1 /* Support for printing Fortran values for GDB, the GNU debugger. 2 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003 3 Free Software Foundation, Inc. 4 Contributed by Motorola. Adapted from the C definitions by Farooq Butt 5 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "gdb_string.h" 26 #include "symtab.h" 27 #include "gdbtypes.h" 28 #include "expression.h" 29 #include "value.h" 30 #include "valprint.h" 31 #include "language.h" 32 #include "f-lang.h" 33 #include "frame.h" 34 #include "gdbcore.h" 35 #include "command.h" 36 #include "block.h" 37 38 #if 0 39 static int there_is_a_visible_common_named (char *); 40 #endif 41 42 extern void _initialize_f_valprint (void); 43 static void info_common_command (char *, int); 44 static void list_all_visible_commons (char *); 45 static void f77_print_array (struct type *, char *, CORE_ADDR, 46 struct ui_file *, int, int, int, 47 enum val_prettyprint); 48 static void f77_print_array_1 (int, int, struct type *, char *, 49 CORE_ADDR, struct ui_file *, int, int, int, 50 enum val_prettyprint, 51 int *elts); 52 static void f77_create_arrayprint_offset_tbl (struct type *, 53 struct ui_file *); 54 static void f77_get_dynamic_length_of_aggregate (struct type *); 55 56 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2]; 57 58 /* Array which holds offsets to be applied to get a row's elements 59 for a given array. Array also holds the size of each subarray. */ 60 61 /* The following macro gives us the size of the nth dimension, Where 62 n is 1 based. */ 63 64 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1]) 65 66 /* The following gives us the offset for row n where n is 1-based. */ 67 68 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0]) 69 70 int 71 f77_get_dynamic_lowerbound (struct type *type, int *lower_bound) 72 { 73 CORE_ADDR current_frame_addr; 74 CORE_ADDR ptr_to_lower_bound; 75 76 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type)) 77 { 78 case BOUND_BY_VALUE_ON_STACK: 79 current_frame_addr = get_frame_base (deprecated_selected_frame); 80 if (current_frame_addr > 0) 81 { 82 *lower_bound = 83 read_memory_integer (current_frame_addr + 84 TYPE_ARRAY_LOWER_BOUND_VALUE (type), 85 4); 86 } 87 else 88 { 89 *lower_bound = DEFAULT_LOWER_BOUND; 90 return BOUND_FETCH_ERROR; 91 } 92 break; 93 94 case BOUND_SIMPLE: 95 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type); 96 break; 97 98 case BOUND_CANNOT_BE_DETERMINED: 99 error ("Lower bound may not be '*' in F77"); 100 break; 101 102 case BOUND_BY_REF_ON_STACK: 103 current_frame_addr = get_frame_base (deprecated_selected_frame); 104 if (current_frame_addr > 0) 105 { 106 ptr_to_lower_bound = 107 read_memory_typed_address (current_frame_addr + 108 TYPE_ARRAY_LOWER_BOUND_VALUE (type), 109 builtin_type_void_data_ptr); 110 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4); 111 } 112 else 113 { 114 *lower_bound = DEFAULT_LOWER_BOUND; 115 return BOUND_FETCH_ERROR; 116 } 117 break; 118 119 case BOUND_BY_REF_IN_REG: 120 case BOUND_BY_VALUE_IN_REG: 121 default: 122 error ("??? unhandled dynamic array bound type ???"); 123 break; 124 } 125 return BOUND_FETCH_OK; 126 } 127 128 int 129 f77_get_dynamic_upperbound (struct type *type, int *upper_bound) 130 { 131 CORE_ADDR current_frame_addr = 0; 132 CORE_ADDR ptr_to_upper_bound; 133 134 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type)) 135 { 136 case BOUND_BY_VALUE_ON_STACK: 137 current_frame_addr = get_frame_base (deprecated_selected_frame); 138 if (current_frame_addr > 0) 139 { 140 *upper_bound = 141 read_memory_integer (current_frame_addr + 142 TYPE_ARRAY_UPPER_BOUND_VALUE (type), 143 4); 144 } 145 else 146 { 147 *upper_bound = DEFAULT_UPPER_BOUND; 148 return BOUND_FETCH_ERROR; 149 } 150 break; 151 152 case BOUND_SIMPLE: 