1#!/bin/sh -u 2 3# Architecture commands for GDB, the GNU debugger. 4# 5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software 6# Foundation, Inc. 7# 8# 9# This file is part of GDB. 10# 11# This program is free software; you can redistribute it and/or modify 12# it under the terms of the GNU General Public License as published by 13# the Free Software Foundation; either version 2 of the License, or 14# (at your option) any later version. 15# 16# This program is distributed in the hope that it will be useful, 17# but WITHOUT ANY WARRANTY; without even the implied warranty of 18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19# GNU General Public License for more details. 20# 21# You should have received a copy of the GNU General Public License 22# along with this program; if not, write to the Free Software 23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 24 25# Make certain that the script is running in an internationalized 26# environment. 27LANG=c ; export LANG 28LC_ALL=c ; export LC_ALL 29 30 31compare_new () 32{ 33 file=$1 34 if test ! -r ${file} 35 then 36 echo "${file} missing? cp new-${file} ${file}" 1>&2 37 elif diff -u ${file} new-${file} 38 then 39 echo "${file} unchanged" 1>&2 40 else 41 echo "${file} has changed? cp new-${file} ${file}" 1>&2 42 fi 43} 44 45 46# Format of the input table 47read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol" 48 49do_read () 50{ 51 comment="" 52 class="" 53 while read line 54 do 55 if test "${line}" = "" 56 then 57 continue 58 elif test "${line}" = "#" -a "${comment}" = "" 59 then 60 continue 61 elif expr "${line}" : "#" > /dev/null 62 then 63 comment="${comment} 64${line}" 65 else 66 67 # The semantics of IFS varies between different SH's. Some 68 # treat ``::' as three fields while some treat it as just too. 69 # Work around this by eliminating ``::'' .... 70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`" 71 72 OFS="${IFS}" ; IFS="[:]" 73 eval read ${read} <<EOF 74${line} 75EOF 76 IFS="${OFS}" 77 78 if test -n "${garbage_at_eol}" 79 then 80 echo "Garbage at end-of-line in ${line}" 1>&2 81 kill $$ 82 exit 1 83 fi 84 85 # .... and then going back through each field and strip out those 86 # that ended up with just that space character. 87 for r in ${read} 88 do 89 if eval test \"\${${r}}\" = \"\ \" 90 then 91 eval ${r}="" 92 fi 93 done 94 95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'` 96 if test "x${macro}" = "x=" 97 then 98 # Provide a UCASE version of function (for when there isn't MACRO) 99 macro="${FUNCTION}" 100 elif test "${macro}" = "${FUNCTION}" 101 then 102 echo "${function}: Specify = for macro field" 1>&2 103 kill $$ 104 exit 1 105 fi 106 107 # Check that macro definition wasn't supplied for multi-arch 108 case "${class}" in 109 [mM] ) 110 if test "${macro}" != "" 111 then 112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2 113 kill $$ 114 exit 1 115 fi 116 esac 117 118 case "${class}" in 119 m ) staticdefault="${predefault}" ;; 120 M ) staticdefault="0" ;; 121 * ) test "${staticdefault}" || staticdefault=0 ;; 122 esac 123 124 case "${class}" in 125 F | V | M ) 126 case "${invalid_p}" in 127 "" ) 128 if test -n "${predefault}" 129 then 130 #invalid_p="gdbarch->${function} == ${predefault}" 131 predicate="gdbarch->${function} != ${predefault}" 132 elif class_is_variable_p 133 then 134 predicate="gdbarch->${function} != 0" 135 elif class_is_function_p 136 then 137 predicate="gdbarch->${function} != NULL" 138 fi 139 ;; 140 * ) 141 echo "Predicate function ${function} with invalid_p." 1>&2 142 kill $$ 143 exit 1 144 ;; 145 esac 146 esac 147 148 # PREDEFAULT is a valid fallback definition of MEMBER when 149 # multi-arch is not enabled. This ensures that the 150 # default value, when multi-arch is the same as the 151 # default value when not multi-arch. POSTDEFAULT is 152 # always a valid definition of MEMBER as this again 153 # ensures consistency. 154 155 if [ -n "${postdefault}" ] 156 then 157 fallbackdefault="${postdefault}" 158 elif [ -n "${predefault}" ] 159 then 160 fallbackdefault="${predefault}" 161 else 162 fallbackdefault="0" 163 fi 164 165 #NOT YET: See gdbarch.log for basic verification of 166 # database 167 168 break 169 fi 170 done 171 if [ -n "${class}" ] 172 then 173 true 174 else 175 false 176 fi 177} 178 179 180fallback_default_p () 181{ 182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \ 183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ] 184} 185 186class_is_variable_p () 187{ 188 case "${class}" in 189 *v* | *V* ) true ;; 190 * ) false ;; 191 esac 192} 193 194class_is_function_p () 195{ 196 case "${class}" in 197 *f* | *F* | *m* | *M* ) true ;; 198 * ) false ;; 199 esac 200} 201 202class_is_multiarch_p () 203{ 204 case "${class}" in 205 *m* | *M* ) true ;; 206 * ) false ;; 207 esac 208} 209 210class_is_predicate_p () 211{ 212 case "${class}" in 213 *F* | *V* | *M* ) true ;; 214 * ) false ;; 215 esac 216} 217 218class_is_info_p () 219{ 220 case "${class}" in 221 *i* ) true ;; 222 * ) false ;; 223 esac 224} 225 226 227# dump out/verify the doco 228for field in ${read} 229do 230 case ${field} in 231 232 class ) : ;; 233 234 # # -> line disable 235 # f -> function 236 # hiding a function 237 # F -> function + predicate 238 # hiding a function + predicate to test function validity 239 # v -> variable 240 # hiding a variable 241 # V -> variable + predicate 242 # hiding a variable + predicate to test variables validity 243 # i -> set from info 244 # hiding something from the ``struct info'' object 245 # m -> multi-arch function 246 # hiding a multi-arch function (parameterised with the architecture) 247 # M -> multi-arch function + predicate 248 # hiding a multi-arch function + predicate to test function validity 249 250 macro ) : ;; 251 252 # The name of the legacy C macro by which this method can be 253 # accessed. If empty, no macro is defined. If "=", a macro 254 # formed from the upper-case function name is used. 255 256 returntype ) : ;; 257 258 # For functions, the return type; for variables, the data type 259 260 function ) : ;; 261 262 # For functions, the member function name; for variables, the 263 # variable name. Member function names are always prefixed with 264 # ``gdbarch_'' for name-space purity. 265 266 formal ) : ;; 267 268 # The formal argument list. It is assumed that the formal 269 # argument list includes the actual name of each list element. 270 # A function with no arguments shall have ``void'' as the 271 # formal argument list. 272 273 actual ) : ;; 274 275 # The list of actual arguments. The arguments specified shall 276 # match the FORMAL list given above. Functions with out 277 # arguments leave this blank. 278 279 staticdefault ) : ;; 280 281 # To help with the GDB startup a static gdbarch object is 282 # created. STATICDEFAULT is the value to insert into that 283 # static gdbarch object. Since this a static object only 284 # simple expressions can be used. 285 286 # If STATICDEFAULT is empty, zero is used. 287 288 predefault ) : ;; 289 290 # An initial value to assign to MEMBER of the freshly 291 # malloc()ed gdbarch object. After initialization, the 292 # freshly malloc()ed object is passed to the target 293 # architecture code for further updates. 294 295 # If PREDEFAULT is empty, zero is used. 296 297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero 298 # INVALID_P are specified, PREDEFAULT will be used as the 299 # default for the non- multi-arch target. 300 301 # A zero PREDEFAULT function will force the fallback to call 302 # internal_error(). 303 304 # Variable declarations can refer to ``gdbarch'' which will 305 # contain the current architecture. Care should be taken. 306 307 postdefault ) : ;; 308 309 # A value to assign to MEMBER of the new gdbarch object should 310 # the target architecture code fail to change the PREDEFAULT 311 # value. 