knows how to construct for all languages 539 that it knows about. These are enumerated in gdbtypes.h. 540 541 As an example, assume we find a DIE that references a DWARF 542 fundamental type of FT_integer. We first look in the ftypes 543 array to see if we already have such a type, indexed by the 544 gdb internal value of FT_INTEGER. If so, we simply return a 545 pointer to that type. If not, then we ask an appropriate 546 language dependent routine to create a type FT_INTEGER, using 547 defaults reasonable for the current target machine, and install 548 that type in ftypes for future reference. 549 550 RETURNS 551 552 Pointer to a fundamental type. 553 554 */ 555 556 static struct type * 557 dwarf_fundamental_type (struct objfile *objfile, int typeid) 558 { 559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS) 560 { 561 error ("internal error - invalid fundamental type id %d", typeid); 562 } 563 564 /* Look for this particular type in the fundamental type vector. If one is 565 not found, create and install one appropriate for the current language 566 and the current target machine. */ 567 568 if (ftypes[typeid] == NULL) 569 { 570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid); 571 } 572 573 return (ftypes[typeid]); 574 } 575 576 /* 577 578 LOCAL FUNCTION 579 580 set_cu_language -- set local copy of language for compilation unit 581 582 SYNOPSIS 583 584 void 585 set_cu_language (struct dieinfo *dip) 586 587 DESCRIPTION 588 589 Decode the language attribute for a compilation unit DIE and 590 remember what the language was. We use this at various times 591 when processing DIE's for a given compilation unit. 592 593 RETURNS 594 595 No return value. 596 597 */ 598 599 static void 600 set_cu_language (struct dieinfo *dip) 601 { 602 switch (dip->at_language) 603 { 604 case LANG_C89: 605 case LANG_C: 606 cu_language = language_c; 607 break; 608 case LANG_C_PLUS_PLUS: 609 cu_language = language_cplus; 610 break; 611 case LANG_MODULA2: 612 cu_language = language_m2; 613 break; 614 case LANG_FORTRAN77: 615 case LANG_FORTRAN90: 616 cu_language = language_fortran; 617 break; 618 case LANG_ADA83: 619 case LANG_COBOL74: 620 case LANG_COBOL85: 621 case LANG_PASCAL83: 622 /* We don't know anything special about these yet. */ 623 cu_language = language_unknown; 624 break; 625 default: 626 /* If no at_language, try to deduce one from the filename */ 627 cu_language = deduce_language_from_filename (dip->at_name); 628 break; 629 } 630 cu_language_defn = language_def (cu_language); 631 } 632 633 /* 634 635 GLOBAL FUNCTION 636 637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info 638 639 SYNOPSIS 640 641 void dwarf_build_psymtabs (struct objfile *objfile, 642 int mainline, file_ptr dbfoff, unsigned int dbfsize, 643 file_ptr lnoffset, unsigned int lnsize) 644 645 DESCRIPTION 646 647 This function is called upon to build partial symtabs from files 648 containing DIE's (Dwarf Information Entries) and DWARF line numbers. 649 650 It is passed a bfd* containing the DIES 651 and line number information, the corresponding filename for that 652 file, a base address for relocating the symbols, a flag indicating 653 whether or not this debugging information is from a "main symbol 654 table" rather than a shared library or dynamically linked file, 655 and file offset/size pairs for the DIE information and line number 656 information. 657 658 RETURNS 659 660 No return value. 661 662 */ 663 664 void 665 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff, 666 unsigned int dbfsize, file_ptr lnoffset, 667 unsigned int lnsize) 668 { 669 bfd *abfd = objfile->obfd; 670 struct cleanup *back_to; 671 672 current_objfile = objfile; 673 dbsize = dbfsize; 674 dbbase = xmalloc (dbsize); 675 dbroff = 0; 676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || 677 (bfd_bread (dbbase, dbsize, abfd) != dbsize)) 678 { 679 xfree (dbbase); 680 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); 681 } 682 back_to = make_cleanup (xfree, dbbase); 683 684 /* If we are reinitializing, or if we have never loaded syms yet, init. 685 Since we have no idea how many DIES we are looking at, we just guess 686 some arbitrary value. */ 687 688 if (mainline 689 || (objfile->global_psymbols.size == 0 690 && objfile->static_psymbols.size == 0)) 691 { 692 init_psymbol_list (objfile, 1024); 693 } 694 695 /* Save the relocation factor where everybody can see it. */ 696 697 base_section_offsets = objfile->section_offsets; 698 baseaddr = ANOFFSET (objfile->section_offsets, 0); 699 700 /* Follow the compilation unit sibling chain, building a partial symbol 701 table entry for each one. Save enough information about each compilation 702 unit to locate the full DWARF information later. */ 703 704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); 705 706 do_cleanups (back_to); 707 current_objfile = NULL; 708 } 709 710 /* 711 712 LOCAL FUNCTION 713 714 read_lexical_block_scope -- process all dies in a lexical block 715 716 SYNOPSIS 717 718 static void read_lexical_block_scope (struct dieinfo *dip, 719 char *thisdie, char *enddie) 720 721 DESCRIPTION 722 723 Process all the DIES contained within a lexical block scope. 724 Start a new scope, process the dies, and then close the scope. 725 726 */ 727 728 static void 729 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie, 730 struct objfile *objfile) 731 { 732 struct context_stack *new; 733 734 push_context (0, dip->at_low_pc); 735 process_dies (thisdie + dip->die_length, enddie, objfile); 736 new = pop_context (); 737 if (local_symbols != NULL) 738 { 739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr, 740 dip->at_high_pc, objfile); 741 } 742 local_symbols = new->locals; 743 } 744 745 /* 746 747 LOCAL FUNCTION 748 749 lookup_utype -- look up a user defined type from die reference 750 751 SYNOPSIS 752 753 static type *lookup_utype (DIE_REF die_ref) 754 755 DESCRIPTION 756 757 Given a DIE reference, lookup the user defined type associated with 758 that DIE, if it has been registered already. If not registered, then 759 return NULL. Alloc_utype() can be called to register an empty 760 type for this reference, which will be filled in later when the 761 actual referenced DIE is processed. 762 */ 763 764 static struct type * 765 lookup_utype (DIE_REF die_ref) 766 { 767 struct type *type = NULL; 768 int utypeidx; 769 770 utypeidx = (die_ref - dbroff) / 4; 771 if ((utypeidx < 0) || (utypeidx >= numutypes)) 772 { 773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); 774 } 775 else 776 { 777 type = *(utypes + utypeidx); 778 } 779 return (type); 780 } 781 782 783 /* 784 785 LOCAL FUNCTION 786 787 alloc_utype -- add a user defined type for die reference 788 789 SYNOPSIS 790 791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep) 792 793 DESCRIPTION 794 795 Given a die reference DIE_REF, and a possible pointer to a user 796 defined type UTYPEP, register that this reference has a user 797 defined type and either use the specified type in UTYPEP or 798 make a new empty type that will be filled in later. 799 800 We should only be called after calling lookup_utype() to verify that 801 there is not currently a type registered for DIE_REF. 802 */ 803 804 static struct type * 805 alloc_utype (DIE_REF die_ref, struct type *utypep) 806 { 807 struct type **typep; 808 int utypeidx; 809 810 utypeidx = (die_ref - dbroff) / 4; 811 typep = utypes + utypeidx; 812 if ((utypeidx < 0) || (utypeidx >= numutypes)) 813 { 814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref); 816 } 817 else if (*typep != NULL) 818 { 819 utypep = *typep; 820 complaint (&symfile_complaints, 821 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 822 DIE_ID, DIE_NAME); 823 } 824 else 825 { 826 if (utypep == NULL) 827 { 828 utypep = alloc_type (current_objfile); 829 } 830 *typep = utypep; 831 } 832 return (utypep); 833 } 834 835 /* 836 837 LOCAL FUNCTION 838 839 free_utypes -- free the utypes array and reset pointer & count 840 841 SYNOPSIS 842 843 static void free_utypes (void *dummy) 844 845 DESCRIPTION 846 847 Called via do_cleanups to free the utypes array, reset the pointer to NULL, 848 and set numutypes back to zero. This ensures that the utypes does not get 849 referenced after being freed. 850 */ 851 852 static void 853 free_utypes (void *dummy) 854 { 855 xfree (utypes); 856 utypes = NULL; 857 numutypes = 0; 858 } 859 860 861 /* 862 863 LOCAL FUNCTION 864 865 decode_die_type -- return a type for a specified die 866 867 SYNOPSIS 868 869 static struct type *decode_die_type (struct dieinfo *dip) 870 871 DESCRIPTION 872 873 Given a pointer to a die information structure DIP, decode the 874 type of the die and return a pointer to the decoded type. All 875 dies without specific types default to type int. 876 */ 877 878 static struct type * 879 decode_die_type (struct dieinfo *dip) 880 { 881 struct type *type = NULL; 882 883 if (dip->at_fund_type != 0) 884 { 885 type = decode_fund_type (dip->at_fund_type); 886 } 887 else if (dip->at_mod_fund_type != NULL) 888 { 889 type = decode_mod_fund_type (dip->at_mod_fund_type); 890 } 891 else if (dip->at_user_def_type) 892 { 893 type = lookup_utype (dip->at_user_def_type); 894 if (type == NULL) 895 { 896 type = alloc_utype (dip->at_user_def_type, NULL); 897 } 898 } 899 else if (dip->at_mod_u_d_type) 900 { 901 type = decode_mod_u_d_type (dip->at_mod_u_d_type); 902 } 903 else 904 { 905 type = dwarf_fundamental_type (current_objfile, FT_VOID); 906 } 907 return (type); 908 } 909 910 /* 911 912 LOCAL FUNCTION 913 914 struct_type -- compute and return the type for a struct or union 915 916 SYNOPSIS 917 918 static struct type *struct_type (struct dieinfo *dip, char *thisdie, 919 char *enddie, struct objfile *objfile) 920 921 DESCRIPTION 922 923 Given pointer to a die information structure for a die which 924 defines a union or structure (and MUST define one or the other), 925 and pointers to the raw die data that define the range of dies which 926 define the members, compute and return the user defined type for the 927 structure or union. 928 */ 929 930 static struct type * 931 struct_type (struct dieinfo *dip, char *thisdie, char *enddie, 932 struct objfile *objfile) 933 { 934 struct type *type; 935 struct nextfield 936 { 937 struct nextfield *next; 938 struct field field; 939 }; 940 struct nextfield *list = NULL; 941 struct nextfield *new; 942 int nfields = 0; 943 int n; 944 struct dieinfo mbr; 945 char *nextdie; 946 int anonymous_size; 947 948 type = lookup_utype (dip->die_ref); 949 if (type == NULL) 950 { 951 /* No forward references created an empty type, so install one now */ 952 type = alloc_utype (dip->die_ref, NULL); 953 } 954 INIT_CPLUS_SPECIFIC (type); 955 switch (dip->die_tag) 956 { 957 case TAG_class_type: 958 TYPE_CODE (type) = TYPE_CODE_CLASS; 959 break; 960 case TAG_structure_type: 961 TYPE_CODE (type) = TYPE_CODE_STRUCT; 962 break; 963 case TAG_union_type: 964 TYPE_CODE (type) = TYPE_CODE_UNION; 965 break; 966 default: 967 /* Should never happen */ 968 TYPE_CODE (type) = TYPE_CODE_UNDEF; 969 complaint (&symfile_complaints, 970 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 971 DIE_ID, DIE_NAME); 972 break; 973 } 974 /* Some compilers try to be helpful by inventing "fake" names for 975 anonymous enums, structures, and unions, like "~0fake" or ".0fake". 976 Thanks, but no thanks... */ 977 if (dip->at_name != NULL 978 && *dip->at_name != '~' 979 && *dip->at_name != '.') 