153 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type); 154 break; 155 156 case BOUND_CANNOT_BE_DETERMINED: 157 /* we have an assumed size array on our hands. Assume that 158 upper_bound == lower_bound so that we show at least 159 1 element.If the user wants to see more elements, let 160 him manually ask for 'em and we'll subscript the 161 array and show him */ 162 f77_get_dynamic_lowerbound (type, upper_bound); 163 break; 164 165 case BOUND_BY_REF_ON_STACK: 166 current_frame_addr = get_frame_base (deprecated_selected_frame); 167 if (current_frame_addr > 0) 168 { 169 ptr_to_upper_bound = 170 read_memory_typed_address (current_frame_addr + 171 TYPE_ARRAY_UPPER_BOUND_VALUE (type), 172 builtin_type_void_data_ptr); 173 *upper_bound = read_memory_integer (ptr_to_upper_bound, 4); 174 } 175 else 176 { 177 *upper_bound = DEFAULT_UPPER_BOUND; 178 return BOUND_FETCH_ERROR; 179 } 180 break; 181 182 case BOUND_BY_REF_IN_REG: 183 case BOUND_BY_VALUE_IN_REG: 184 default: 185 error ("??? unhandled dynamic array bound type ???"); 186 break; 187 } 188 return BOUND_FETCH_OK; 189 } 190 191 /* Obtain F77 adjustable array dimensions */ 192 193 static void 194 f77_get_dynamic_length_of_aggregate (struct type *type) 195 { 196 int upper_bound = -1; 197 int lower_bound = 1; 198 int retcode; 199 200 /* Recursively go all the way down into a possibly multi-dimensional 201 F77 array and get the bounds. For simple arrays, this is pretty 202 easy but when the bounds are dynamic, we must be very careful 203 to add up all the lengths correctly. Not doing this right 204 will lead to horrendous-looking arrays in parameter lists. 205 206 This function also works for strings which behave very 207 similarly to arrays. */ 208 209 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY 210 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING) 211 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type)); 212 213 /* Recursion ends here, start setting up lengths. */ 214 retcode = f77_get_dynamic_lowerbound (type, &lower_bound); 215 if (retcode == BOUND_FETCH_ERROR) 216 error ("Cannot obtain valid array lower bound"); 217 218 retcode = f77_get_dynamic_upperbound (type, &upper_bound); 219 if (retcode == BOUND_FETCH_ERROR) 220 error ("Cannot obtain valid array upper bound"); 221 222 /* Patch in a valid length value. */ 223 224 TYPE_LENGTH (type) = 225 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type))); 226 } 227 228 /* Function that sets up the array offset,size table for the array 229 type "type". */ 230 231 static void 232 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream) 233 { 234 struct type *tmp_type; 235 int eltlen; 236 int ndimen = 1; 237 int upper, lower, retcode; 238 239 tmp_type = type; 240 241 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) 242 { 243 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED) 244 fprintf_filtered (stream, "<assumed size array> "); 245 246 retcode = f77_get_dynamic_upperbound (tmp_type, &upper); 247 if (retcode == BOUND_FETCH_ERROR) 248 error ("Cannot obtain dynamic upper bound"); 249 250 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower); 251 if (retcode == BOUND_FETCH_ERROR) 252 error ("Cannot obtain dynamic lower bound"); 253 254 F77_DIM_SIZE (ndimen) = upper - lower + 1; 255 256 tmp_type = TYPE_TARGET_TYPE (tmp_type); 257 ndimen++; 258 } 259 260 /* Now we multiply eltlen by all the offsets, so that later we 261 can print out array elements correctly. Up till now we 262 know an offset to apply to get the item but we also 263 have to know how much to add to get to the next item */ 264 265 ndimen--; 266 eltlen = TYPE_LENGTH (tmp_type); 267 F77_DIM_OFFSET (ndimen) = eltlen; 268 while (--ndimen > 0) 269 { 270 eltlen *= F77_DIM_SIZE (ndimen + 1); 271 