312 313 # If POSTDEFAULT is empty, no post update is performed. 314 315 # If both INVALID_P and POSTDEFAULT are non-empty then 316 # INVALID_P will be used to determine if MEMBER should be 317 # changed to POSTDEFAULT. 318 319 # If a non-empty POSTDEFAULT and a zero INVALID_P are 320 # specified, POSTDEFAULT will be used as the default for the 321 # non- multi-arch target (regardless of the value of 322 # PREDEFAULT). 323 324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT. 325 326 # Variable declarations can refer to ``current_gdbarch'' which 327 # will contain the current architecture. Care should be 328 # taken. 329 330 invalid_p ) : ;; 331 332 # A predicate equation that validates MEMBER. Non-zero is 333 # returned if the code creating the new architecture failed to 334 # initialize MEMBER or the initialized the member is invalid. 335 # If POSTDEFAULT is non-empty then MEMBER will be updated to 336 # that value. If POSTDEFAULT is empty then internal_error() 337 # is called. 338 339 # If INVALID_P is empty, a check that MEMBER is no longer 340 # equal to PREDEFAULT is used. 341 342 # The expression ``0'' disables the INVALID_P check making 343 # PREDEFAULT a legitimate value. 344 345 # See also PREDEFAULT and POSTDEFAULT. 346 347 print ) : ;; 348 349 # An optional expression that convers MEMBER to a value 350 # suitable for formatting using %s. 351 352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d 353 # (anything else) is used. 354 355 garbage_at_eol ) : ;; 356 357 # Catches stray fields. 358 359 *) 360 echo "Bad field ${field}" 361 exit 1;; 362 esac 363done 364 365 366function_list () 367{ 368 # See below (DOCO) for description of each field 369 cat <<EOF 370i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name 371# 372i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG 373# 374i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN 375# Number of bits in a char or unsigned char for the target machine. 376# Just like CHAR_BIT in <limits.h> but describes the target machine. 377# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: 378# 379# Number of bits in a short or unsigned short for the target machine. 380v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0 381# Number of bits in an int or unsigned int for the target machine. 382v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0 383# Number of bits in a long or unsigned long for the target machine. 384v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0 385# Number of bits in a long long or unsigned long long for the target 386# machine. 387v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0 388 389# The ABI default bit-size and format for "float", "double", and "long 390# double". These bit/format pairs should eventually be combined into 391# a single object. For the moment, just initialize them as a pair. 392 393v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0 394v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format) 395v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0 396v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format) 397v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0 398v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format) 399 400# For most targets, a pointer on the target and its representation as an 401# address in GDB have the same size and "look the same". For such a 402# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT 403# / addr_bit will be set from it. 404# 405# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably 406# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well. 407# 408# ptr_bit is the size of a pointer on the target 409v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0 410# addr_bit is the size of a target address as represented in gdb 411v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT: 412# Number of bits in a BFD_VMA for the target object file format. 413v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0 414# 415# One if \`char' acts like \`signed char', zero if \`unsigned char'. 416v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1 417# 418F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid 419f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0 420# UNWIND_SP is a direct replacement for TARGET_READ_SP. 421F:TARGET_READ_SP:CORE_ADDR:read_sp:void 422# Function for getting target's idea of a frame pointer. FIXME: GDB's 423# whole scheme for dealing with "frames" and "frame pointers" needs a 424# serious shakedown. 425f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0 426# 427M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf 428M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf 429# 430v:=:int:num_regs:::0:-1 431# This macro gives the number of pseudo-registers that live in the 432# register namespace but do not get fetched or stored on the target. 433# These pseudo-registers may be aliases for other registers, 434# combinations of other registers, or they may be computed by GDB. 435v:=:int:num_pseudo_regs:::0:0::0 436 437# GDB's standard (or well known) register numbers. These can map onto 438# a real register or a pseudo (computed) register or not be defined at 439# all (-1). 440# SP_REGNUM will hopefully be replaced by UNWIND_SP. 441v:=:int:sp_regnum:::-1:-1::0 442v:=:int:pc_regnum:::-1:-1::0 443v:=:int:ps_regnum:::-1:-1::0 444v:=:int:fp0_regnum:::0:-1::0 445# Convert stab register number (from \`r\' declaration) to a gdb REGNUM. 446f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0 447# Provide a default mapping from a ecoff register number to a gdb REGNUM. 448f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0 449# Provide a default mapping from a DWARF register number to a gdb REGNUM. 450f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0 451# Convert from an sdb register number to an internal gdb register number. 452f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0 453f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0 454f:=:const char *:register_name:int regnr:regnr 455 456# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE. 457M::struct type *:register_type:int reg_nr:reg_nr 458# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the 459# register offsets computed using just REGISTER_TYPE, this can be 460# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This 461# function with predicate has a valid (callable) initial value. As a 462# consequence, even when the predicate is false, the corresponding 463# function works. This simplifies the migration process - old code, 464# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified. 465F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte 466 467# See gdbint.texinfo, and PUSH_DUMMY_CALL. 468M::struct frame_id:unwind_dummy_id:struct frame_info *info:info 469# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete 470# DEPRECATED_FP_REGNUM. 471v:=:int:deprecated_fp_regnum:::-1:-1::0 472 473# See gdbint.texinfo. See infcall.c. New, all singing all dancing, 474# replacement for DEPRECATED_PUSH_ARGUMENTS. 475M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr 476# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS. 477F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr 478# DEPRECATED_REGISTER_SIZE can be deleted. 479v:=:int:deprecated_register_size 480v:=:int:call_dummy_location::::AT_ENTRY_POINT::0 481M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr 482 483m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0 484M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args 485M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args 486# MAP a GDB RAW register number onto a simulator register number. See 487# also include/...