980 { 981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, 982 "", "", dip->at_name); 983 } 984 /* Use whatever size is known. Zero is a valid size. We might however 985 wish to check has_at_byte_size to make sure that some byte size was 986 given explicitly, but DWARF doesn't specify that explicit sizes of 987 zero have to present, so complaining about missing sizes should 988 probably not be the default. */ 989 TYPE_LENGTH (type) = dip->at_byte_size; 990 thisdie += dip->die_length; 991 while (thisdie < enddie) 992 { 993 basicdieinfo (&mbr, thisdie, objfile); 994 completedieinfo (&mbr, objfile); 995 if (mbr.die_length <= SIZEOF_DIE_LENGTH) 996 { 997 break; 998 } 999 else if (mbr.at_sibling != 0) 1000 { 1001 nextdie = dbbase + mbr.at_sibling - dbroff; 1002 } 1003 else 1004 { 1005 nextdie = thisdie + mbr.die_length; 1006 } 1007 switch (mbr.die_tag) 1008 { 1009 case TAG_member: 1010 /* Static fields can be either TAG_global_variable (GCC) or else 1011 TAG_member with no location (Diab). We could treat the latter like 1012 the former... but since we don't support the former, just avoid 1013 crashing on the latter for now. */ 1014 if (mbr.at_location == NULL) 1015 break; 1016 1017 /* Get space to record the next field's data. */ 1018 new = (struct nextfield *) alloca (sizeof (struct nextfield)); 1019 new->next = list; 1020 list = new; 1021 /* Save the data. */ 1022 list->field.name = 1023 obsavestring (mbr.at_name, strlen (mbr.at_name), 1024 &objfile->objfile_obstack); 1025 FIELD_TYPE (list->field) = decode_die_type (&mbr); 1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr); 1027 FIELD_STATIC_KIND (list->field) = 0; 1028 /* Handle bit fields. */ 1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size; 1030 if (BITS_BIG_ENDIAN) 1031 { 1032 /* For big endian bits, the at_bit_offset gives the 1033 additional bit offset from the MSB of the containing 1034 anonymous object to the MSB of the field. We don't 1035 have to do anything special since we don't need to 1036 know the size of the anonymous object. */ 1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset; 1038 } 1039 else 1040 { 1041 /* For little endian bits, we need to have a non-zero 1042 at_bit_size, so that we know we are in fact dealing 1043 with a bitfield. Compute the bit offset to the MSB 1044 of the anonymous object, subtract off the number of 1045 bits from the MSB of the field to the MSB of the 1046 object, and then subtract off the number of bits of 1047 the field itself. The result is the bit offset of 1048 the LSB of the field. */ 1049 if (mbr.at_bit_size > 0) 1050 { 1051 if (mbr.has_at_byte_size) 1052 { 1053 /* The size of the anonymous object containing 1054 the bit field is explicit, so use the 1055 indicated size (in bytes). */ 1056 anonymous_size = mbr.at_byte_size; 1057 } 1058 else 1059 { 1060 /* The size of the anonymous object containing 1061 the bit field matches the size of an object 1062 of the bit field's type. DWARF allows 1063 at_byte_size to be left out in such cases, as 1064 a debug information size optimization. */ 1065 anonymous_size = TYPE_LENGTH (list->field.type); 1066 } 1067 FIELD_BITPOS (list->field) += 1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; 1069 } 1070 } 1071 nfields++; 1072 break; 1073 default: 1074 process_dies (thisdie, nextdie, objfile); 1075 break; 1076 } 1077 thisdie = nextdie; 1078 } 1079 /* Now create the vector of fields, and record how big it is. We may 1080 not even have any fields, if this DIE was generated due to a reference 1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is 1082 set, which clues gdb in to the fact that it needs to search elsewhere 1083 for the full structure definition. */ 1084 if (nfields == 0) 1085 { 1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB; 1087 } 1088 else 1089 { 1090 TYPE_NFIELDS (type) = nfields; 1091 TYPE_FIELDS (type) = (struct field *) 1092 TYPE_ALLOC (type, sizeof (struct field) * nfields); 1093 /* Copy the saved-up fields into the field vector. */ 1094 for (n = nfields; list; list = list->next) 1095 { 1096 TYPE_FIELD (type, --n) = list->field; 1097 } 1098 } 1099 return (type); 1100 } 1101 1102 /* 1103 1104 LOCAL FUNCTION 1105 1106 read_structure_scope -- process all dies within struct or union 1107 1108 SYNOPSIS 1109 1110 static void read_structure_scope (struct dieinfo *dip, 1111 char *thisdie, char *enddie, struct objfile *objfile) 1112 1113 DESCRIPTION 1114 1115 Called when we find the DIE that starts a structure or union 1116 scope (definition) to process all dies that define the members 1117 of the structure or union. DIP is a pointer to the die info 1118 struct for the DIE that names the structure or union. 1119 1120 NOTES 1121 1122 Note that we need to call struct_type regardless of whether or not 1123 the DIE has an at_name attribute, since it might be an anonymous 1124 structure or union. This gets the type entered into our set of 1125 user defined types. 1126 1127 However, if the structure is incomplete (an opaque struct/union) 1128 then suppress creating a symbol table entry for it since gdb only 1129 wants to find the one with the complete definition. Note that if 1130 it is complete, we just call new_symbol, which does it's own 1131 checking about whether the struct/union is anonymous or not (and 1132 suppresses creating a symbol table entry itself). 1133 1134 */ 1135 1136 static void 1137 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie, 1138 struct objfile *objfile) 1139 { 1140 struct type *type; 1141 struct symbol *sym; 1142 1143 type = struct_type (dip, thisdie, enddie, objfile); 1144 if (!TYPE_STUB (type)) 1145 { 1146 sym = new_symbol (dip, objfile); 1147 if (sym != NULL) 1148 { 1149 SYMBOL_TYPE (sym) = type; 1150 if (cu_language == language_cplus) 1151 { 1152 synthesize_typedef (dip, objfile, type); 1153 } 1154 } 1155 } 1156 } 1157 1158 /* 1159 1160 LOCAL FUNCTION 1161 1162 decode_array_element_type -- decode type of the array elements 1163 1164 SYNOPSIS 1165 1166 static struct type *decode_array_element_type (char *scan, char *end) 1167 1168 DESCRIPTION 1169 1170 As the last step in decoding the array subscript information for an 1171 array DIE, we need to decode the type of the array elements. We are 1172 passed a pointer to this last part of the subscript information and 1173 must return the appropriate type. If the type attribute is not 1174 recognized, just warn about the problem and return type int. 1175 */ 1176 1177 static struct type * 1178 decode_array_element_type (char *scan) 1179 { 1180 struct type *typep; 1181 DIE_REF die_ref; 1182 unsigned short attribute; 1183 unsigned short fundtype; 1184 int nbytes; 1185 1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, 1187 current_objfile); 1188 scan += SIZEOF_ATTRIBUTE; 1189 nbytes = attribute_size (attribute); 1190 if (nbytes == -1) 1191 { 1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); 1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1194 } 1195 else 1196 { 1197 switch (attribute) 1198 { 1199 case AT_fund_type: 1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, 1201 current_objfile); 1202 typep = decode_fund_type (fundtype); 1203 break; 1204 case AT_mod_fund_type: 1205 typep = decode_mod_fund_type (scan); 1206 break; 1207 case AT_user_def_type: 1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, 1209 current_objfile); 1210 typep = lookup_utype (die_ref); 1211 if (typep == NULL) 1212 { 1213 typep = alloc_utype (die_ref, NULL); 1214 } 1215 break; 1216 case AT_mod_u_d_type: 1217 typep = decode_mod_u_d_type (scan); 1218 break; 1219 default: 1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute); 1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1222 break; 1223 } 1224 } 1225 return (typep); 1226 } 1227 1228 /* 1229 1230 LOCAL FUNCTION 1231 1232 decode_subscript_data_item -- decode array subscript item 1233 1234 SYNOPSIS 1235 1236 static struct type * 1237 decode_subscript_data_item (char *scan, char *end) 1238 1239 DESCRIPTION 1240 1241 The array subscripts and the data type of the elements of an 1242 array are described by a list of data items, stored as a block 1243 of contiguous bytes. There is a data item describing each array 1244 dimension, and a final data item describing the element type. 1245 The data items are ordered the same as their appearance in the 1246 source (I.E. leftmost dimension first, next to leftmost second, 1247 etc). 1248 1249 The data items describing each array dimension consist of four 1250 parts: (1) a format specifier, (2) type type of the subscript 1251 index, (3) a description of the low bound of the array dimension, 1252 and (4) a description of the high bound of the array dimension. 1253 1254 The last data item is the description of the type of each of 1255 the array elements. 1256 1257 We are passed a pointer to the start of the block of bytes 1258 containing the remaining data items, and a pointer to the first 1259 byte past the data. This function recursively decodes the 1260 remaining data items and returns a type. 1261 1262 If we somehow fail to decode some data, we complain about it 1263 and return a type "array of int". 1264 1265 BUGS 1266 FIXME: This code only implements the forms currently used 1267 by the AT&T and GNU C compilers. 1268 1269 The end pointer is supplied for error checking, maybe we should 1270 use it for that... 1271 */ 1272 1273 static struct type * 1274 decode_subscript_data_item (char *scan, char *end) 1275 { 1276 struct type *typep = NULL; /* Array type we are building */ 1277 struct type *nexttype; /* Type of each element (may be array) */ 1278 struct type *indextype; /* Type of this index */ 1279 struct type *rangetype; 1280 unsigned int format; 1281 unsigned short fundtype; 1282 unsigned long lowbound; 1283 unsigned long highbound; 1284 int nbytes; 1285 1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, 1287 current_objfile); 1288 scan += SIZEOF_FORMAT_SPECIFIER; 1289 switch (format) 1290 { 1291 case FMT_ET: 1292 typep = decode_array_element_type (scan); 1293 break; 1294 case FMT_FT_C_C: 1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, 1296 current_objfile); 1297 indextype = decode_fund_type (fundtype); 1298 scan += SIZEOF_FMT_FT; 1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile); 1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); 1301 scan += nbytes; 1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); 1303 scan += nbytes; 1304 nexttype = decode_subscript_data_item (scan, end); 1305 if (nexttype == NULL) 1306 { 1307 /* Munged subscript data or other problem, fake it. */ 1308 complaint (&symfile_complaints, 1309 "DIE @ 0x%x \"%s\", can't decode subscript data items", 1310 DIE_ID, DIE_NAME); 1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1312 } 1313 rangetype = create_range_type ((struct type *) NULL, indextype, 1314 lowbound, highbound); 1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype); 1316 break; 1317 case FMT_FT_C_X: 1318 case FMT_FT_X_C: 1319 case FMT_FT_X_X: 1320 case FMT_UT_C_C: 1321 case FMT_UT_C_X: 1322 case FMT_UT_X_C: 1323 case FMT_UT_X_X: 1324 complaint (&symfile_complaints, 1325 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 1326 DIE_ID, DIE_NAME, format); 1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); 1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype); 1330 break; 1331 default: 1332 complaint (&symfile_complaints, 1333 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID, 1334 DIE_NAME, format); 1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); 1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype); 1338 break; 1339 } 1340 return (typep); 1341 } 1342 1343 /* 1344 1345 LOCAL FUNCTION 1346 1347 dwarf_read_array_type -- read TAG_array_type DIE 1348 1349 SYNOPSIS 1350 1351 static void dwarf_read_array_type (struct dieinfo *dip) 1352 1353 DESCRIPTION 1354 1355 Extract all information from a TAG_array_type DIE and add to 1356 the user defined type vector. 