F77_DIM_OFFSET (ndimen) = eltlen; 272 } 273 } 274 275 276 277 /* Actual function which prints out F77 arrays, Valaddr == address in 278 the superior. Address == the address in the inferior. */ 279 280 static void 281 f77_print_array_1 (int nss, int ndimensions, struct type *type, char *valaddr, 282 CORE_ADDR address, struct ui_file *stream, int format, 283 int deref_ref, int recurse, enum val_prettyprint pretty, 284 int *elts) 285 { 286 int i; 287 288 if (nss != ndimensions) 289 { 290 for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < print_max); i++) 291 { 292 fprintf_filtered (stream, "( "); 293 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type), 294 valaddr + i * F77_DIM_OFFSET (nss), 295 address + i * F77_DIM_OFFSET (nss), 296 stream, format, deref_ref, recurse, pretty, elts); 297 fprintf_filtered (stream, ") "); 298 } 299 if (*elts >= print_max && i < F77_DIM_SIZE (nss)) 300 fprintf_filtered (stream, "..."); 301 } 302 else 303 { 304 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < print_max; 305 i++, (*elts)++) 306 { 307 val_print (TYPE_TARGET_TYPE (type), 308 valaddr + i * F77_DIM_OFFSET (ndimensions), 309 0, 310 address + i * F77_DIM_OFFSET (ndimensions), 311 stream, format, deref_ref, recurse, pretty); 312 313 if (i != (F77_DIM_SIZE (nss) - 1)) 314 fprintf_filtered (stream, ", "); 315 316 if ((*elts == print_max - 1) && (i != (F77_DIM_SIZE (nss) - 1))) 317 fprintf_filtered (stream, "..."); 318 } 319 } 320 } 321 322 /* This function gets called to print an F77 array, we set up some 323 stuff and then immediately call f77_print_array_1() */ 324 325 static void 326 f77_print_array (struct type *type, char *valaddr, CORE_ADDR address, 327 struct ui_file *stream, int format, int deref_ref, int recurse, 328 enum val_prettyprint pretty) 329 { 330 int ndimensions; 331 int elts = 0; 332 333 ndimensions = calc_f77_array_dims (type); 334 335 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0) 336 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)", 337 ndimensions, MAX_FORTRAN_DIMS); 338 339 /* Since F77 arrays are stored column-major, we set up an 340 offset table to get at the various row's elements. The 341 offset table contains entries for both offset and subarray size. */ 342 343 f77_create_arrayprint_offset_tbl (type, stream); 344 345 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format, 346 deref_ref, recurse, pretty, &elts); 347 } 348 349 350 /* Print data of type TYPE located at VALADDR (within GDB), which came from 351 the inferior at address ADDRESS, onto stdio stream STREAM according to 352 FORMAT (a letter or 0 for natural format). The data at VALADDR is in 353 target byte order. 354 355 If the data are a string pointer, returns the number of string characters 356 printed. 357 358 If DEREF_REF is nonzero, then dereference references, otherwise just print 359 them like pointers. 360 361 The PRETTY parameter controls prettyprinting. */ 362 363 int 364 f_val_print (struct type *type, char *valaddr, int embedded_offset, 365 CORE_ADDR address, struct ui_file *stream, int format, 366 int deref_ref, int recurse, enum val_prettyprint pretty) 367 { 368 unsigned int i = 0; /* Number of characters printed */ 369 struct type *elttype; 370 LONGEST val; 371 CORE_ADDR addr; 372 373 CHECK_TYPEDEF (type); 374 switch (TYPE_CODE (type)) 375 { 376 case TYPE_CODE_STRING: 377 f77_get_dynamic_length_of_aggregate (type); 378 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0); 379 break; 380 381 case TYPE_CODE_ARRAY: 382 fprintf_filtered (stream, "("); 383 f77_print_array (type, valaddr, address, stream, format, 384 deref_ref, recurse, pretty); 385 fprintf_filtered (stream, ")"); 386 break; 387 388 case TYPE_CODE_PTR: 389 if (format && format != 's') 390 { 391 