-sim.h. 488f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0 489F:=:int:register_bytes_ok:long nr_bytes:nr_bytes 490f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0 491f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0 492# setjmp/longjmp support. 493F:=:int:get_longjmp_target:CORE_ADDR *pc:pc 494# 495v:=:int:believe_pcc_promotion::::::: 496# 497f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0 498f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0 499f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0 500# 501f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0 502f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0 503F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf 504# 505# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS. 506F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp 507 508# It has been suggested that this, well actually its predecessor, 509# should take the type/value of the function to be called and not the 510# return type. This is left as an exercise for the reader. 511 512# NOTE: cagney/2004-06-13: The function stack.c:return_command uses 513# the predicate with default hack to avoid calling STORE_RETURN_VALUE 514# (via legacy_return_value), when a small struct is involved. 515 516M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value 517 518# The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE, 519# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and 520# DEPRECATED_USE_STRUCT_CONVENTION have all been folded into 521# RETURN_VALUE. 522 523f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0 524f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0 525f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf 526f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf 527f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0 528 529# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an 530# ABI suitable for the implementation of a robust extract 531# struct-convention return-value address method (the sparc saves the 532# address in the callers frame). All the other cases so far examined, 533# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been 534# erreneous - the code was incorrectly assuming that the return-value 535# address, stored in a register, was preserved across the entire 536# function call. 537 538# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of 539# the ABIs that are still to be analyzed - perhaps this should simply 540# be deleted. The commented out extract_returned_value_address method 541# is provided as a starting point for the 32-bit SPARC. It, or 542# something like it, along with changes to both infcmd.c and stack.c 543# will be needed for that case to work. NB: It is passed the callers 544# frame since it is only after the callee has returned that this 545# function is used. 546 547#M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame 548F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache 549 550# 551f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0 552f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0 553f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0: 554M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr 555f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0 556f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0 557v:=:CORE_ADDR:decr_pc_after_break:::0:::0 558 559# A function can be addressed by either it's "pointer" (possibly a 560# descriptor address) or "entry point" (first executable instruction). 561# The method "convert_from_func_ptr_addr" converting the former to the 562# latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement 563# a simplified subset of that functionality - the function's address 564# corresponds to the "function pointer" and the function's start 565# corresponds to the "function entry point" - and hence is redundant. 566 567v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0 568 569m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0 570# 571v:=:CORE_ADDR:frame_args_skip:::0:::0 572M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame 573M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame 574# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame 575# frame-base. Enable frame-base before frame-unwind. 576F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame 577F:=:int:frame_num_args:struct frame_info *frame:frame 578# 579# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call 580# to frame_align and the requirement that methods such as 581# push_dummy_call and frame_red_zone_size maintain correct stack/frame 582# alignment. 583F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp 584M::CORE_ADDR:frame_align:CORE_ADDR address:address 585# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by 586# stabs_argument_has_addr. 587F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type 588m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0 589v:=:int:frame_red_zone_size 590# 591m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0 592# On some machines there are bits in addresses which are not really 593# part of the address, but are used by the kernel, the hardware, etc. 594# for special purposes. ADDR_BITS_REMOVE takes out any such bits so 595# we get a "real" address such as one would find in a symbol table. 596# This is used only for addresses of instructions, and even then I'm 597# not sure it's used in all contexts. It exists to deal with there 598# being a few stray bits in the PC which would mislead us, not as some 599# sort of generic thing to handle alignment or segmentation (it's 600# possible it should be in TARGET_READ_PC instead). 601f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 602# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into 603# ADDR_BITS_REMOVE. 604f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0 605# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if 606# the target needs software single step. An ISA method to implement it. 607# 608# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints 609# using the breakpoint system instead of blatting memory directly (as with rs6000). 610# 611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can 612# single step. If not, then implement single step using breakpoints. 613F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p 614# FIXME: cagney/2003-08-28: Need to find a better way of selecting the 615# disassembler. Perhaps objdump can handle it? 616f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0: 617f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0 618 619 620# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER 621# evaluates non-zero, this is the address where the debugger will place 622# a step-resume breakpoint to get us past the dynamic linker. 623m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0 624# For SVR4 shared libraries, each call goes through a small piece of 625# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates 626# to nonzero if we are currently stopped in one of these. 627f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_call_trampoline::0 628 629# Some systems also have trampoline code for returning from shared libs. 630f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0 631 632# A target might have problems with watchpoints as soon as the stack 633# frame of the current function has been destroyed. This mostly happens 634# as the first action in a funtion's epilogue. in_function_epilogue_p() 635# is defined to return a non-zero value if either the given addr is one 636# instruction after the stack destroying instruction up to the trailing 637# return instruction or if we can figure out that the stack frame has 638# already been invalidated regardless of the value of addr. Targets 639# which don't suffer from that problem could just let this functionality 640# untouched. 