1357 */ 1358 1359 static void 1360 dwarf_read_array_type (struct dieinfo *dip) 1361 { 1362 struct type *type; 1363 struct type *utype; 1364 char *sub; 1365 char *subend; 1366 unsigned short blocksz; 1367 int nbytes; 1368 1369 if (dip->at_ordering != ORD_row_major) 1370 { 1371 /* FIXME: Can gdb even handle column major arrays? */ 1372 complaint (&symfile_complaints, 1373 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 1374 DIE_ID, DIE_NAME); 1375 } 1376 sub = dip->at_subscr_data; 1377 if (sub != NULL) 1378 { 1379 nbytes = attribute_size (AT_subscr_data); 1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); 1381 subend = sub + nbytes + blocksz; 1382 sub += nbytes; 1383 type = decode_subscript_data_item (sub, subend); 1384 utype = lookup_utype (dip->die_ref); 1385 if (utype == NULL) 1386 { 1387 /* Install user defined type that has not been referenced yet. */ 1388 alloc_utype (dip->die_ref, type); 1389 } 1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) 1391 { 1392 /* Ick! A forward ref has already generated a blank type in our 1393 slot, and this type probably already has things pointing to it 1394 (which is what caused it to be created in the first place). 1395 If it's just a place holder we can plop our fully defined type 1396 on top of it. We can't recover the space allocated for our 1397 new type since it might be on an obstack, but we could reuse 1398 it if we kept a list of them, but it might not be worth it 1399 (FIXME). */ 1400 *utype = *type; 1401 } 1402 else 1403 { 1404 /* Double ick! Not only is a type already in our slot, but 1405 someone has decorated it. Complain and leave it alone. */ 1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME); 1407 } 1408 } 1409 } 1410 1411 /* 1412 1413 LOCAL FUNCTION 1414 1415 read_tag_pointer_type -- read TAG_pointer_type DIE 1416 1417 SYNOPSIS 1418 1419 static void read_tag_pointer_type (struct dieinfo *dip) 1420 1421 DESCRIPTION 1422 1423 Extract all information from a TAG_pointer_type DIE and add to 1424 the user defined type vector. 1425 */ 1426 1427 static void 1428 read_tag_pointer_type (struct dieinfo *dip) 1429 { 1430 struct type *type; 1431 struct type *utype; 1432 1433 type = decode_die_type (dip); 1434 utype = lookup_utype (dip->die_ref); 1435 if (utype == NULL) 1436 { 1437 utype = lookup_pointer_type (type); 1438 alloc_utype (dip->die_ref, utype); 1439 } 1440 else 1441 { 1442 TYPE_TARGET_TYPE (utype) = type; 1443 TYPE_POINTER_TYPE (type) = utype; 1444 1445 /* We assume the machine has only one representation for pointers! */ 1446 /* FIXME: Possably a poor assumption */ 1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; 1448 TYPE_CODE (utype) = TYPE_CODE_PTR; 1449 } 1450 } 1451 1452 /* 1453 1454 LOCAL FUNCTION 1455 1456 read_tag_string_type -- read TAG_string_type DIE 1457 1458 SYNOPSIS 1459 1460 static void read_tag_string_type (struct dieinfo *dip) 1461 1462 DESCRIPTION 1463 1464 Extract all information from a TAG_string_type DIE and add to 1465 the user defined type vector. It isn't really a user defined 1466 type, but it behaves like one, with other DIE's using an 1467 AT_user_def_type attribute to reference it. 1468 */ 1469 1470 static void 1471 read_tag_string_type (struct dieinfo *dip) 1472 { 1473 struct type *utype; 1474 struct type *indextype; 1475 struct type *rangetype; 1476 unsigned long lowbound = 0; 1477 unsigned long highbound; 1478 1479 if (dip->has_at_byte_size) 1480 { 1481 /* A fixed bounds string */ 1482 highbound = dip->at_byte_size - 1; 1483 } 1484 else 1485 { 1486 /* A varying length string. Stub for now. (FIXME) */ 1487 highbound = 1; 1488 } 1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); 1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, 1491 highbound); 1492 1493 utype = lookup_utype (dip->die_ref); 1494 if (utype == NULL) 1495 { 1496 /* No type defined, go ahead and create a blank one to use. */ 1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL); 1498 } 1499 else 1500 { 1501 /* Already a type in our slot due to a forward reference. Make sure it 1502 is a blank one. If not, complain and leave it alone. */ 1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) 1504 { 1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME); 1506 return; 1507 } 1508 } 1509 1510 /* Create the string type using the blank type we either found or created. */ 1511 utype = create_string_type (utype, rangetype); 1512 } 1513 1514 /* 1515 1516 LOCAL FUNCTION 1517 1518 read_subroutine_type -- process TAG_subroutine_type dies 1519 1520 SYNOPSIS 1521 1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie, 1523 char *enddie) 1524 1525 DESCRIPTION 1526 1527 Handle DIES due to C code like: 1528 1529 struct foo { 1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) 1531 int b; 1532 }; 1533 1534 NOTES 1535 1536 The parameter DIES are currently ignored. See if gdb has a way to 1537 include this info in it's type system, and decode them if so. Is 1538 this what the type structure's "arg_types" field is for? (FIXME) 1539 */ 1540 1541 static void 1542 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie) 1543 { 1544 struct type *type; /* Type that this function returns */ 1545 struct type *ftype; /* Function that returns above type */ 1546 1547 /* Decode the type that this subroutine returns */ 1548 1549 type = decode_die_type (dip); 1550 1551 /* Check to see if we already have a partially constructed user 1552 defined type for this DIE, from a forward reference. */ 1553 1554 ftype = lookup_utype (dip->die_ref); 1555 if (ftype == NULL) 1556 { 1557 /* This is the first reference to one of these types. Make 1558 a new one and place it in the user defined types. */ 1559 ftype = lookup_function_type (type); 1560 alloc_utype (dip->die_ref, ftype); 1561 } 1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) 1563 { 1564 /* We have an existing partially constructed type, so bash it 1565 into the correct type. */ 1566 TYPE_TARGET_TYPE (ftype) = type; 1567 TYPE_LENGTH (ftype) = 1; 1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC; 1569 } 1570 else 1571 { 1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME); 1573 } 1574 } 1575 1576 /* 1577 1578 LOCAL FUNCTION 1579 1580 read_enumeration -- process dies which define an enumeration 1581 1582 SYNOPSIS 1583 1584 static void read_enumeration (struct dieinfo *dip, char *thisdie, 1585 char *enddie, struct objfile *objfile) 1586 1587 DESCRIPTION 1588 1589 Given a pointer to a die which begins an enumeration, process all 1590 the dies that define the members of the enumeration. 1591 1592 NOTES 1593 1594 Note that we need to call enum_type regardless of whether or not we 1595 have a symbol, since we might have an enum without a tag name (thus 1596 no symbol for the tagname). 1597 */ 1598 1599 static void 1600 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie, 1601 struct objfile *objfile) 1602 { 1603 struct type *type; 1604 struct symbol *sym; 1605 1606 type = enum_type (dip, objfile); 1607 sym = new_symbol (dip, objfile); 1608 if (sym != NULL) 1609 { 1610 SYMBOL_TYPE (sym) = type; 1611 if (cu_language == language_cplus) 1612 { 1613 synthesize_typedef (dip, objfile, type); 1614 } 1615 } 1616 } 1617 1618 /* 1619 1620 LOCAL FUNCTION 1621 1622 enum_type -- decode and return a type for an enumeration 1623 1624 SYNOPSIS 1625 1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile) 1627 1628 DESCRIPTION 1629 1630 Given a pointer to a die information structure for the die which 1631 starts an enumeration, process all the dies that define the members 1632 of the enumeration and return a type pointer for the enumeration. 1633 1634 At the same time, for each member of the enumeration, create a 1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST, 1636 and give it the type of the enumeration itself. 1637 1638 NOTES 1639 1640 Note that the DWARF specification explicitly mandates that enum 1641 constants occur in reverse order from the source program order, 1642 for "consistency" and because this ordering is easier for many 1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type 1644 Entries). Because gdb wants to see the enum members in program 1645 source order, we have to ensure that the order gets reversed while 1646 we are processing them. 1647 */ 1648 1649 static struct type * 1650 enum_type (struct dieinfo *dip, struct objfile *objfile) 1651 { 1652 struct type *type; 1653 struct nextfield 1654 { 1655 struct nextfield *next; 1656 struct field field; 1657 }; 1658 struct nextfield *list = NULL; 1659 struct nextfield *new; 1660 int nfields = 0; 1661 int n; 1662 char *scan; 1663 char *listend; 1664 unsigned short blocksz; 1665 struct symbol *sym; 1666 int nbytes; 1667 int unsigned_enum = 1; 1668 1669 type = lookup_utype (dip->die_ref); 1670 if (type == NULL) 1671 { 1672 /* No forward references created an empty type, so install one now */ 1673 type = alloc_utype (dip->die_ref, NULL); 1674 } 1675 TYPE_CODE (type) = TYPE_CODE_ENUM; 1676 /* Some compilers try to be helpful by inventing "fake" names for 1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake". 1678 Thanks, but no thanks... */ 1679 if (dip->at_name != NULL 1680 && *dip->at_name != '~' 1681 && *dip->at_name != '.') 1682 { 1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack, 1684 "", "", dip->at_name); 1685 } 1686 if (dip->at_byte_size != 0) 1687 { 1688 TYPE_LENGTH (type) = dip->at_byte_size; 1689 } 1690 scan = dip->at_element_list; 1691 if (scan != NULL) 1692 { 1693 if (dip->short_element_list) 1694 { 1695 nbytes = attribute_size (AT_short_element_list); 1696 } 1697 else 1698 { 1699 nbytes = attribute_size (AT_element_list); 1700 } 1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); 1702 listend = scan + nbytes + blocksz; 1703 scan += nbytes; 1704 while (scan < listend) 1705 { 1706 new = (struct nextfield *) alloca (sizeof (struct nextfield)); 1707 new->next = list; 1708 list = new; 1709 FIELD_TYPE (list->field) = NULL; 1710 FIELD_BITSIZE (list->field) = 0; 1711 FIELD_STATIC_KIND (list->field) = 0; 1712 FIELD_BITPOS (list->field) = 1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, 1714 objfile); 1715 scan += TARGET_FT_LONG_SIZE (objfile); 1716 list->field.name = obsavestring (scan, strlen (scan), 1717 &objfile->objfile_obstack); 1718 scan += strlen (scan) + 1; 1719 nfields++; 1720 /* Handcraft a new symbol for this enum member. */ 1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, 1722 sizeof (struct symbol)); 1723 memset (sym, 0, sizeof (struct symbol)); 1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name, 1725 &objfile->objfile_obstack); 1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); 1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN; 1728 SYMBOL_CLASS (sym) = LOC_CONST; 1729 SYMBOL_TYPE (sym) = type; 1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); 1731 if (SYMBOL_VALUE (sym) < 0) 1732 unsigned_enum = 0; 1733 add_symbol_to_list (sym, list_in_scope); 1734 } 1735 /* Now create the vector of fields, and record how big it is. This is 1736 where we reverse the order, by pulling the members off the list in 1737 reverse order from how they were inserted. If we have no fields 1738 (this is apparently possible in C++) then skip building a field 1739 vector. */ 1740 if (nfields > 0) 1741 { 1742 if (unsigned_enum) 1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; 1744 TYPE_NFIELDS (type) = nfields; 1745 TYPE_FIELDS (type) = (struct field *) 1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields); 1747 /* Copy the saved-up fields into the field vector. */ 1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next) 1749 { 1750 TYPE_FIELD (type, n++) = list->field; 1751 } 1752 } 1753 } 1754 return (type); 1755 } 1756 1757 /* 1758 1759 LOCAL FUNCTION 1760 1761 read_func_scope -- process all dies within a function scope 1762 1763 DESCRIPTION 1764 1765 Process all dies within a given function scope. We are passed 1766 a die information structure pointer DIP for the die which 1767 starts the function scope, and pointers into the raw die data 1768 that define the dies within the function scope. 