print_scalar_formatted (valaddr, type, format, 0, stream); 392 break; 393 } 394 else 395 { 396 addr = unpack_pointer (type, valaddr); 397 elttype = check_typedef (TYPE_TARGET_TYPE (type)); 398 399 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) 400 { 401 /* Try to print what function it points to. */ 402 print_address_demangle (addr, stream, demangle); 403 /* Return value is irrelevant except for string pointers. */ 404 return 0; 405 } 406 407 if (addressprint && format != 's') 408 print_address_numeric (addr, 1, stream); 409 410 /* For a pointer to char or unsigned char, also print the string 411 pointed to, unless pointer is null. */ 412 if (TYPE_LENGTH (elttype) == 1 413 && TYPE_CODE (elttype) == TYPE_CODE_INT 414 && (format == 0 || format == 's') 415 && addr != 0) 416 i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream); 417 418 /* Return number of characters printed, including the terminating 419 '\0' if we reached the end. val_print_string takes care including 420 the terminating '\0' if necessary. */ 421 return i; 422 } 423 break; 424 425 case TYPE_CODE_REF: 426 elttype = check_typedef (TYPE_TARGET_TYPE (type)); 427 if (addressprint) 428 { 429 CORE_ADDR addr 430 = extract_typed_address (valaddr + embedded_offset, type); 431 fprintf_filtered (stream, "@"); 432 print_address_numeric (addr, 1, stream); 433 if (deref_ref) 434 fputs_filtered (": ", stream); 435 } 436 /* De-reference the reference. */ 437 if (deref_ref) 438 { 439 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF) 440 { 441 struct value *deref_val = 442 value_at 443 (TYPE_TARGET_TYPE (type), 444 unpack_pointer (lookup_pointer_type (builtin_type_void), 445 valaddr + embedded_offset), 446 NULL); 447 val_print (VALUE_TYPE (deref_val), 448 VALUE_CONTENTS (deref_val), 449 0, 450 VALUE_ADDRESS (deref_val), 451 stream, 452 format, 453 deref_ref, 454 recurse, 455 pretty); 456 } 457 else 458 fputs_filtered ("???", stream); 459 } 460 break; 461 462 case TYPE_CODE_FUNC: 463 if (format) 464 { 465 print_scalar_formatted (valaddr, type, format, 0, stream); 466 break; 467 } 468 /* FIXME, we should consider, at least for ANSI C language, eliminating 469 the distinction made between FUNCs and POINTERs to FUNCs. */ 470 fprintf_filtered (stream, "{"); 471 type_print (type, "", stream, -1); 472 fprintf_filtered (stream, "} "); 473 /* Try to print what function it points to, and its address. */ 474 print_address_demangle (address, stream, demangle); 475 break; 476 477 case TYPE_CODE_INT: 478 format = format ? format : output_format; 479 if (format) 480 print_scalar_formatted (valaddr, type, format, 0, stream); 481 else 482 { 483 val_print_type_code_int (type, valaddr, stream); 484 /* C and C++ has no single byte int type, char is used instead. 485 Since we don't know whether the value is really intended to 486 be used as an integer or a character, print the character 487 equivalent as well. */ 488 if (TYPE_LENGTH (type) == 1) 489 { 490 fputs_filtered (" ", stream); 491 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr), 492 stream); 493 } 494 } 495 break; 496 497 case TYPE_CODE_FLT: 498 if (format) 499 print_scalar_formatted (valaddr, type, format, 0, stream); 500 else 501 print_floating (valaddr, type, stream); 502 break; 503 504 case TYPE_CODE_VOID: 505 fprintf_filtered (stream, "VOID"); 506 break; 507 508 case TYPE_CODE_ERROR: 509 fprintf_filtered (stream, "<error type>"); 510 break; 511 512 case TYPE_CODE_RANGE: 513 /* FIXME, we should not ever have to print one of these yet. */ 514 fprintf_filtered (stream, "<range type>"); 515 break; 516 517 case TYPE_CODE_BOOL: 518 format = format ? format : output_format; 519 if (format) 520 print_scalar_formatted (valaddr, type, format, 0, stream); 521 else 522 { 523 val = 0; 524 switch (TYPE_LENGTH (type)) 525 { 526 case 1: 527 val = unpack_long (builtin_type_f_logical_s1, valaddr); 528 break; 529 530 case 2: 531 val = unpack_long (builtin_type_f_logical_s2, valaddr); 532 break; 533 534 case 4: 535 val = unpack_long (builtin_type_f_logical, valaddr); 536 break; 537 538 default: 539 error ("Logicals of length %d bytes not supported", 540 TYPE_LENGTH (type)); 541 542 } 543 544 if (val == 0) 545 fprintf_filtered (stream, ".FALSE."); 546 else if (val == 1) 547 fprintf_filtered (stream, ".TRUE."); 548 else 549 /* Not a legitimate logical type, print as an integer. */ 550 { 551 /* Bash the type code temporarily. */ 552 TYPE_CODE (type) = TYPE_CODE_INT; 553 f_val_print (type, valaddr, 0, address, stream, format, 554 deref_ref, recurse, pretty); 555 /* Restore the type code so later uses work as intended. */ 556 TYPE_CODE (type) = TYPE_CODE_BOOL; 557 } 558 } 559 break; 560 561 case TYPE_CODE_COMPLEX: 562 switch (TYPE_LENGTH (type)) 563 { 564 case 8: 565 type = builtin_type_f_real; 566 break; 567 case 16: 568 type = builtin_type_f_real_s8; 569 break; 570 case 32: 571 type = builtin_type_f_real_s16; 572 break; 573 default: 574 error ("Cannot print out complex*%d variables", TYPE_LENGTH (type)); 575 } 576 fputs_filtered ("(", stream); 577 print_floating (valaddr, type, stream); 578 fputs_filtered (",", stream); 579 print_floating (valaddr + TYPE_LENGTH (type), type, stream); 580 fputs_filtered (")", stream); 581 break; 582 583 case TYPE_CODE_UNDEF: 584 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use 585 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" 586 and no complete type for struct foo in that file. */ 587 fprintf_filtered (stream, "<incomplete type>"); 588 break; 589 590 default: 591 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type)); 592 } 593 gdb_flush (stream); 594 return 0; 595 } 596 597 static void 598 list_all_visible_commons (char *funname) 599 { 600 SAVED_F77_COMMON_PTR tmp; 601 602 tmp = head_common_list; 603 604 printf_filtered ("All COMMON blocks visible at this level:\n\n"); 605 606 while (tmp != NULL) 607 { 608 if (strcmp (tmp->owning_function, funname) == 0) 609 printf_filtered ("%s\n", tmp->name); 610 611 tmp = tmp->next; 612 } 613 } 614 615 /* This function is used to print out the values in a given COMMON 616 block. It will always use the most local common block of the 617 given name */ 618 619 static void 620 info_common_command (char *comname, int from_tty) 621 { 622 SAVED_F77_COMMON_PTR the_common; 623 COMMON_ENTRY_PTR entry; 624 struct frame_info *fi; 625 char *funname = 0; 626 struct symbol *func; 627 628 /* We have been told to display the contents of F77 COMMON 629 block supposedly visible in this function. Let us 630 first make sure that it is visible and if so, let 631 us display its contents */ 632 633 fi = deprecated_selected_frame; 634 635 if (fi == NULL) 636 error ("No frame selected"); 637 638 /* The following is generally ripped off from stack.c's routine 639 print_frame_info() */ 640 641 func = find_pc_function (get_frame_pc (fi)); 642 if (func) 643 { 644 /* In certain pathological cases, the symtabs give the wrong 645 function (when we are in the first function in a file which 646 is compiled without debugging symbols, the previous function 647 is compiled with debugging symbols, and the "foo.o" symbol 648 that is supposed to tell us where the file with debugging symbols 649 ends has been truncated by ar because it is longer than 15 650 characters). 651 652 So look in the minimal symbol tables as well, and if it comes 653 up with a larger address for the function use that instead. 654 I don't think this can ever cause any problems; there shouldn't 655 be any minimal symbols in the middle of a function. 