641m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0 642# Given a vector of command-line arguments, return a newly allocated 643# string which, when passed to the create_inferior function, will be 644# parsed (on Unix systems, by the shell) to yield the same vector. 645# This function should call error() if the argument vector is not 646# representable for this target or if this target does not support 647# command-line arguments. 648# ARGC is the number of elements in the vector. 649# ARGV is an array of strings, one per argument. 650m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0 651f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0 652f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0 653v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC 654v:=:int:cannot_step_breakpoint:::0:0::0 655v:=:int:have_nonsteppable_watchpoint:::0:0::0 656F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class 657M::const char *:address_class_type_flags_to_name:int type_flags:type_flags 658M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr 659# Is a register in a group 660m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0 661# Fetch the pointer to the ith function argument. 662F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type 663 664# Return the appropriate register set for a core file section with 665# name SECT_NAME and size SECT_SIZE. 666M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size 667EOF 668} 669 670# 671# The .log file 672# 673exec > new-gdbarch.log 674function_list | while do_read 675do 676 cat <<EOF 677${class} ${returntype} ${function} ($formal) 678EOF 679 for r in ${read} 680 do 681 eval echo \"\ \ \ \ ${r}=\${${r}}\" 682 done 683 if class_is_predicate_p && fallback_default_p 684 then 685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2 686 kill $$ 687 exit 1 688 fi 689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ] 690 then 691 echo "Error: postdefault is useless when invalid_p=0" 1>&2 692 kill $$ 693 exit 1 694 fi 695 if class_is_multiarch_p 696 then 697 if class_is_predicate_p ; then : 698 elif test "x${predefault}" = "x" 699 then 700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2 701 kill $$ 702 exit 1 703 fi 704 fi 705 echo "" 706done 707 708exec 1>&2 709compare_new gdbarch.log 710 711 712copyright () 713{ 714cat <<EOF 715/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */ 716 717/* Dynamic architecture support for GDB, the GNU debugger. 718 719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free 720 Software Foundation, Inc. 721 722 This file is part of GDB. 723 724 This program is free software; you can redistribute it and/or modify 725 it under the terms of the GNU General Public License as published by 726 the Free Software Foundation; either version 2 of the License, or 727 (at your option) any later version. 728 729 This program is distributed in the hope that it will be useful, 730 but WITHOUT ANY WARRANTY; without even the implied warranty of 731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 732 GNU General Public License for more details. 733 734 You should have received a copy of the GNU General Public License 735 along with this program; if not, write to the Free Software 736 Foundation, Inc., 59 Temple Place - Suite 330, 737 Boston, MA 02111-1307, USA. */ 738 739/* This file was created with the aid of \`\`gdbarch.sh''. 740 741 The Bourne shell script \`\`gdbarch.sh'' creates the files 742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them 743 against the existing \`\`gdbarch.[hc]''. Any differences found 744 being reported. 745 746 If editing this file, please also run gdbarch.sh and merge any 747 changes into that script. Conversely, when making sweeping changes 748 to this file, modifying gdbarch.sh and using its output may prove 749 easier. */ 750 751EOF 752} 753 754# 755# The .h file 756# 757 758exec > new-gdbarch.h 759copyright 760cat <<EOF 761#ifndef GDBARCH_H 762#define GDBARCH_H 763 764struct floatformat; 765struct ui_file; 766struct frame_info; 767struct value; 768struct objfile; 769struct minimal_symbol; 770struct regcache; 771struct reggroup; 772struct regset; 773struct disassemble_info; 774struct target_ops; 775struct obstack; 776 777extern struct gdbarch *current_gdbarch; 778EOF 779 780# function typedef's 781printf "\n" 782printf "\n" 783printf "/* The following are pre-initialized by GDBARCH. */\n" 784function_list | while do_read 785do 786 if class_is_info_p 787 then 788 printf "\n" 789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" 790 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" 791 if test -n "${macro}" 792 then 793 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n" 794 printf "#error \"Non multi-arch definition of ${macro}\"\n" 795 printf "#endif\n" 796 printf "#if !defined (${macro})\n" 797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" 798 printf "#endif\n" 799 fi 800 fi 801done 802 803# function typedef's 804printf "\n" 805printf "\n" 806printf "/* The following are initialized by the target dependent code. */\n" 807function_list | while do_read 808do 809 if [ -n "${comment}" ] 810 then 811 echo "${comment}" | sed \ 812 -e '2 s,#,/*,' \ 813 -e '3,$ s,#, ,' \ 814 -e '$ s,$, */,' 815 fi 816 817 if class_is_predicate_p 818 then 819 if test -n "${macro}" 820 then 821 printf "\n" 822 printf "#if defined (${macro})\n" 823 printf "/* Legacy for systems yet to multi-arch ${macro} */\n" 824 printf "#if !defined (${macro}_P)\n" 825 printf "#define ${macro}_P() (1)\n" 826 printf "#endif\n" 827 printf "#endif\n" 828 fi 829 printf "\n" 830 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n" 831 if test -n "${macro}" 832 then 833 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n" 834 printf "#error \"Non multi-arch definition of ${macro}\"\n" 835 printf "#endif\n" 836 printf "#if !defined (${macro}_P)\n" 837 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n" 838 printf "#endif\n" 839 fi 840 fi 841 if class_is_variable_p 842 then 843 printf "\n" 844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" 845 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n" 846 if test -n "${macro}" 847 then 848 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n" 849 printf "#error \"Non multi-arch definition of ${macro}\"\n" 850 printf "#endif\n" 851 printf "#if !defined (${macro})\n" 852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" 853 printf "#endif\n" 854 fi 855 fi 856 if class_is_function_p 857 then 858 printf "\n" 859 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p 860 then 861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n" 862 elif class_is_multiarch_p 863 then 864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n" 865 else 866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n" 867 fi 868 if [ "x${formal}" = "xvoid" ] 869 then 870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" 871 else 872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n" 873 fi 874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n" 875 if test -n "${macro}" 876 then 877 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n" 878 printf "#error \"Non multi-arch definition of ${macro}\"\n" 879 printf "#endif\n" 880 if [ "x${actual}" = "x" ] 881 then 882 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))" 883 elif [ "x${actual}" = "x-" ] 884 then 885 d="#define ${macro} (gdbarch_${function} (current_gdbarch))" 886 else 887 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))" 888 fi 889 printf "#if !defined (${macro})\n" 890 if [ "x${actual}" = "x" ] 891 then 892 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n" 893 elif [ "x${actual}" = "x-" ] 894 then 895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" 896 else 897 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n" 898 fi 899 printf "#endif\n" 900 fi 901 fi 902done 903 904# close it off 905cat <<EOF 906 907extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); 908 909 910/* Mechanism for co-ordinating the selection of a specific 911 architecture. 