1769 1770 For now, we ignore lexical block scopes within the function. 1771 The problem is that AT&T cc does not define a DWARF lexical 1772 block scope for the function itself, while gcc defines a 1773 lexical block scope for the function. We need to think about 1774 how to handle this difference, or if it is even a problem. 1775 (FIXME) 1776 */ 1777 1778 static void 1779 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie, 1780 struct objfile *objfile) 1781 { 1782 struct context_stack *new; 1783 1784 /* AT_name is absent if the function is described with an 1785 AT_abstract_origin tag. 1786 Ignore the function description for now to avoid GDB core dumps. 1787 FIXME: Add code to handle AT_abstract_origin tags properly. */ 1788 if (dip->at_name == NULL) 1789 { 1790 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing", 1791 DIE_ID); 1792 return; 1793 } 1794 1795 new = push_context (0, dip->at_low_pc); 1796 new->name = new_symbol (dip, objfile); 1797 list_in_scope = &local_symbols; 1798 process_dies (thisdie + dip->die_length, enddie, objfile); 1799 new = pop_context (); 1800 /* Make a block for the local symbols within. */ 1801 finish_block (new->name, &local_symbols, new->old_blocks, 1802 new->start_addr, dip->at_high_pc, objfile); 1803 list_in_scope = &file_symbols; 1804 } 1805 1806 1807 /* 1808 1809 LOCAL FUNCTION 1810 1811 handle_producer -- process the AT_producer attribute 1812 1813 DESCRIPTION 1814 1815 Perform any operations that depend on finding a particular 1816 AT_producer attribute. 1817 1818 */ 1819 1820 static void 1821 handle_producer (char *producer) 1822 { 1823 1824 /* If this compilation unit was compiled with g++ or gcc, then set the 1825 processing_gcc_compilation flag. */ 1826 1827 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) 1828 { 1829 char version = producer[strlen (GCC_PRODUCER)]; 1830 processing_gcc_compilation = (version == '2' ? 2 : 1); 1831 } 1832 else 1833 { 1834 processing_gcc_compilation = 1835 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0; 1836 } 1837 1838 /* Select a demangling style if we can identify the producer and if 1839 the current style is auto. We leave the current style alone if it 1840 is not auto. We also leave the demangling style alone if we find a 1841 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ 1842 1843 if (AUTO_DEMANGLING) 1844 { 1845 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) 1846 { 1847 #if 0 1848 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't 1849 know whether it will use the old style or v3 mangling. */ 1850 set_demangling_style (GNU_DEMANGLING_STYLE_STRING); 1851 #endif 1852 } 1853 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) 1854 { 1855 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); 1856 } 1857 } 1858 } 1859 1860 1861 /* 1862 1863 LOCAL FUNCTION 1864 1865 read_file_scope -- process all dies within a file scope 1866 1867 DESCRIPTION 1868 1869 Process all dies within a given file scope. We are passed a 1870 pointer to the die information structure for the die which 1871 starts the file scope, and pointers into the raw die data which 1872 mark the range of dies within the file scope. 1873 1874 When the partial symbol table is built, the file offset for the line 1875 number table for each compilation unit is saved in the partial symbol 1876 table entry for that compilation unit. As the symbols for each 1877 compilation unit are read, the line number table is read into memory 1878 and the variable lnbase is set to point to it. Thus all we have to 1879 do is use lnbase to access the line number table for the current 1880 compilation unit. 1881 */ 1882 1883 static void 1884 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie, 1885 struct objfile *objfile) 1886 { 1887 struct cleanup *back_to; 1888 struct symtab *symtab; 1889 1890 set_cu_language (dip); 1891 if (dip->at_producer != NULL) 1892 { 1893 handle_producer (dip->at_producer); 1894 } 1895 numutypes = (enddie - thisdie) / 4; 1896 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); 1897 back_to = make_cleanup (free_utypes, NULL); 1898 memset (utypes, 0, numutypes * sizeof (struct type *)); 1899 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); 1900 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc); 1901 record_debugformat ("DWARF 1"); 1902 decode_line_numbers (lnbase); 1903 process_dies (thisdie + dip->die_length, enddie, objfile); 1904 1905 symtab = end_symtab (dip->at_high_pc, objfile, 0); 1906 if (symtab != NULL) 1907 { 1908 symtab->language = cu_language; 1909 } 1910 do_cleanups (back_to); 1911 } 1912 1913 /* 1914 1915 LOCAL FUNCTION 1916 1917 process_dies -- process a range of DWARF Information Entries 1918 1919 SYNOPSIS 1920 1921 static void process_dies (char *thisdie, char *enddie, 1922 struct objfile *objfile) 1923 1924 DESCRIPTION 1925 1926 Process all DIE's in a specified range. May be (and almost 1927 certainly will be) called recursively. 1928 */ 1929 1930 static void 1931 process_dies (char *thisdie, char *enddie, struct objfile *objfile) 1932 { 1933 char *nextdie; 1934 struct dieinfo di; 1935 1936 while (thisdie < enddie) 1937 { 1938 basicdieinfo (&di, thisdie, objfile); 1939 if (di.die_length < SIZEOF_DIE_LENGTH) 1940 { 1941 break; 1942 } 1943 else if (di.die_tag == TAG_padding) 1944 { 1945 nextdie = thisdie + di.die_length; 1946 } 1947 else 1948 { 1949 completedieinfo (&di, objfile); 1950 if (di.at_sibling != 0) 1951 { 1952 nextdie = dbbase + di.at_sibling - dbroff; 1953 } 1954 else 1955 { 1956 nextdie = thisdie + di.die_length; 1957 } 1958 /* I think that these are always text, not data, addresses. */ 1959 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc); 1960 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc); 1961 switch (di.die_tag) 1962 { 1963 case TAG_compile_unit: 1964 /* Skip Tag_compile_unit if we are already inside a compilation 1965 unit, we are unable to handle nested compilation units 1966 properly (FIXME). */ 1967 if (current_subfile == NULL) 1968 read_file_scope (&di, thisdie, nextdie, objfile); 1969 else 1970 nextdie = thisdie + di.die_length; 1971 break; 1972 case TAG_global_subroutine: 1973 case TAG_subroutine: 1974 if (di.has_at_low_pc) 1975 { 1976 read_func_scope (&di, thisdie, nextdie, objfile); 1977 } 1978 break; 1979 case TAG_lexical_block: 1980 read_lexical_block_scope (&di, thisdie, nextdie, objfile); 1981 break; 1982 case TAG_class_type: 1983 case TAG_structure_type: 1984 case TAG_union_type: 1985 read_structure_scope (&di, thisdie, nextdie, objfile); 1986 break; 1987 case TAG_enumeration_type: 1988 read_enumeration (&di, thisdie, nextdie, objfile); 1989 break; 1990 case TAG_subroutine_type: 1991 read_subroutine_type (&di, thisdie, nextdie); 1992 break; 1993 case TAG_array_type: 1994 dwarf_read_array_type (&di); 1995 break; 1996 case TAG_pointer_type: 1997 read_tag_pointer_type (&di); 1998 break; 1999 case TAG_string_type: 2000 read_tag_string_type (&di); 2001 break; 2002 default: 2003 new_symbol (&di, objfile); 2004 break; 2005 } 2006 } 2007 thisdie = nextdie; 2008 } 2009 } 2010 2011 /* 2012 2013 LOCAL FUNCTION 2014 2015 decode_line_numbers -- decode a line number table fragment 2016 2017 SYNOPSIS 2018 2019 static void decode_line_numbers (char *tblscan, char *tblend, 2020 long length, long base, long line, long pc) 2021 2022 DESCRIPTION 2023 2024 Translate the DWARF line number information to gdb form. 2025 2026 The ".line" section contains one or more line number tables, one for 2027 each ".line" section from the objects that were linked. 2028 2029 The AT_stmt_list attribute for each TAG_source_file entry in the 2030 ".debug" section contains the offset into the ".line" section for the 2031 start of the table for that file. 2032 2033 The table itself has the following structure: 2034 2035 <table length><base address><source statement entry> 2036 4 bytes 4 bytes 10 bytes 2037 2038 The table length is the total size of the table, including the 4 bytes 2039 for the length information. 2040 2041 The base address is the address of the first instruction generated 2042 for the source file. 2043 2044 Each source statement entry has the following structure: 2045 2046 <line number><statement position><address delta> 2047 4 bytes 2 bytes 4 bytes 2048 2049 The line number is relative to the start of the file, starting with 2050 line 1. 2051 2052 The statement position either -1 (0xFFFF) or the number of characters 2053 from the beginning of the line to the beginning of the statement. 2054 2055 The address delta is the difference between the base address and 2056 the address of the first instruction for the statement. 2057 2058 Note that we must copy the bytes from the packed table to our local 2059 variables before attempting to use them, to avoid alignment problems 2060 on some machines, particularly RISC processors. 2061 2062 BUGS 2063 2064 Does gdb expect the line numbers to be sorted? They are now by 2065 chance/luck, but are not required to be. (FIXME) 2066 2067 The line with number 0 is unused, gdb apparently can discover the 2068 span of the last line some other way. How? (FIXME) 2069 */ 2070 2071 static void 2072 decode_line_numbers (char *linetable) 2073 { 2074 char *tblscan; 2075 char *tblend; 2076 unsigned long length; 2077 unsigned long base; 2078 unsigned long line; 2079 unsigned long pc; 2080 2081 if (linetable != NULL) 2082 { 2083 tblscan = tblend = linetable; 2084 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, 2085 current_objfile); 2086 tblscan += SIZEOF_LINETBL_LENGTH; 2087 tblend += length; 2088 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), 2089 GET_UNSIGNED, current_objfile); 2090 tblscan += TARGET_FT_POINTER_SIZE (objfile); 2091 base += baseaddr; 2092 while (tblscan < tblend) 2093 { 2094 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, 2095 current_objfile); 2096 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; 2097 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, 2098 current_objfile); 2099 tblscan += SIZEOF_LINETBL_DELTA; 2100 pc += base; 2101 if (line != 0) 2102 { 2103 record_line (current_subfile, line, pc); 2104 } 2105 } 2106 } 2107 } 2108 2109 /* 2110 2111 LOCAL FUNCTION 2112 2113 locval -- compute the value of a location attribute 2114 2115 SYNOPSIS 2116 2117 static int locval (struct dieinfo *dip) 2118 2119 DESCRIPTION 2120 2121 Given pointer to a string of bytes that define a location, compute 2122 the location and return the value. 2123 A location description containing no atoms indicates that the 2124 object is optimized out. The optimized_out flag is set for those, 2125 the return value is meaningless. 2126 2127 When computing values involving the current value of the frame pointer, 2128 the value zero is used, which results in a value relative to the frame 2129 pointer, rather than the absolute value. This is what GDB wants 2130 anyway. 2131 2132 When the result is a register number, the isreg flag is set, otherwise 2133 it is cleared. This is a kludge until we figure out a better 2134 way to handle the problem. Gdb's design does not mesh well with the 2135 DWARF notion of a location computing interpreter, which is a shame 2136 because the flexibility goes unused. 2137 2138 NOTES 2139 2140 Note that stack[0] is unused except as a default error return. 2141 Note that stack overflow is not yet handled. 