656 FIXME: (Not necessarily true. What about text labels) */ 657 658 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (get_frame_pc (fi)); 659 660 if (msymbol != NULL 661 && (SYMBOL_VALUE_ADDRESS (msymbol) 662 > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) 663 funname = DEPRECATED_SYMBOL_NAME (msymbol); 664 else 665 funname = DEPRECATED_SYMBOL_NAME (func); 666 } 667 else 668 { 669 struct minimal_symbol *msymbol = 670 lookup_minimal_symbol_by_pc (get_frame_pc (fi)); 671 672 if (msymbol != NULL) 673 funname = DEPRECATED_SYMBOL_NAME (msymbol); 674 } 675 676 /* If comname is NULL, we assume the user wishes to see the 677 which COMMON blocks are visible here and then return */ 678 679 if (comname == 0) 680 { 681 list_all_visible_commons (funname); 682 return; 683 } 684 685 the_common = find_common_for_function (comname, funname); 686 687 if (the_common) 688 { 689 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0) 690 printf_filtered ("Contents of blank COMMON block:\n"); 691 else 692 printf_filtered ("Contents of F77 COMMON block '%s':\n", comname); 693 694 printf_filtered ("\n"); 695 entry = the_common->entries; 696 697 while (entry != NULL) 698 { 699 printf_filtered ("%s = ", DEPRECATED_SYMBOL_NAME (entry->symbol)); 700 print_variable_value (entry->symbol, fi, gdb_stdout); 701 printf_filtered ("\n"); 702 entry = entry->next; 703 } 704 } 705 else 706 printf_filtered ("Cannot locate the common block %s in function '%s'\n", 707 comname, funname); 708 } 709 710 /* This function is used to determine whether there is a 711 F77 common block visible at the current scope called 'comname'. */ 712 713 #if 0 714 static int 715 there_is_a_visible_common_named (char *comname) 716 { 717 SAVED_F77_COMMON_PTR the_common; 718 struct frame_info *fi; 719 char *funname = 0; 720 struct symbol *func; 721 722 if (comname == NULL) 723 error ("Cannot deal with NULL common name!"); 724 725 fi = deprecated_selected_frame; 726 727 if (fi == NULL) 728 error ("No frame selected"); 729 730 /* The following is generally ripped off from stack.c's routine 731 print_frame_info() */ 732 733 func = find_pc_function (fi->pc); 734 if (func) 735 { 736 /* In certain pathological cases, the symtabs give the wrong 737 function (when we are in the first function in a file which 738 is compiled without debugging symbols, the previous function 739 is compiled with debugging symbols, and the "foo.o" symbol 740 that is supposed to tell us where the file with debugging symbols 741 ends has been truncated by ar because it is longer than 15 742 characters). 743 744 So look in the minimal symbol tables as well, and if it comes 745 up with a larger address for the function use that instead. 746 I don't think this can ever cause any problems; there shouldn't 747 be any minimal symbols in the middle of a function. 748 FIXME: (Not necessarily true. What about text labels) */ 749 750 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); 751 752 if (msymbol != NULL 753 && (SYMBOL_VALUE_ADDRESS (msymbol) 754 > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) 755 funname = DEPRECATED_SYMBOL_NAME (msymbol); 756 else 757 funname = DEPRECATED_SYMBOL_NAME (func); 758 } 759 else 760 { 761 struct minimal_symbol *msymbol = 762 lookup_minimal_symbol_by_pc (fi->pc); 763 764 if (msymbol != NULL) 765 funname = DEPRECATED_SYMBOL_NAME (msymbol); 766 } 767 768 the_common = find_common_for_function (comname, funname); 769 770 return (the_common ? 1 : 0); 771 } 772 #endif 773 774 void 775 _initialize_f_valprint (void) 776 { 777 add_info ("common", info_common_command, 778 "Print out the values contained in a Fortran COMMON block."); 779 if (xdb_commands) 780 add_com ("lc", class_info, info_common_command, 781 "Print out the values contained in a Fortran COMMON block."); 782 } 783