912 913 GDB targets (*-tdep.c) can register an interest in a specific 914 architecture. Other GDB components can register a need to maintain 915 per-architecture data. 916 917 The mechanisms below ensures that there is only a loose connection 918 between the set-architecture command and the various GDB 919 components. Each component can independently register their need 920 to maintain architecture specific data with gdbarch. 921 922 Pragmatics: 923 924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It 925 didn't scale. 926 927 The more traditional mega-struct containing architecture specific 928 data for all the various GDB components was also considered. Since 929 GDB is built from a variable number of (fairly independent) 930 components it was determined that the global aproach was not 931 applicable. */ 932 933 934/* Register a new architectural family with GDB. 935 936 Register support for the specified ARCHITECTURE with GDB. When 937 gdbarch determines that the specified architecture has been 938 selected, the corresponding INIT function is called. 939 940 -- 941 942 The INIT function takes two parameters: INFO which contains the 943 information available to gdbarch about the (possibly new) 944 architecture; ARCHES which is a list of the previously created 945 \`\`struct gdbarch'' for this architecture. 946 947 The INFO parameter is, as far as possible, be pre-initialized with 948 information obtained from INFO.ABFD or the previously selected 949 architecture. 950 951 The ARCHES parameter is a linked list (sorted most recently used) 952 of all the previously created architures for this architecture 953 family. The (possibly NULL) ARCHES->gdbarch can used to access 954 values from the previously selected architecture for this 955 architecture family. The global \`\`current_gdbarch'' shall not be 956 used. 957 958 The INIT function shall return any of: NULL - indicating that it 959 doesn't recognize the selected architecture; an existing \`\`struct 960 gdbarch'' from the ARCHES list - indicating that the new 961 architecture is just a synonym for an earlier architecture (see 962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch'' 963 - that describes the selected architecture (see gdbarch_alloc()). 964 965 The DUMP_TDEP function shall print out all target specific values. 966 Care should be taken to ensure that the function works in both the 967 multi-arch and non- multi-arch cases. */ 968 969struct gdbarch_list 970{ 971 struct gdbarch *gdbarch; 972 struct gdbarch_list *next; 973}; 974 975struct gdbarch_info 976{ 977 /* Use default: NULL (ZERO). */ 978 const struct bfd_arch_info *bfd_arch_info; 979 980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ 981 int byte_order; 982 983 /* Use default: NULL (ZERO). */ 984 bfd *abfd; 985 986 /* Use default: NULL (ZERO). */ 987 struct gdbarch_tdep_info *tdep_info; 988 989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ 990 enum gdb_osabi osabi; 991}; 992 993typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches); 994typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file); 995 996/* DEPRECATED - use gdbarch_register() */ 997extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *); 998 999extern void gdbarch_register (enum bfd_architecture architecture, 1000 gdbarch_init_ftype *, 1001 gdbarch_dump_tdep_ftype *); 1002 1003 1004/* Return a freshly allocated, NULL terminated, array of the valid 1005 architecture names. Since architectures are registered during the 1006 _initialize phase this function only returns useful information 1007 once initialization has been completed. */ 1008 1009extern const char **gdbarch_printable_names (void); 1010 1011 1012/* Helper function. Search the list of ARCHES for a GDBARCH that 1013 matches the information provided by INFO. */ 1014 1015extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); 1016 1017 1018/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform 1019 basic initialization using values obtained from the INFO andTDEP 1020 parameters. set_gdbarch_*() functions are called to complete the 1021 initialization of the object. */ 1022 1023extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); 1024 1025 1026/* Helper function. Free a partially-constructed \`\`struct gdbarch''. 1027 It is assumed that the caller freeds the \`\`struct 1028 gdbarch_tdep''. */ 1029 1030extern void gdbarch_free (struct gdbarch *); 1031 1032 1033/* Helper function. Allocate memory from the \`\`struct gdbarch'' 1034 obstack. The memory is freed when the corresponding architecture 1035 is also freed. */ 1036 1037extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size); 1038#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE))) 1039#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE))) 1040 1041 1042/* Helper function. Force an update of the current architecture. 1043 1044 The actual architecture selected is determined by INFO, \`\`(gdb) set 1045 architecture'' et.al., the existing architecture and BFD's default 1046 architecture. INFO should be initialized to zero and then selected 1047 fields should be updated. 1048 1049 Returns non-zero if the update succeeds */ 1050 1051extern int gdbarch_update_p (struct gdbarch_info info); 1052 1053 1054/* Helper function. Find an architecture matching info. 1055 1056 INFO should be initialized using gdbarch_info_init, relevant fields 1057 set, and then finished using gdbarch_info_fill. 1058 1059 Returns the corresponding architecture, or NULL if no matching 1060 architecture was found. "current_gdbarch" is not updated. */ 1061 1062extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info); 1063 1064 1065/* Helper function. Set the global "current_gdbarch" to "gdbarch". 1066 1067 FIXME: kettenis/20031124: Of the functions that follow, only 1068 gdbarch_from_bfd is supposed to survive. The others will 1069 dissappear since in the future GDB will (hopefully) be truly 1070 multi-arch. However, for now we're still stuck with the concept of 1071 a single active architecture. */ 1072 1073extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch); 1074 1075 1076/* Register per-architecture data-pointer. 1077 1078 Reserve space for a per-architecture data-pointer. An identifier 1079 for the reserved data-pointer is returned. That identifer should 1080 be saved in a local static variable. 1081 1082 Memory for the per-architecture data shall be allocated using 1083 gdbarch_obstack_zalloc. That memory will be deleted when the 1084 corresponding architecture object is deleted. 1085 1086 When a previously created architecture is re-selected, the 1087 per-architecture data-pointer for that previous architecture is 1088 restored. INIT() is not re-called. 1089 1090 Multiple registrarants for any architecture are allowed (and 1091 strongly encouraged). */ 1092 1093struct gdbarch_data; 1094 1095typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack); 1096extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init); 1097typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch); 1098extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init); 1099extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch, 1100 struct gdbarch_data *data, 1101 void *pointer); 1102 1103extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); 1104 1105 1106 1107/* Register per-architecture memory region. 1108 1109 Provide a memory-region swap mechanism. Per-architecture memory 1110 region are created. These memory regions are swapped whenever the 1111 architecture is changed. For a new architecture, the memory region 1112 is initialized with zero (0) and the INIT function is called. 