2142 */ 2143 2144 static int 2145 locval (struct dieinfo *dip) 2146 { 2147 unsigned short nbytes; 2148 unsigned short locsize; 2149 auto long stack[64]; 2150 int stacki; 2151 char *loc; 2152 char *end; 2153 int loc_atom_code; 2154 int loc_value_size; 2155 2156 loc = dip->at_location; 2157 nbytes = attribute_size (AT_location); 2158 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); 2159 loc += nbytes; 2160 end = loc + locsize; 2161 stacki = 0; 2162 stack[stacki] = 0; 2163 dip->isreg = 0; 2164 dip->offreg = 0; 2165 dip->optimized_out = 1; 2166 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); 2167 while (loc < end) 2168 { 2169 dip->optimized_out = 0; 2170 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, 2171 current_objfile); 2172 loc += SIZEOF_LOC_ATOM_CODE; 2173 switch (loc_atom_code) 2174 { 2175 case 0: 2176 /* error */ 2177 loc = end; 2178 break; 2179 case OP_REG: 2180 /* push register (number) */ 2181 stack[++stacki] 2182 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, 2183 GET_UNSIGNED, 2184 current_objfile)); 2185 loc += loc_value_size; 2186 dip->isreg = 1; 2187 break; 2188 case OP_BASEREG: 2189 /* push value of register (number) */ 2190 /* Actually, we compute the value as if register has 0, so the 2191 value ends up being the offset from that register. */ 2192 dip->offreg = 1; 2193 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, 2194 current_objfile); 2195 loc += loc_value_size; 2196 stack[++stacki] = 0; 2197 break; 2198 case OP_ADDR: 2199 /* push address (relocated address) */ 2200 stack[++stacki] = target_to_host (loc, loc_value_size, 2201 GET_UNSIGNED, current_objfile); 2202 loc += loc_value_size; 2203 break; 2204 case OP_CONST: 2205 /* push constant (number) FIXME: signed or unsigned! */ 2206 stack[++stacki] = target_to_host (loc, loc_value_size, 2207 GET_SIGNED, current_objfile); 2208 loc += loc_value_size; 2209 break; 2210 case OP_DEREF2: 2211 /* pop, deref and push 2 bytes (as a long) */ 2212 complaint (&symfile_complaints, 2213 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled", 2214 DIE_ID, DIE_NAME, stack[stacki]); 2215 break; 2216 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ 2217 complaint (&symfile_complaints, 2218 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled", 2219 DIE_ID, DIE_NAME, stack[stacki]); 2220 break; 2221 case OP_ADD: /* pop top 2 items, add, push result */ 2222 stack[stacki - 1] += stack[stacki]; 2223 stacki--; 2224 break; 2225 } 2226 } 2227 return (stack[stacki]); 2228 } 2229 2230 /* 2231 2232 LOCAL FUNCTION 2233 2234 read_ofile_symtab -- build a full symtab entry from chunk of DIE's 2235 2236 SYNOPSIS 2237 2238 static void read_ofile_symtab (struct partial_symtab *pst) 2239 2240 DESCRIPTION 2241 2242 When expanding a partial symbol table entry to a full symbol table 2243 entry, this is the function that gets called to read in the symbols 2244 for the compilation unit. A pointer to the newly constructed symtab, 2245 which is now the new first one on the objfile's symtab list, is 2246 stashed in the partial symbol table entry. 2247 */ 2248 2249 static void 2250 read_ofile_symtab (struct partial_symtab *pst) 2251 { 2252 struct cleanup *back_to; 2253 unsigned long lnsize; 2254 file_ptr foffset; 2255 bfd *abfd; 2256 char lnsizedata[SIZEOF_LINETBL_LENGTH]; 2257 2258 abfd = pst->objfile->obfd; 2259 current_objfile = pst->objfile; 2260 2261 /* Allocate a buffer for the entire chunk of DIE's for this compilation 2262 unit, seek to the location in the file, and read in all the DIE's. */ 2263 2264 diecount = 0; 2265 dbsize = DBLENGTH (pst); 2266 dbbase = xmalloc (dbsize); 2267 dbroff = DBROFF (pst); 2268 foffset = DBFOFF (pst) + dbroff; 2269 base_section_offsets = pst->section_offsets; 2270 baseaddr = ANOFFSET (pst->section_offsets, 0); 2271 if (bfd_seek (abfd, foffset, SEEK_SET) || 2272 (bfd_bread (dbbase, dbsize, abfd) != dbsize)) 2273 { 2274 xfree (dbbase); 2275 error ("can't read DWARF data"); 2276 } 2277 back_to = make_cleanup (xfree, dbbase); 2278 2279 /* If there is a line number table associated with this compilation unit 2280 then read the size of this fragment in bytes, from the fragment itself. 2281 Allocate a buffer for the fragment and read it in for future 2282 processing. */ 2283 2284 lnbase = NULL; 2285 if (LNFOFF (pst)) 2286 { 2287 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || 2288 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd) 2289 != sizeof (lnsizedata))) 2290 { 2291 error ("can't read DWARF line number table size"); 2292 } 2293 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, 2294 GET_UNSIGNED, pst->objfile); 2295 lnbase = xmalloc (lnsize); 2296 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || 2297 (bfd_bread (lnbase, lnsize, abfd) != lnsize)) 2298 { 2299 xfree (lnbase); 2300 error ("can't read DWARF line numbers"); 2301 } 2302 make_cleanup (xfree, lnbase); 2303 } 2304 2305 process_dies (dbbase, dbbase + dbsize, pst->objfile); 2306 do_cleanups (back_to); 2307 current_objfile = NULL; 2308 pst->symtab = pst->objfile->symtabs; 2309 } 2310 2311 /* 2312 2313 LOCAL FUNCTION 2314 2315 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry 2316 2317 SYNOPSIS 2318 2319 static void psymtab_to_symtab_1 (struct partial_symtab *pst) 2320 2321 DESCRIPTION 2322 2323 Called once for each partial symbol table entry that needs to be 2324 expanded into a full symbol table entry. 2325 2326 */ 2327 2328 static void 2329 psymtab_to_symtab_1 (struct partial_symtab *pst) 2330 { 2331 int i; 2332 struct cleanup *old_chain; 2333 2334 if (pst != NULL) 2335 { 2336 if (pst->readin) 2337 { 2338 warning ("psymtab for %s already read in. Shouldn't happen.", 2339 pst->filename); 2340 } 2341 else 2342 { 2343 /* Read in all partial symtabs on which this one is dependent */ 2344 for (i = 0; i < pst->number_of_dependencies; i++) 2345 { 2346 if (!pst->dependencies[i]->readin) 2347 { 2348 /* Inform about additional files that need to be read in. */ 2349 if (info_verbose) 2350 { 2351 fputs_filtered (" ", gdb_stdout); 2352 wrap_here (""); 2353 fputs_filtered ("and ", gdb_stdout); 2354 wrap_here (""); 2355 printf_filtered ("%s...", 2356 pst->dependencies[i]->filename); 2357 wrap_here (""); 2358 gdb_flush (gdb_stdout); /* Flush output */ 2359 } 2360 psymtab_to_symtab_1 (pst->dependencies[i]); 2361 } 2362 } 2363 if (DBLENGTH (pst)) /* Otherwise it's a dummy */ 2364 { 2365 buildsym_init (); 2366 old_chain = make_cleanup (really_free_pendings, 0); 2367 read_ofile_symtab (pst); 2368 if (info_verbose) 2369 { 2370 printf_filtered ("%d DIE's, sorting...", diecount); 2371 wrap_here (""); 2372 gdb_flush (gdb_stdout); 2373 } 2374 do_cleanups (old_chain); 2375 } 2376 pst->readin = 1; 2377 } 2378 } 2379 } 2380 2381 /* 2382 2383 LOCAL FUNCTION 2384 2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one 2386 2387 SYNOPSIS 2388 2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) 2390 2391 DESCRIPTION 2392 2393 This is the DWARF support entry point for building a full symbol 2394 table entry from a partial symbol table entry. We are passed a 2395 pointer to the partial symbol table entry that needs to be expanded. 2396 2397 */ 2398 2399 static void 2400 dwarf_psymtab_to_symtab (struct partial_symtab *pst) 2401 { 2402 2403 if (pst != NULL) 2404 { 2405 if (pst->readin) 2406 { 2407 warning ("psymtab for %s already read in. Shouldn't happen.", 2408 pst->filename); 2409 } 2410 else 2411 { 2412 if (DBLENGTH (pst) || pst->number_of_dependencies) 2413 { 2414 /* Print the message now, before starting serious work, to avoid 2415 disconcerting pauses. */ 2416 if (info_verbose) 2417 { 2418 printf_filtered ("Reading in symbols for %s...", 2419 pst->filename); 2420 gdb_flush (gdb_stdout); 2421 } 2422 2423 psymtab_to_symtab_1 (pst); 2424 2425 #if 0 /* FIXME: Check to see what dbxread is doing here and see if 2426 we need to do an equivalent or is this something peculiar to 2427 stabs/a.out format. 2428 Match with global symbols. This only needs to be done once, 2429 after all of the symtabs and dependencies have been read in. 2430 */ 2431 scan_file_globals (pst->objfile); 2432 #endif 2433 2434 /* Finish up the verbose info message. */ 2435 if (info_verbose) 2436 { 2437 printf_filtered ("done.\n"); 2438 gdb_flush (gdb_stdout); 2439 } 2440 } 2441 } 2442 } 2443 } 2444 2445 /* 2446 2447 LOCAL FUNCTION 2448 2449 add_enum_psymbol -- add enumeration members to partial symbol table 2450 2451 DESCRIPTION 2452 2453 Given pointer to a DIE that is known to be for an enumeration, 2454 extract the symbolic names of the enumeration members and add 2455 partial symbols for them. 2456 */ 2457 2458 static void 2459 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile) 2460 { 2461 char *scan; 2462 char *listend; 2463 unsigned short blocksz; 2464 int nbytes; 2465 2466 scan = dip->at_element_list; 2467 if (scan != NULL) 2468 { 2469 if (dip->short_element_list) 2470 { 2471 nbytes = attribute_size (AT_short_element_list); 2472 } 2473 else 2474 { 2475 nbytes = attribute_size (AT_element_list); 2476 } 2477 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); 2478 scan += nbytes; 2479 listend = scan + blocksz; 2480 while (scan < listend) 2481 { 2482 scan += TARGET_FT_LONG_SIZE (objfile); 2483 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST, 2484 &objfile->static_psymbols, 0, 0, cu_language, 2485 objfile); 2486 scan += strlen (scan) + 1; 2487 } 2488 } 2489 } 2490 2491 /* 2492 2493 LOCAL FUNCTION 2494 2495 add_partial_symbol -- add symbol to partial symbol table 2496 2497 DESCRIPTION 2498 2499 Given a DIE, if it is one of the types that we want to 2500 add to a partial symbol table, finish filling in the die info 2501 and then add a partial symbol table entry for it. 2502 2503 NOTES 2504 2505 The caller must ensure that the DIE has a valid name attribute. 2506 */ 2507 2508 static void 2509 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile) 2510 { 2511 switch (dip->die_tag) 2512 { 2513 case TAG_global_subroutine: 2514 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2515 VAR_DOMAIN, LOC_BLOCK, 2516 &objfile->global_psymbols, 2517 0, dip->at_low_pc, cu_language, objfile); 2518 break; 2519 case TAG_global_variable: 2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2521 VAR_DOMAIN, LOC_STATIC, 2522 &objfile->global_psymbols, 2523 0, 0, cu_language, objfile); 2524 break; 2525 case TAG_subroutine: 2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2527 VAR_DOMAIN, LOC_BLOCK, 2528 &objfile->static_psymbols, 2529 0, dip->at_low_pc, cu_language, objfile); 2530 break; 2531 case TAG_local_variable: 2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2533 VAR_DOMAIN, LOC_STATIC, 2534 &objfile->static_psymbols, 2535 0, 0, cu_language, objfile); 2536 break; 2537 case TAG_typedef: 2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2539 VAR_DOMAIN, LOC_TYPEDEF, 2540 &objfile->static_psymbols, 2541 0, 0, cu_language, objfile); 2542 break; 2543 case TAG_class_type: 2544 case TAG_structure_type: 2545 case TAG_union_type: 2546 case TAG_enumeration_type: 2547 /* Do not add opaque aggregate definitions to the psymtab. */ 2548 if (!dip->has_at_byte_size) 2549 break; 2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2551 STRUCT_DOMAIN, LOC_TYPEDEF, 2552 &objfile->static_psymbols, 2553 0, 0, cu_language, objfile); 2554 if (cu_language == language_cplus) 2555 { 2556 /* For C++, these implicitly act as typedefs as well. */ 2557 add_psymbol_to_list (dip->at_name, strlen (dip->at_name), 2558 VAR_DOMAIN, LOC_TYPEDEF, 2559 &objfile->static_psymbols, 2560 0, 0, cu_language, objfile); 2561 } 2562 break; 2563 } 2564 } 2565 /* *INDENT-OFF* */ 2566 /* 2567 2568 LOCAL FUNCTION 2569 2570 scan_partial_symbols -- scan DIE's within a single compilation unit 2571 2572 DESCRIPTION 2573 2574 Process the DIE's within a single compilation unit, looking for 2575 interesting DIE's that contribute to the partial symbol table entry 2576 for this compilation unit. 2577 2578 NOTES 2579 2580 There are some DIE's that may appear both at file scope and within 2581 the scope of a function. We are only interested in the ones at file 2582 scope, and the only way to tell them apart is to keep track of the 2583 scope. For example, consider the test case: 2584 2585 static int i; 2586 main () { int j; } 2587 2588 for which the relevant DWARF segment has the structure: 2589 2590 0x51: 2591 0x23 global subrtn sibling 0x9b 2592 name main 2593 fund_type FT_integer 2594 low_pc 0x800004cc 2595 high_pc 0x800004d4 2596 2597 0x74: 2598 0x23 local var sibling 0x97 2599 name j 2600 fund_type FT_integer 2601 location OP_BASEREG 0xe 2602 OP_CONST 0xfffffffc 2603 OP_ADD 2604 0x97: 2605 0x4 2606 2607 0x9b: 2608 0x1d local var sibling 0xb8 2609 name i 2610 fund_type FT_integer 2611 location OP_ADDR 0x800025dc 2612 2613 0xb8: 2614 0x4 2615 2616 We want to include the symbol 'i' in the partial symbol table, but 2617 not the symbol 'j'. In essence, we want to skip all the dies within 2618 the scope of a TAG_global_subroutine DIE. 2619 2620 Don't attempt to add anonymous structures or unions since they have 2621 no name. Anonymous enumerations however are processed, because we 2622 want to extract their member names (the check for a tag name is 2623 done later). 2624 2625 Also, for variables and subroutines, check that this is the place 2626 where the actual definition occurs, rather than just a reference 2627 to an external. 2628 */ 2629 /* *INDENT-ON* */ 2630 2631 2632 2633 static void 2634 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile) 2635 { 2636 char *nextdie; 2637 char *temp; 2638 struct dieinfo di; 2639 2640 while (thisdie < enddie) 2641 { 2642 basicdieinfo (&di, thisdie, objfile); 2643 if (di.die_length < SIZEOF_DIE_LENGTH) 2644 { 2645 break; 2646 } 2647 else 2648 { 2649 nextdie = thisdie + di.die_length; 2650 /* To avoid getting complete die information for every die, we 2651 only do it (below) for the cases we are interested in. */ 2652 switch (di.die_tag) 2653 { 2654 case TAG_global_subroutine: 2655 case TAG_subroutine: 2656 completedieinfo (&di, objfile); 2657 if (di.at_name && (di.has_at_low_pc || di.at_location)) 2658 { 2659 add_partial_symbol (&di, objfile); 2660 /* If there is a sibling attribute, adjust the nextdie 2661 pointer to skip the entire scope of the subroutine. 2662 Apply some sanity checking to make sure we don't 2663 overrun or underrun the range of remaining DIE's */ 2664 if (di.at_sibling != 0) 2665 { 2666 temp = dbbase + di.at_sibling - dbroff; 2667 if ((temp < thisdie) || (temp >= enddie)) 2668 { 2669 bad_die_ref_complaint (DIE_ID, DIE_NAME, 2670 di.at_sibling); 2671 } 2672 else 2673 { 2674 nextdie = temp; 2675 } 2676 } 2677 } 2678 break; 2679 case TAG_global_variable: 2680 case TAG_local_variable: 2681 completedieinfo (&di, objfile); 2682 if (di.at_name && (di.has_at_low_pc || di.at_location)) 2683 { 2684 add_partial_symbol (&di, objfile); 2685 } 2686 break; 2687 case TAG_typedef: 2688 case TAG_class_type: 2689 case TAG_structure_type: 2690 case TAG_union_type: 2691 completedieinfo (&di, objfile); 2692 if (di.at_name) 2693 { 2694 add_partial_symbol (&di, objfile); 2695 } 2696 break; 2697 case TAG_enumeration_type: 2698 completedieinfo (&di, objfile); 2699 if (di.at_name) 2700 { 2701 add_partial_symbol (&di, objfile); 2702 } 2703 add_enum_psymbol (&di, objfile); 2704 break; 2705 } 2706 } 2707 thisdie = nextdie; 2708 } 2709 } 2710 2711 /* 2712 2713 LOCAL FUNCTION 2714 2715 scan_compilation_units -- build a psymtab entry for each compilation 2716 2717 DESCRIPTION 2718 2719 This is the top level dwarf parsing routine for building partial 2720 symbol tables. 2721 2722 It scans from the beginning of the DWARF table looking for the first 2723 TAG_compile_unit DIE, and then follows the sibling chain to locate 2724 each additional TAG_compile_unit DIE. 2725 2726 For each TAG_compile_unit DIE it creates a partial symtab structure, 2727 calls a subordinate routine to collect all the compilation unit's 2728 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the 2729 new partial symtab structure into the partial symbol table. It also 2730 records the appropriate information in the partial symbol table entry 2731 to allow the chunk of DIE's and line number table for this compilation 2732 unit to be located and re-read later, to generate a complete symbol 2733 table entry for the compilation unit. 2734 2735 Thus it effectively partitions up a chunk of DIE's for multiple 2736 compilation units into smaller DIE chunks and line number tables, 2737 and associates them with a partial symbol table entry. 2738 2739 NOTES 2740 2741 If any compilation unit has no line number table associated with 2742 it for some reason (a missing at_stmt_list attribute, rather than 2743 just one with a value of zero, which is valid) then we ensure that 2744 the recorded file offset is zero so that the routine which later 2745 reads line number table fragments knows that there is no fragment 2746 to read. 2747 2748 RETURNS 2749 2750 Returns no value. 2751 2752 */ 2753 2754 static void 2755 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff, 2756 file_ptr lnoffset, struct objfile *objfile) 2757 { 2758 char *nextdie; 2759 struct dieinfo di; 2760 struct partial_symtab *pst; 2761 int culength; 2762 int curoff; 2763 file_ptr curlnoffset; 2764 2765 while (thisdie < enddie) 2766 { 2767 basicdieinfo (&di, thisdie, objfile); 2768 if (di.die_length < SIZEOF_DIE_LENGTH) 2769 { 2770 break; 2771 } 2772 else if (di.die_tag != TAG_compile_unit) 2773 { 2774 nextdie = thisdie + di.die_length; 2775 } 2776 else 2777 { 2778 completedieinfo (&di, objfile); 2779 set_cu_language (&di); 2780 if (di.at_sibling != 0) 2781 { 2782 nextdie = dbbase + di.at_sibling - dbroff; 2783 } 2784 else 2785 { 2786 nextdie = thisdie + di.die_length; 2787 } 2788 curoff = thisdie - dbbase; 2789 culength = nextdie - thisdie; 2790 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; 2791 2792 /* First allocate a new partial symbol table structure */ 2793 2794 pst = start_psymtab_common (objfile, base_section_offsets, 2795 di.at_name, di.at_low_pc, 2796 objfile->global_psymbols.next, 2797 objfile->static_psymbols.next); 2798 2799 pst->texthigh = di.at_high_pc; 2800 pst->read_symtab_private = (char *) 2801 obstack_alloc (&objfile->objfile_obstack, 2802 sizeof (struct dwfinfo)); 2803 DBFOFF (pst) = dbfoff; 2804 DBROFF (pst) = curoff; 2805 DBLENGTH (pst) = culength; 2806 LNFOFF (pst) = curlnoffset; 2807 pst->read_symtab = dwarf_psymtab_to_symtab; 2808 2809 /* Now look for partial symbols */ 2810 2811 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); 2812 2813 pst->n_global_syms = objfile->global_psymbols.next - 2814 (objfile->global_psymbols.list + pst->globals_offset); 2815 pst->n_static_syms = objfile->static_psymbols.next - 2816 (objfile->static_psymbols.list + pst->statics_offset); 2817 sort_pst_symbols (pst); 2818 /* If there is already a psymtab or symtab for a file of this name, 2819 remove it. (If there is a symtab, more drastic things also 2820 happen.) This happens in VxWorks. */ 2821 free_named_symtabs (pst->filename); 2822 } 2823 thisdie = nextdie; 2824 } 2825 } 2826 2827 /* 2828 2829 LOCAL FUNCTION 2830 2831 new_symbol -- make a symbol table entry for a new symbol 2832 2833 SYNOPSIS 2834 2835 static struct symbol *new_symbol (struct dieinfo *dip, 2836 struct objfile *objfile) 2837 2838 DESCRIPTION 2839 2840 Given a pointer to a DWARF information entry, figure out if we need 2841 to make a symbol table entry for it, and if so, create a new entry 2842 and return a pointer to it. 2843 */ 2844 2845 static struct symbol * 2846 new_symbol (struct dieinfo *dip, struct objfile *objfile) 2847 { 2848 struct symbol *sym = NULL; 2849 2850 if (dip->at_name != NULL) 2851 { 2852 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, 2853 sizeof (struct symbol)); 2854 OBJSTAT (objfile, n_syms++); 2855 memset (sym, 0, sizeof (struct symbol)); 2856 /* default assumptions */ 2857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN; 2858 SYMBOL_CLASS (sym) = LOC_STATIC; 2859 SYMBOL_TYPE (sym) = decode_die_type (dip); 2860 2861 /* If this symbol is from a C++ compilation, then attempt to cache the 2862 demangled form for future reference. This is a typical time versus 2863 space tradeoff, that was decided in favor of time because it sped up 2864 C++ symbol lookups by a factor of about 20. */ 2865 2866 SYMBOL_LANGUAGE (sym) = cu_language; 2867 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile); 2868 switch (dip->die_tag) 2869 { 2870 case TAG_label: 2871 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; 2872 SYMBOL_CLASS (sym) = LOC_LABEL; 2873 break; 2874 case TAG_global_subroutine: 2875 case TAG_subroutine: 2876 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc; 2877 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); 2878 if (dip->at_prototyped) 2879 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; 2880 SYMBOL_CLASS (sym) = LOC_BLOCK; 2881 if (dip->die_tag == TAG_global_subroutine) 2882 { 2883 add_symbol_to_list (sym, &global_symbols); 2884 } 2885 else 2886 { 2887 add_symbol_to_list (sym, list_in_scope); 2888 } 2889 break; 2890 case TAG_global_variable: 2891 if (dip->at_location != NULL) 2892 { 2893 SYMBOL_VALUE_ADDRESS (sym) = locval (dip); 2894 add_symbol_to_list (sym, &global_symbols); 2895 SYMBOL_CLASS (sym) = LOC_STATIC; 2896 SYMBOL_VALUE (sym) += baseaddr; 2897 } 2898 break; 2899 case TAG_local_variable: 2900 if (dip->at_location != NULL) 2901 { 2902 int loc = locval (dip); 2903 if (dip->optimized_out) 2904 { 2905 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; 2906 } 2907 else if (dip->isreg) 2908 { 2909 SYMBOL_CLASS (sym) = LOC_REGISTER; 2910 } 2911 else if (dip->offreg) 2912 { 2913 SYMBOL_CLASS (sym) = LOC_BASEREG; 2914 SYMBOL_BASEREG (sym) = dip->basereg; 2915 } 2916 else 2917 { 2918 SYMBOL_CLASS (sym) = LOC_STATIC; 2919 SYMBOL_VALUE (sym) += baseaddr; 2920 } 2921 if (SYMBOL_CLASS (sym) == LOC_STATIC) 2922 { 2923 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, 2924 which may store to a bigger location than SYMBOL_VALUE. */ 2925 SYMBOL_VALUE_ADDRESS (sym) = loc; 2926 } 2927 else 2928 { 2929 SYMBOL_VALUE (sym) = loc; 2930 } 2931 add_symbol_to_list (sym, list_in_scope); 2932 } 2933 break; 2934 case TAG_formal_parameter: 2935 if (dip->at_location != NULL) 2936 { 2937 SYMBOL_VALUE (sym) = locval (dip); 2938 } 2939 add_symbol_to_list (sym, list_in_scope); 2940 if (dip->isreg) 2941 { 2942 SYMBOL_CLASS (sym) = LOC_REGPARM; 2943 } 2944 else if (dip->offreg) 2945 { 2946 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; 2947 SYMBOL_BASEREG (sym) = dip->basereg; 2948 } 2949 else 2950 { 2951 SYMBOL_CLASS (sym) = LOC_ARG; 2952 } 2953 break; 2954 case TAG_unspecified_parameters: 2955 /* From varargs functions; gdb doesn't seem to have any interest in 2956 this information, so just ignore it for now. (FIXME?) */ 2957 break; 2958 case TAG_class_type: 2959 case TAG_structure_type: 2960 case TAG_union_type: 2961 case TAG_enumeration_type: 2962 SYMBOL_CLASS (sym) = LOC_TYPEDEF; 2963 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; 2964 add_symbol_to_list (sym, list_in_scope); 2965 break; 2966 case TAG_typedef: 2967 SYMBOL_CLASS (sym) = LOC_TYPEDEF; 2968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN; 2969 add_symbol_to_list (sym, list_in_scope); 2970 break; 2971 default: 2972 /* Not a tag we recognize. Hopefully we aren't processing trash 2973 data, but since we must specifically ignore things we don't 2974 recognize, there is nothing else we should do at this point. */ 2975 break; 2976 } 2977 } 2978 return (sym); 2979 } 2980 2981 /* 2982 2983 LOCAL FUNCTION 2984 2985 synthesize_typedef -- make a symbol table entry for a "fake" typedef 2986 2987 SYNOPSIS 2988 2989 static void synthesize_typedef (struct dieinfo *dip, 2990 struct objfile *objfile, 2991 struct type *type); 2992 2993 DESCRIPTION 2994 2995 Given a pointer to a DWARF information entry, synthesize a typedef 2996 for the name in the DIE, using the specified type. 2997 2998 This is used for C++ class, structs, unions, and enumerations to 2999 set up the tag name as a type. 3000 3001 */ 3002 3003 static void 3004 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile, 3005 struct type *type) 3006 { 3007 struct symbol *sym = NULL; 3008 3009 if (dip->at_name != NULL) 3010 { 3011 sym = (struct symbol *) 3012 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol)); 3013 OBJSTAT (objfile, n_syms++); 3014 memset (sym, 0, sizeof (struct symbol)); 3015 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name, 3016 &objfile->objfile_obstack); 3017 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); 3018 SYMBOL_TYPE (sym) = type; 3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF; 3020 SYMBOL_DOMAIN (sym) = VAR_DOMAIN; 3021 add_symbol_to_list (sym, list_in_scope); 3022 } 3023 } 3024 3025 /* 3026 3027 LOCAL FUNCTION 3028 3029 decode_mod_fund_type -- decode a modified fundamental type 3030 3031 SYNOPSIS 3032 3033 static struct type *decode_mod_fund_type (char *typedata) 3034 3035 DESCRIPTION 3036 3037 Decode a block of data containing a modified fundamental 3038 type specification. TYPEDATA is a pointer to the block, 3039 which starts with a length containing the size of the rest 3040 of the block. At the end of the block is a fundmental type 3041 code value that gives the fundamental type. Everything 3042 in between are type modifiers. 