1113 1114 Memory regions are swapped / initialized in the order that they are 1115 registered. NULL DATA and/or INIT values can be specified. 1116 1117 New code should use gdbarch_data_register_*(). */ 1118 1119typedef void (gdbarch_swap_ftype) (void); 1120extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init); 1121#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL) 1122 1123 1124 1125/* Set the dynamic target-system-dependent parameters (architecture, 1126 byte-order, ...) using information found in the BFD */ 1127 1128extern void set_gdbarch_from_file (bfd *); 1129 1130 1131/* Initialize the current architecture to the "first" one we find on 1132 our list. */ 1133 1134extern void initialize_current_architecture (void); 1135 1136/* gdbarch trace variable */ 1137extern int gdbarch_debug; 1138 1139extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); 1140 1141#endif 1142EOF 1143exec 1>&2 1144#../move-if-change new-gdbarch.h gdbarch.h 1145compare_new gdbarch.h 1146 1147 1148# 1149# C file 1150# 1151 1152exec > new-gdbarch.c 1153copyright 1154cat <<EOF 1155 1156#include "defs.h" 1157#include "arch-utils.h" 1158 1159#include "gdbcmd.h" 1160#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */ 1161#include "symcat.h" 1162 1163#include "floatformat.h" 1164 1165#include "gdb_assert.h" 1166#include "gdb_string.h" 1167#include "gdb-events.h" 1168#include "reggroups.h" 1169#include "osabi.h" 1170#include "gdb_obstack.h" 1171 1172/* Static function declarations */ 1173 1174static void alloc_gdbarch_data (struct gdbarch *); 1175 1176/* Non-zero if we want to trace architecture code. */ 1177 1178#ifndef GDBARCH_DEBUG 1179#define GDBARCH_DEBUG 0 1180#endif 1181int gdbarch_debug = GDBARCH_DEBUG; 1182 1183static const char * 1184pformat (const struct floatformat *format) 1185{ 1186 if (format == NULL) 1187 return "(null)"; 1188 else 1189 return format->name; 1190} 1191 1192EOF 1193 1194# gdbarch open the gdbarch object 1195printf "\n" 1196printf "/* Maintain the struct gdbarch object */\n" 1197printf "\n" 1198printf "struct gdbarch\n" 1199printf "{\n" 1200printf " /* Has this architecture been fully initialized? */\n" 1201printf " int initialized_p;\n" 1202printf "\n" 1203printf " /* An obstack bound to the lifetime of the architecture. */\n" 1204printf " struct obstack *obstack;\n" 1205printf "\n" 1206printf " /* basic architectural information */\n" 1207function_list | while do_read 1208do 1209 if class_is_info_p 1210 then 1211 printf " ${returntype} ${function};\n" 1212 fi 1213done 1214printf "\n" 1215printf " /* target specific vector. */\n" 1216printf " struct gdbarch_tdep *tdep;\n" 1217printf " gdbarch_dump_tdep_ftype *dump_tdep;\n" 1218printf "\n" 1219printf " /* per-architecture data-pointers */\n" 1220printf " unsigned nr_data;\n" 1221printf " void **data;\n" 1222printf "\n" 1223printf " /* per-architecture swap-regions */\n" 1224printf " struct gdbarch_swap *swap;\n" 1225printf "\n" 1226cat <<EOF 1227 /* Multi-arch values. 1228 1229 When extending this structure you must: 1230 1231 Add the field below. 1232 1233 Declare set/get functions and define the corresponding 1234 macro in gdbarch.h. 1235 1236 gdbarch_alloc(): If zero/NULL is not a suitable default, 1237 initialize the new field. 1238 1239 verify_gdbarch(): Confirm that the target updated the field 1240 correctly. 1241 1242 gdbarch_dump(): Add a fprintf_unfiltered call so that the new 1243 field is dumped out 1244 1245 \`\`startup_gdbarch()'': Append an initial value to the static 1246 variable (base values on the host's c-type system). 1247 1248 get_gdbarch(): Implement the set/get functions (probably using 1249 the macro's as shortcuts). 1250 1251 */ 1252 1253EOF 1254function_list | while do_read 1255do 1256 if class_is_variable_p 1257 then 1258 printf " ${returntype} ${function};\n" 1259 elif class_is_function_p 1260 then 1261 printf " gdbarch_${function}_ftype *${function};\n" 1262 fi 1263done 1264printf "};\n" 1265 1266# A pre-initialized vector 1267printf "\n" 1268printf "\n" 1269cat <<EOF 1270/* The default architecture uses host values (for want of a better 1271 choice). */ 1272EOF 1273printf "\n" 1274printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n" 1275printf "\n" 1276printf "struct gdbarch startup_gdbarch =\n" 1277printf "{\n" 1278printf " 1, /* Always initialized. */\n" 1279printf " NULL, /* The obstack. */\n" 1280printf " /* basic architecture information */\n" 1281function_list | while do_read 1282do 1283 if class_is_info_p 1284 then 1285 printf " ${staticdefault}, /* ${function} */\n" 1286 fi 1287done 1288cat <<EOF 1289 /* target specific vector and its dump routine */ 1290 NULL, NULL, 1291 /*per-architecture data-pointers and swap regions */ 1292 0, NULL, NULL, 1293 /* Multi-arch values */ 1294EOF 1295function_list | while do_read 1296do 1297 if class_is_function_p || class_is_variable_p 1298 then 1299 printf " ${staticdefault}, /* ${function} */\n" 1300 fi 1301done 1302cat <<EOF 1303 /* startup_gdbarch() */ 1304}; 1305 1306struct gdbarch *current_gdbarch = &startup_gdbarch; 1307EOF 1308 1309# Create a new gdbarch struct 1310cat <<EOF 1311 1312/* Create a new \`\`struct gdbarch'' based on information provided by 1313 \`\`struct gdbarch_info''. */ 1314EOF 1315printf "\n" 1316cat <<EOF 1317struct gdbarch * 1318gdbarch_alloc (const struct gdbarch_info *info, 1319 struct gdbarch_tdep *tdep) 1320{ 1321 /* NOTE: The new architecture variable is named \`\`current_gdbarch'' 1322 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to 1323 the current local architecture and not the previous global 1324 architecture. This ensures that the new architectures initial 1325 values are not influenced by the previous architecture. Once 1326 everything is parameterised with gdbarch, this will go away. */ 1327 struct gdbarch *current_gdbarch; 1328 1329 /* Create an obstack for allocating all the per-architecture memory, 1330 then use that to allocate the architecture vector. */ 1331 struct obstack *obstack = XMALLOC (struct obstack); 1332 obstack_init (obstack); 1333 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch)); 1334 memset (current_gdbarch, 0, sizeof (*current_gdbarch)); 1335 current_gdbarch->obstack = obstack; 1336 1337 alloc_gdbarch_data (current_gdbarch); 1338 1339 current_gdbarch->tdep = tdep; 1340EOF 1341printf "\n" 1342function_list | while do_read 1343do 1344 if class_is_info_p 1345 then 1346 printf " current_gdbarch->${function} = info->${function};\n" 1347 fi 1348done 1349printf "\n" 1350printf " /* Force the explicit initialization of these. */\n" 1351function_list | while do_read 1352do 1353 if class_is_function_p || class_is_variable_p 1354 then 1355 if [ -n "${predefault}" -a "x${predefault}" != "x0" ] 1356 then 1357 printf " current_gdbarch->${function} = ${predefault};\n" 1358 fi 1359 fi 1360done 1361cat <<EOF 1362 /* gdbarch_alloc() */ 1363 1364 return current_gdbarch; 1365} 1366EOF 1367 1368# Free a gdbarch struct. 1369printf "\n" 1370printf "\n" 1371cat <<EOF 1372/* Allocate extra space using the per-architecture obstack. */ 1373 1374void * 1375gdbarch_obstack_zalloc (struct gdbarch *arch, long size) 1376{ 1377 void *data = obstack_alloc (arch->obstack, size); 1378 memset (data, 0, size); 1379 return data; 1380} 1381 1382 1383/* Free a gdbarch struct. This should never happen in normal 1384 operation --- once you've created a gdbarch, you keep it around. 1385 However, if an architecture's init function encounters an error 1386 building the structure, it may need to clean up a partially 1387 constructed gdbarch. */ 1388 1389void 1390gdbarch_free (struct gdbarch *arch) 1391{ 1392 struct obstack *obstack; 1393 gdb_assert (arch != NULL); 1394 gdb_assert (!arch->initialized_p); 1395 obstack = arch->obstack; 1396 obstack_free (obstack, 0); /* Includes the ARCH. */ 1397 xfree (obstack); 1398} 1399EOF 1400 1401# verify a new architecture 1402cat <<EOF 1403 1404 1405/* Ensure that all values in a GDBARCH are reasonable. */ 1406 1407/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it 1408 just happens to match the global variable \`\`current_gdbarch''. That 1409 way macros refering to that variable get the local and not the global 1410 version - ulgh. Once everything is parameterised with gdbarch, this 1411 will go away. */ 1412 1413static void 1414verify_gdbarch (struct gdbarch *current_gdbarch) 1415{ 1416 struct ui_file *log; 1417 struct cleanup *cleanups; 1418 long dummy; 1419 char *buf; 1420 log = mem_fileopen (); 1421 cleanups = make_cleanup_ui_file_delete (log); 1422 /* fundamental */ 1423 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN) 1424 fprintf_unfiltered (log, "\n\tbyte-order"); 1425 if (current_gdbarch->bfd_arch_info == NULL) 1426 fprintf_unfiltered (log, "\n\tbfd_arch_info"); 1427 /* Check those that need to be defined for the given multi-arch level. */ 1428EOF 1429function_list | while do_read 1430do 1431 if class_is_function_p || class_is_variable_p 1432 then 1433 if [ "x${invalid_p}" = "x0" ] 1434 then 1435 printf " /* Skip verify of ${function}, invalid_p == 0 */\n" 1436 elif class_is_predicate_p 1437 then 1438 printf " /* Skip verify of ${function}, has predicate */\n" 1439 # FIXME: See do_read for potential simplification 1440 elif [ -n "${invalid_p}" -a -n "${postdefault}" ] 1441 then 1442 printf " if (${invalid_p})\n" 1443 printf " current_gdbarch->${function} = ${postdefault};\n" 1444 elif [ -n "${predefault}" -a -n "${postdefault}" ] 1445 then 1446 printf " if (current_gdbarch->${function} == ${predefault})\n" 1447 printf " current_gdbarch->${function} = ${postdefault};\n" 1448 elif [ -n "${postdefault}" ] 1449 then 1450 printf " if (current_gdbarch->${function} == 0)\n" 1451 printf " current_gdbarch->${function} = ${postdefault};\n" 1452 elif [ -n "${invalid_p}" ] 1453 then 1454 printf " if (${invalid_p})\n" 1455 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" 1456 elif [ -n "${predefault}" ] 1457 then 1458 printf " if (current_gdbarch->${function} == ${predefault})\n" 1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" 1460 fi 1461 fi 1462done 1463cat <<EOF 1464 buf = ui_file_xstrdup (log, &dummy); 1465 make_cleanup (xfree, buf); 1466 if (strlen (buf) > 0) 1467 internal_error (__FILE__, __LINE__, 1468 "verify_gdbarch: the following are invalid ...%s", 1469 buf); 1470 do_cleanups (cleanups); 1471} 1472EOF 1473 1474# dump the structure 1475printf "\n" 1476printf "\n" 1477cat <<EOF 1478/* Print out the details of the current architecture. */ 1479 1480/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it 1481 just happens to match the global variable \`\`current_gdbarch''. That 1482 way macros refering to that variable get the local and not the global 1483 version - ulgh. Once everything is parameterised with gdbarch, this 1484 will go away. */ 1485 1486void 1487gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file) 1488{ 1489 const char *gdb_xm_file = "<not-defined>"; 1490 const char *gdb_nm_file = "<not-defined>"; 1491 const char *gdb_tm_file = "<not-defined>"; 1492#if defined (GDB_XM_FILE) 1493 gdb_xm_file = GDB_XM_FILE; 1494#endif 1495 fprintf_unfiltered (file, 1496 "gdbarch_dump: GDB_XM_FILE = %s\\n", 1497 gdb_xm_file); 1498#if defined (GDB_NM_FILE) 1499 gdb_nm_file = GDB_NM_FILE; 1500#endif 1501 fprintf_unfiltered (file, 1502 "gdbarch_dump: GDB_NM_FILE = %s\\n", 1503 gdb_nm_file); 1504#if defined (GDB_TM_FILE) 1505 gdb_tm_file = GDB_TM_FILE; 1506#endif 1507 fprintf_unfiltered (file, 1508 "gdbarch_dump: GDB_TM_FILE = %s\\n", 1509 gdb_tm_file); 1510EOF 1511function_list | sort -t: -k 4 | while do_read 1512do 1513 # First the predicate 1514 if class_is_predicate_p 1515 then 1516 if test -n "${macro}" 1517 then 1518 printf "#ifdef ${macro}_P\n" 1519 printf " fprintf_unfiltered (file,\n" 1520 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n" 1521 printf " \"${macro}_P()\",\n" 1522 printf " XSTRING (${macro}_P ()));\n" 1523 printf "#endif\n" 1524 fi 1525 printf " fprintf_unfiltered (file,\n" 1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n" 1527 printf " gdbarch_${function}_p (current_gdbarch));\n" 1528 fi 1529 # Print the macro definition. 1530 if test -n "${macro}" 1531 then 1532 printf "#ifdef ${macro}\n" 1533 if class_is_function_p 1534 then 1535 printf " fprintf_unfiltered (file,\n" 1536 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n" 1537 printf " \"${macro}(${actual})\",\n" 1538 printf " XSTRING (${macro} (${actual})));\n" 1539 else 1540 printf " fprintf_unfiltered (file,\n" 1541 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n" 1542 printf " XSTRING (${macro}));\n" 1543 fi 1544 printf "#endif\n" 1545 fi 1546 # Print the corresponding value. 1547 if class_is_function_p 1548 then 1549 printf " fprintf_unfiltered (file,\n" 1550 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n" 1551 printf " (long) current_gdbarch->${function});\n" 1552 else 1553 # It is a variable 1554 case "${print}:${returntype}" in 1555 :CORE_ADDR ) 1556 fmt="0x%s" 1557 print="paddr_nz (current_gdbarch->${function})" 1558 ;; 1559 :* ) 1560 fmt="%s" 1561 print="paddr_d (current_gdbarch->${function})" 1562 ;; 1563 * ) 1564 fmt="%s" 1565 ;; 1566 esac 1567 printf " fprintf_unfiltered (file,\n" 1568 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}" 1569 printf " ${print});\n" 1570 fi 1571done 1572cat <<EOF 1573 if (current_gdbarch->dump_tdep != NULL) 1574 current_gdbarch->dump_tdep (current_gdbarch, file); 1575} 1576EOF 1577 1578 1579# GET/SET 1580printf "\n" 1581cat <<EOF 1582struct gdbarch_tdep * 1583gdbarch_tdep (struct gdbarch *gdbarch) 1584{ 1585 if (gdbarch_debug >= 2) 1586 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n"); 1587 return gdbarch->tdep; 1588} 1589EOF 1590printf "\n" 1591function_list | while do_read 1592do 1593 if class_is_predicate_p 1594 then 1595 printf "\n" 1596 printf "int\n" 1597 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n" 1598 printf "{\n" 1599 printf " gdb_assert (gdbarch != NULL);\n" 1600 printf " return ${predicate};\n" 1601 printf "}\n" 1602 fi 1603 if class_is_function_p 1604 then 1605 printf "\n" 1606 printf "${returntype}\n" 1607 if [ "x${formal}" = "xvoid" ] 1608 then 1609 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" 1610 else 1611 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n" 1612 fi 1613 printf "{\n" 1614 printf " gdb_assert (gdbarch != NULL);\n" 1615 printf " gdb_assert (gdbarch->${function} != NULL);\n" 1616 if class_is_predicate_p && test -n "${predefault}" 1617 then 1618 # Allow a call to a function with a predicate. 1619 printf " /* Do not check predicate: ${predicate}, allow call. */\n" 1620 fi 1621 printf " if (gdbarch_debug >= 2)\n" 1622 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" 1623 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ] 1624 then 1625 if class_is_multiarch_p 1626 then 1627 params="gdbarch" 1628 else 1629 params="" 1630 fi 1631 else 1632 if class_is_multiarch_p 1633 then 1634 params="gdbarch, ${actual}" 1635 else 1636 params="${actual}" 1637 fi 1638 fi 1639 if [ "x${returntype}" = "xvoid" ] 1640 then 1641 printf " gdbarch->${function} (${params});\n" 1642 else 1643 printf " return gdbarch->${function} (${params});\n" 1644 fi 1645 printf "}\n" 1646 printf "\n" 1647 printf "void\n" 1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" 1649 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n" 1650 printf "{\n" 1651 printf " gdbarch->${function} = ${function};\n" 1652 printf "}\n" 1653 elif class_is_variable_p 1654 then 1655 printf "\n" 1656 printf "${returntype}\n" 1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" 1658 printf "{\n" 1659 printf " gdb_assert (gdbarch != NULL);\n" 1660 if [ "x${invalid_p}" = "x0" ] 1661 then 1662 printf " /* Skip verify of ${function}, invalid_p == 0 */\n" 1663 elif [ -n "${invalid_p}" ] 1664 then 1665 printf " /* Check variable is valid. */\n" 1666 printf " gdb_assert (!