3043 3044 We simply compute the number of modifiers and call the general 3045 function decode_modified_type to do the actual work. 3046 */ 3047 3048 static struct type * 3049 decode_mod_fund_type (char *typedata) 3050 { 3051 struct type *typep = NULL; 3052 unsigned short modcount; 3053 int nbytes; 3054 3055 /* Get the total size of the block, exclusive of the size itself */ 3056 3057 nbytes = attribute_size (AT_mod_fund_type); 3058 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); 3059 typedata += nbytes; 3060 3061 /* Deduct the size of the fundamental type bytes at the end of the block. */ 3062 3063 modcount -= attribute_size (AT_fund_type); 3064 3065 /* Now do the actual decoding */ 3066 3067 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); 3068 return (typep); 3069 } 3070 3071 /* 3072 3073 LOCAL FUNCTION 3074 3075 decode_mod_u_d_type -- decode a modified user defined type 3076 3077 SYNOPSIS 3078 3079 static struct type *decode_mod_u_d_type (char *typedata) 3080 3081 DESCRIPTION 3082 3083 Decode a block of data containing a modified user defined 3084 type specification. TYPEDATA is a pointer to the block, 3085 which consists of a two byte length, containing the size 3086 of the rest of the block. At the end of the block is a 3087 four byte value that gives a reference to a user defined type. 3088 Everything in between are type modifiers. 3089 3090 We simply compute the number of modifiers and call the general 3091 function decode_modified_type to do the actual work. 3092 */ 3093 3094 static struct type * 3095 decode_mod_u_d_type (char *typedata) 3096 { 3097 struct type *typep = NULL; 3098 unsigned short modcount; 3099 int nbytes; 3100 3101 /* Get the total size of the block, exclusive of the size itself */ 3102 3103 nbytes = attribute_size (AT_mod_u_d_type); 3104 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); 3105 typedata += nbytes; 3106 3107 /* Deduct the size of the reference type bytes at the end of the block. */ 3108 3109 modcount -= attribute_size (AT_user_def_type); 3110 3111 /* Now do the actual decoding */ 3112 3113 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); 3114 return (typep); 3115 } 3116 3117 /* 3118 3119 LOCAL FUNCTION 3120 3121 decode_modified_type -- decode modified user or fundamental type 3122 3123 SYNOPSIS 3124 3125 static struct type *decode_modified_type (char *modifiers, 3126 unsigned short modcount, int mtype) 3127 3128 DESCRIPTION 3129 3130 Decode a modified type, either a modified fundamental type or 3131 a modified user defined type. MODIFIERS is a pointer to the 3132 block of bytes that define MODCOUNT modifiers. Immediately 3133 following the last modifier is a short containing the fundamental 3134 type or a long containing the reference to the user defined 3135 type. Which one is determined by MTYPE, which is either 3136 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified 3137 type we are generating. 3138 3139 We call ourself recursively to generate each modified type,` 3140 until MODCOUNT reaches zero, at which point we have consumed 3141 all the modifiers and generate either the fundamental type or 3142 user defined type. When the recursion unwinds, each modifier 3143 is applied in turn to generate the full modified type. 3144 3145 NOTES 3146 3147 If we find a modifier that we don't recognize, and it is not one 3148 of those reserved for application specific use, then we issue a 3149 warning and simply ignore the modifier. 3150 3151 BUGS 3152 3153 We currently ignore MOD_const and MOD_volatile. (FIXME) 3154 3155 */ 3156 3157 static struct type * 3158 decode_modified_type (char *modifiers, unsigned int modcount, int mtype) 3159 { 3160 struct type *typep = NULL; 3161 unsigned short fundtype; 3162 DIE_REF die_ref; 3163 char modifier; 3164 int nbytes; 3165 3166 if (modcount == 0) 3167 { 3168 switch (mtype) 3169 { 3170 case AT_mod_fund_type: 3171 nbytes = attribute_size (AT_fund_type); 3172 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, 3173 current_objfile); 3174 typep = decode_fund_type (fundtype); 3175 break; 3176 case AT_mod_u_d_type: 3177 nbytes = attribute_size (AT_user_def_type); 3178 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, 3179 current_objfile); 3180 typep = lookup_utype (die_ref); 3181 if (typep == NULL) 3182 { 3183 typep = alloc_utype (die_ref, NULL); 3184 } 3185 break; 3186 default: 3187 complaint (&symfile_complaints, 3188 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 3189 DIE_ID, DIE_NAME, mtype); 3190 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 3191 break; 3192 } 3193 } 3194 else 3195 { 3196 modifier = *modifiers++; 3197 typep = decode_modified_type (modifiers, --modcount, mtype); 3198 switch (modifier) 3199 { 3200 case MOD_pointer_to: 3201 typep = lookup_pointer_type (typep); 3202 break; 3203 case MOD_reference_to: 3204 typep = lookup_reference_type (typep); 3205 break; 3206 case MOD_const: 3207 complaint (&symfile_complaints, 3208 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID, 3209 DIE_NAME); /* FIXME */ 3210 break; 3211 case MOD_volatile: 3212 complaint (&symfile_complaints, 3213 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 3214 DIE_ID, DIE_NAME); /* FIXME */ 3215 break; 3216 default: 3217 if (!(MOD_lo_user <= (unsigned char) modifier)) 3218 #if 0 3219 /* This part of the test would always be true, and it triggers a compiler 3220 warning. */ 3221 && (unsigned char) modifier <= MOD_hi_user)) 3222 #endif 3223 { 3224 complaint (&symfile_complaints, 3225 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID, 3226 DIE_NAME, modifier); 3227 } 3228 break; 3229 } 3230 } 3231 return (typep); 3232 } 3233 3234 /* 3235 3236 LOCAL FUNCTION 3237 3238 decode_fund_type -- translate basic DWARF type to gdb base type 3239 3240 DESCRIPTION 3241 3242 Given an integer that is one of the fundamental DWARF types, 3243 translate it to one of the basic internal gdb types and return 3244 a pointer to the appropriate gdb type (a "struct type *"). 3245 3246 NOTES 3247 3248 For robustness, if we are asked to translate a fundamental 3249 type that we are unprepared to deal with, we return int so 3250 callers can always depend upon a valid type being returned, 3251 and so gdb may at least do something reasonable by default. 3252 If the type is not in the range of those types defined as 3253 application specific types, we also issue a warning. 3254 */ 3255 3256 static struct type * 3257 decode_fund_type (unsigned int fundtype) 3258 { 3259 struct type *typep = NULL; 3260 3261 switch (fundtype) 3262 { 3263 3264 case FT_void: 3265 typep = dwarf_fundamental_type (current_objfile, FT_VOID); 3266 break; 3267 3268 case FT_boolean: /* Was FT_set in AT&T version */ 3269 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); 3270 break; 3271 3272 case FT_pointer: /* (void *) */ 3273 typep = dwarf_fundamental_type (current_objfile, FT_VOID); 3274 typep = lookup_pointer_type (typep); 3275 break; 3276 3277 case FT_char: 3278 typep = dwarf_fundamental_type (current_objfile, FT_CHAR); 3279 break; 3280 3281 case FT_signed_char: 3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); 3283 break; 3284 3285 case FT_unsigned_char: 3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); 3287 break; 3288 3289 case FT_short: 3290 typep = dwarf_fundamental_type (current_objfile, FT_SHORT); 3291 break; 3292 3293 case FT_signed_short: 3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); 3295 break; 3296 3297 case FT_unsigned_short: 3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); 3299 break; 3300 3301 case FT_integer: 3302 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 3303 break; 3304 3305 case FT_signed_integer: 3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); 3307 break; 3308 3309 case FT_unsigned_integer: 3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); 3311 break; 3312 3313 case FT_long: 3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG); 3315 break; 3316 3317 case FT_signed_long: 3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); 3319 break; 3320 3321 case FT_unsigned_long: 3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); 3323 break; 3324 3325 case FT_long_long: 3326 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); 3327 break; 3328 3329 case FT_signed_long_long: 3330 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); 3331 break; 3332 3333 case FT_unsigned_long_long: 3334 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); 3335 break; 3336 3337 case FT_float: 3338 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); 3339 break; 3340 3341 case FT_dbl_prec_float: 3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); 3343 break; 3344 3345 case FT_ext_prec_float: 3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); 3347 break; 3348 3349 case FT_complex: 3350 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); 3351 break; 3352 3353 case FT_dbl_prec_complex: 3354 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); 3355 break; 3356 3357 case FT_ext_prec_complex: 3358 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); 3359 break; 3360 3361 } 3362 3363 if (typep == NULL) 3364 { 3365 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); 3366 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) 3367 { 3368 complaint (&symfile_complaints, 3369 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 3370 DIE_ID, DIE_NAME, fundtype); 3371 } 3372 } 3373 3374 return (typep); 3375 } 3376 3377 /* 3378 3379 LOCAL FUNCTION 3380 3381 create_name -- allocate a fresh copy of a string on an obstack 3382 3383 DESCRIPTION 3384 3385 Given a pointer to a string and a pointer to an obstack, allocates 3386 a fresh copy of the string on the specified obstack. 3387 3388 */ 3389 3390 static char * 3391 create_name (char *name, struct obstack *obstackp) 3392 { 3393 int length; 3394 char *newname; 3395 3396 length = strlen (name) + 1; 3397 newname = (char *) obstack_alloc (obstackp, length); 3398 strcpy (newname, name); 3399 return (newname); 3400 } 3401 3402 /* 3403 3404 LOCAL FUNCTION 3405 3406 basicdieinfo -- extract the minimal die info from raw die data 3407 3408 SYNOPSIS 3409 3410 void basicdieinfo (char *diep, struct dieinfo *dip, 3411 struct objfile *objfile) 3412 3413 DESCRIPTION 3414 3415 Given a pointer to raw DIE data, and a pointer to an instance of a 3416 die info structure, this function extracts the basic information 3417 from the DIE data required to continue processing this DIE, along 3418 with some bookkeeping information about the DIE. 3419 3420 The information we absolutely must have includes the DIE tag, 3421 and the DIE length. If we need the sibling reference, then we 3422 will have to call completedieinfo() to process all the remaining 3423 DIE information. 3424 3425 Note that since there is no guarantee that the data is properly 3426 aligned in memory for the type of access required (indirection 3427 through anything other than a char pointer), and there is no 3428 guarantee that it is in the same byte order as the gdb host, 3429 we call a function which deals with both alignment and byte 3430 swapping issues. Possibly inefficient, but quite portable. 3431 3432 We also take care of some other basic things at this point, such 3433 as ensuring that the instance of the die info structure starts 3434 out completely zero'd and that curdie is initialized for use 3435 in error reporting if we have a problem with the current die. 3436 3437 NOTES 3438 3439 All DIE's must have at least a valid length, thus the minimum 3440 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the 3441 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they 3442 are forced to be TAG_padding DIES. 3443 3444 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying 3445 that if a padding DIE is used for alignment and the amount needed is 3446 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big 3447 enough to align to the next alignment boundry. 3448 3449 We do some basic sanity checking here, such as verifying that the 3450 length of the die would not cause it to overrun the recorded end of 3451 the buffer holding the DIE info. If we find a DIE that is either 3452 too small or too large, we force it's length to zero which should 3453 cause the caller to take appropriate action. 3454 */ 3455 3456 static void 3457 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile) 3458 { 3459 curdie = dip; 3460 memset (dip, 0, sizeof (struct dieinfo)); 3461 dip->die = diep; 3462 dip->die_ref = dbroff + (diep - dbbase); 3463 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, 3464 objfile); 3465 if ((dip->die_length < SIZEOF_DIE_LENGTH) || 3466 ((diep + dip->die_length) > (dbbase + dbsize))) 3467 { 3468 complaint (&symfile_complaints, 3469 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)", 3470 DIE_ID, DIE_NAME, dip->die_length); 3471 dip->die_length = 0; 3472 } 3473 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) 3474 { 3475 dip->die_tag = TAG_padding; 3476 } 3477 else 3478 { 3479 diep += SIZEOF_DIE_LENGTH; 3480 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, 3481 objfile); 3482 } 3483 } 3484 3485 /* 3486 3487 LOCAL FUNCTION 3488 3489 completedieinfo -- finish reading the information for a given DIE 3490 3491 SYNOPSIS 3492 3493 void completedieinfo (struct dieinfo *dip, struct objfile *objfile) 3494 3495 DESCRIPTION 3496 3497 Given a pointer to an already partially initialized die info structure, 3498 scan the raw DIE data and finish filling in the die info structure 3499 from the various attributes found. 3500 3501 Note that since there is no guarantee that the data is properly 3502 aligned in memory for the type of access required (indirection 3503 through anything other than a char pointer), and there is no 3504 guarantee that it is in the same byte order as the gdb host, 3505 we call a function which deals with both alignment and byte 3506 swapping issues. Possibly inefficient, but quite portable. 3507 3508 NOTES 3509 3510 Each time we are called, we increment the diecount variable, which 3511 keeps an approximate count of the number of dies processed for 3512 each compilation unit. This information is presented to the user 3513 if the info_verbose flag is set. 3514 3515 */ 3516 3517 static void 3518 completedieinfo (struct dieinfo *dip, struct objfile *objfile) 3519 { 3520 char *diep; /* Current pointer into raw DIE data */ 3521 char *end; /* Terminate DIE scan here */ 3522 unsigned short attr; /* Current attribute being scanned */ 3523 unsigned short form; /* Form of the attribute */ 3524 int nbytes; /* Size of next field to read */ 3525 3526 diecount++; 3527 diep = dip->die; 3528 end = diep + dip->die_length; 3529 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; 3530 while (diep < end) 3531 { 3532 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); 3533 diep += SIZEOF_ATTRIBUTE; 3534 nbytes = attribute_size (attr); 3535 if (nbytes == -1) 3536 { 3537 complaint (&symfile_complaints, 3538 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 3539 DIE_ID, DIE_NAME); 3540 diep = end; 3541 continue; 3542 } 3543 switch (attr) 3544 { 3545 case AT_fund_type: 3546 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, 3547 objfile); 3548 break; 3549 case AT_ordering: 3550 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, 3551 objfile); 3552 break; 3553 case AT_bit_offset: 3554 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, 3555 objfile); 3556 break; 3557 case AT_sibling: 3558 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, 3559 objfile); 3560 break; 3561 case AT_stmt_list: 3562 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, 3563 objfile); 3564 dip->has_at_stmt_list = 1; 3565 break; 3566 case AT_low_pc: 3567 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, 3568 objfile); 3569 dip->at_low_pc += baseaddr; 3570 dip->has_at_low_pc = 1; 3571 break; 3572 case AT_high_pc: 3573 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, 3574 objfile); 3575 dip->at_high_pc += baseaddr; 3576 break; 3577 case AT_language: 3578 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED, 3579 objfile); 3580 break; 3581 case AT_user_def_type: 3582 dip->at_user_def_type = target_to_host (diep, nbytes, 3583 GET_UNSIGNED, objfile); 3584 break; 3585 case AT_byte_size: 3586 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, 3587 objfile); 3588 dip->has_at_byte_size = 1; 3589 break; 3590 case AT_bit_size: 3591 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, 3592 objfile); 3593 break; 3594 case AT_member: 3595 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED, 3596 objfile); 3597 break; 3598 case AT_discr: 3599 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, 3600 objfile); 3601 break; 3602 case AT_location: 3603 dip->at_location = diep; 3604 break; 3605 case AT_mod_fund_type: 3606 dip->at_mod_fund_type = diep; 3607 break; 3608 case AT_subscr_data: 3609 dip->at_subscr_data = diep; 3610 break; 3611 case AT_mod_u_d_type: 3612 dip->at_mod_u_d_type = diep; 3613 break; 3614 case AT_element_list: 3615 dip->at_element_list = diep; 3616 dip->short_element_list = 0; 3617 break; 3618 case AT_short_element_list: 3619 dip->at_element_list = diep; 3620 dip->short_element_list = 1; 3621 break; 3622 case AT_discr_value: 3623 dip->at_discr_value = diep; 3624 break; 3625 case AT_string_length: 3626 dip->at_string_length = diep; 3627 break; 3628 case AT_name: 3629 dip->at_name = diep; 3630 break; 3631 case AT_comp_dir: 3632 /* For now, ignore any "hostname:" portion, since gdb doesn't 3633 know how to deal with it. (FIXME). */ 3634 dip->at_comp_dir = strrchr (diep, ':'); 3635 if (dip->at_comp_dir != NULL) 3636 { 3637 dip->at_comp_dir++; 3638 } 3639 else 3640 { 3641 dip->at_comp_dir = diep; 3642 } 3643 break; 3644 case AT_producer: 3645 dip->at_producer = diep; 3646 break; 3647 case AT_start_scope: 3648 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, 3649 objfile); 3650 break; 3651 case AT_stride_size: 3652 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, 3653 objfile); 3654 break; 3655 case AT_src_info: 3656 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, 3657 objfile); 3658 break; 3659 case AT_prototyped: 3660 dip->at_prototyped = diep; 3661 break; 3662 default: 3663 /* Found an attribute that we are unprepared to handle. However 3664 it is specifically one of the design goals of DWARF that 3665 consumers should ignore unknown attributes. As long as the 3666 form is one that we recognize (so we know how to skip it), 3667 we can just ignore the unknown attribute. */ 3668 break; 3669 } 3670 form = FORM_FROM_ATTR (attr); 3671 switch (form) 3672 { 3673 case FORM_DATA2: 3674 diep += 2; 3675 break; 3676 case FORM_DATA4: 3677 case FORM_REF: 3678 diep += 4; 3679 break; 3680 case FORM_DATA8: 3681 diep += 8; 3682 break; 3683 case FORM_ADDR: 3684 diep += TARGET_FT_POINTER_SIZE (objfile); 3685 break; 3686 case FORM_BLOCK2: 3687 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); 3688 break; 3689 case FORM_BLOCK4: 3690 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); 3691 break; 3692 case FORM_STRING: 3693 diep += strlen (diep) + 1; 3694 break; 3695 default: 3696 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); 3697 diep = end; 3698 break; 3699 } 3700 } 3701 } 3702 3703 /* 3704 3705 LOCAL FUNCTION 3706 3707 target_to_host -- swap in target data to host 3708 3709 SYNOPSIS 3710 3711 target_to_host (char *from, int nbytes, int signextend, 3712 struct objfile *objfile) 3713 3714 DESCRIPTION 3715 3716 Given pointer to data in target format in FROM, a byte count for 3717 the size of the data in NBYTES, a flag indicating whether or not 3718 the data is signed in SIGNEXTEND, and a pointer to the current 3719 objfile in OBJFILE, convert the data to host format and return 3720 the converted value. 3721 3722 NOTES 3723 3724 FIXME: If we read data that is known to be signed, and expect to 3725 use it as signed data, then we need to explicitly sign extend the 3726 result until the bfd library is able to do this for us. 3727 3728 FIXME: Would a 32 bit target ever need an 8 byte result? 3729 3730 */ 3731 3732 static CORE_ADDR 3733 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */ 3734 struct objfile *objfile) 3735 { 3736 CORE_ADDR rtnval; 3737 3738 switch (nbytes) 3739 { 3740 case 8: 3741 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from); 3742 break; 3743 case 4: 3744 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from); 3745 break; 3746 case 2: 3747 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from); 3748 break; 3749 case 1: 3750 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from); 3751 break; 3752 default: 3753 complaint (&symfile_complaints, 3754 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 3755 DIE_ID, DIE_NAME, nbytes); 3756 rtnval = 0; 3757 break; 3758 } 3759 return (rtnval); 3760 } 3761 3762 /* 3763 3764 LOCAL FUNCTION 3765 3766 attribute_size -- compute size of data for a DWARF attribute 3767 3768 SYNOPSIS 3769 3770 static int attribute_size (unsigned int attr) 3771 3772 DESCRIPTION 3773 3774 Given a DWARF attribute in ATTR, compute the size of the first 3775 piece of data associated with this attribute and return that 3776 size. 3777 3778 Returns -1 for unrecognized attributes. 3779 3780 */ 3781 3782 static int 3783 attribute_size (unsigned int attr) 3784 { 3785 int nbytes; /* Size of next data for this attribute */ 3786 unsigned short form; /* Form of the attribute */ 3787 3788 form = FORM_FROM_ATTR (attr); 3789 switch (form) 3790 { 3791 case FORM_STRING: /* A variable length field is next */ 3792 nbytes = 0; 3793 break; 3794 case FORM_DATA2: /* Next 2 byte field is the data itself */ 3795 case FORM_BLOCK2: /* Next 2 byte field is a block length */ 3796 nbytes = 2; 3797 break; 3798 case FORM_DATA4: /* Next 4 byte field is the data itself */ 3799 case FORM_BLOCK4: /* Next 4 byte field is a block length */ 3800 case FORM_REF: /* Next 4 byte field is a DIE offset */ 3801 nbytes = 4; 3802 break; 3803 case FORM_DATA8: /* Next 8 byte field is the data itself */ 3804 nbytes = 8; 3805 break; 3806 case FORM_ADDR: /* Next field size is target sizeof(void *) */ 3807 nbytes = TARGET_FT_POINTER_SIZE (objfile); 3808 break; 3809 default: 3810 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form); 3811 nbytes = -1; 3812 break; 3813 } 3814 return (nbytes); 3815 } 3816