(${invalid_p}));\n" 1667 elif [ -n "${predefault}" ] 1668 then 1669 printf " /* Check variable changed from pre-default. */\n" 1670 printf " gdb_assert (gdbarch->${function} != ${predefault});\n" 1671 fi 1672 printf " if (gdbarch_debug >= 2)\n" 1673 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" 1674 printf " return gdbarch->${function};\n" 1675 printf "}\n" 1676 printf "\n" 1677 printf "void\n" 1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" 1679 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n" 1680 printf "{\n" 1681 printf " gdbarch->${function} = ${function};\n" 1682 printf "}\n" 1683 elif class_is_info_p 1684 then 1685 printf "\n" 1686 printf "${returntype}\n" 1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" 1688 printf "{\n" 1689 printf " gdb_assert (gdbarch != NULL);\n" 1690 printf " if (gdbarch_debug >= 2)\n" 1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" 1692 printf " return gdbarch->${function};\n" 1693 printf "}\n" 1694 fi 1695done 1696 1697# All the trailing guff 1698cat <<EOF 1699 1700 1701/* Keep a registry of per-architecture data-pointers required by GDB 1702 modules. */ 1703 1704struct gdbarch_data 1705{ 1706 unsigned index; 1707 int init_p; 1708 gdbarch_data_pre_init_ftype *pre_init; 1709 gdbarch_data_post_init_ftype *post_init; 1710}; 1711 1712struct gdbarch_data_registration 1713{ 1714 struct gdbarch_data *data; 1715 struct gdbarch_data_registration *next; 1716}; 1717 1718struct gdbarch_data_registry 1719{ 1720 unsigned nr; 1721 struct gdbarch_data_registration *registrations; 1722}; 1723 1724struct gdbarch_data_registry gdbarch_data_registry = 1725{ 1726 0, NULL, 1727}; 1728 1729static struct gdbarch_data * 1730gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init, 1731 gdbarch_data_post_init_ftype *post_init) 1732{ 1733 struct gdbarch_data_registration **curr; 1734 /* Append the new registraration. */ 1735 for (curr = &gdbarch_data_registry.registrations; 1736 (*curr) != NULL; 1737 curr = &(*curr)->next); 1738 (*curr) = XMALLOC (struct gdbarch_data_registration); 1739 (*curr)->next = NULL; 1740 (*curr)->data = XMALLOC (struct gdbarch_data); 1741 (*curr)->data->index = gdbarch_data_registry.nr++; 1742 (*curr)->data->pre_init = pre_init; 1743 (*curr)->data->post_init = post_init; 1744 (*curr)->data->init_p = 1; 1745 return (*curr)->data; 1746} 1747 1748struct gdbarch_data * 1749gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init) 1750{ 1751 return gdbarch_data_register (pre_init, NULL); 1752} 1753 1754struct gdbarch_data * 1755gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init) 1756{ 1757 return gdbarch_data_register (NULL, post_init); 1758} 1759 1760/* Create/delete the gdbarch data vector. */ 1761 1762static void 1763alloc_gdbarch_data (struct gdbarch *gdbarch) 1764{ 1765 gdb_assert (gdbarch->data == NULL); 1766 gdbarch->nr_data = gdbarch_data_registry.nr; 1767 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *); 1768} 1769 1770/* Initialize the current value of the specified per-architecture 1771 data-pointer. */ 1772 1773void 1774deprecated_set_gdbarch_data (struct gdbarch *gdbarch, 1775 struct gdbarch_data *data, 1776 void *pointer) 1777{ 1778 gdb_assert (data->index < gdbarch->nr_data); 1779 gdb_assert (gdbarch->data[data->index] == NULL); 1780 gdb_assert (data->pre_init == NULL); 1781 gdbarch->data[data->index] = pointer; 1782} 1783 1784/* Return the current value of the specified per-architecture 1785 data-pointer. */ 1786 1787void * 1788gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) 1789{ 1790 gdb_assert (data->index < gdbarch->nr_data); 1791 if (gdbarch->data[data->index] == NULL) 1792 { 1793 /* The data-pointer isn't initialized, call init() to get a 1794 value. */ 1795 if (data->pre_init != NULL) 1796 /* Mid architecture creation: pass just the obstack, and not 1797 the entire architecture, as that way it isn't possible for 1798 pre-init code to refer to undefined architecture 1799 fields. */ 1800 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack); 1801 else if (gdbarch->initialized_p 1802 && data->post_init != NULL) 1803 /* Post architecture creation: pass the entire architecture 1804 (as all fields are valid), but be careful to also detect 1805 recursive references. */ 1806 { 1807 gdb_assert (data->init_p); 1808 data->init_p = 0; 1809 gdbarch->data[data->index] = data->post_init (gdbarch); 1810 data->init_p = 1; 1811 } 1812 else 1813 /* The architecture initialization hasn't completed - punt - 1814 hope that the caller knows what they are doing. Once 1815 deprecated_set_gdbarch_data has been initialized, this can be 1816 changed to an internal error. */ 1817 return NULL; 1818 gdb_assert (gdbarch->data[data->index] != NULL); 1819 } 1820 return gdbarch->data[data->index]; 1821} 1822 1823 1824 1825/* Keep a registry of swapped data required by GDB modules. */ 1826 1827struct gdbarch_swap 1828{ 1829 void *swap; 1830 struct gdbarch_swap_registration *source; 1831 struct gdbarch_swap *next; 1832}; 1833 1834struct gdbarch_swap_registration 1835{ 1836 void *data; 1837 unsigned long sizeof_data; 1838 gdbarch_swap_ftype *init; 1839 struct gdbarch_swap_registration *next; 1840}; 1841 1842struct gdbarch_swap_registry 1843{ 1844 int nr; 1845 struct gdbarch_swap_registration *registrations; 1846}; 1847 1848struct gdbarch_swap_registry gdbarch_swap_registry = 1849{ 1850 0, NULL, 1851}; 1852 1853void 1854deprecated_register_gdbarch_swap (void *data, 1855 unsigned long sizeof_data, 1856 gdbarch_swap_ftype *init) 1857{ 1858 struct gdbarch_swap_registration **rego; 1859 for (rego = &gdbarch_swap_registry.registrations; 1860 (*rego) != NULL; 1861 rego = &(*rego)->next); 1862 (*rego) = XMALLOC (struct gdbarch_swap_registration); 1863 (*rego)->next = NULL; 1864 (*rego)->init = init; 1865 (*rego)->data = data; 1866 (*rego)->sizeof_data = sizeof_data; 1867} 1868 1869static void 1870current_gdbarch_swap_init_hack (void) 1871{ 1872 struct gdbarch_swap_registration *rego; 1873 struct gdbarch_swap **curr = ¤t_gdbarch->swap; 1874 for (rego = gdbarch_swap_registry.registrations; 1875 rego != NULL; 1876 rego = rego->next) 1877 { 1878 if (rego->data != NULL) 1879 { 1880 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch, 1881 struct gdbarch_swap); 1882 (*curr)->source = rego; 1883 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch, 1884 rego->sizeof_data); 1885 (*curr)->next = NULL; 1886 curr = &(*curr)->next; 1887 } 1888 if (rego->init != NULL) 1889 rego->init (); 1890 } 1891} 1892 1893static struct gdbarch * 1894current_gdbarch_swap_out_hack (void) 1895{ 1896 struct gdbarch *old_gdbarch = current_gdbarch; 1897 struct gdbarch_swap *curr; 1898 1899 gdb_assert (old_gdbarch != NULL); 1900 for (curr = old_gdbarch->swap; 1901 curr != NULL; 1902 curr = curr->next) 1903 { 1904 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data); 1905 memset (curr->source->data, 0, curr->source->sizeof_data); 1906 } 1907 current_gdbarch = NULL; 1908 return old_gdbarch; 1909} 1910 1911static void 1912current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch) 1913{ 1914 struct gdbarch_swap *curr; 1915 1916 gdb_assert (current_gdbarch == NULL); 1917 for (curr = new_gdbarch->swap; 1918 curr != NULL; 1919 curr = curr->next) 1920 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data); 1921 current_gdbarch = new_gdbarch; 1922} 1923 1924 1925/* Keep a registry of the architectures known by GDB. */ 1926 1927struct gdbarch_registration 1928{ 1929 enum bfd_architecture bfd_architecture; 1930 gdbarch_init_ftype *init; 1931 gdbarch_dump_tdep_ftype *dump_tdep; 1932 struct gdbarch_list *arches; 1933 struct gdbarch_registration *next; 1934}; 1935 1936static struct gdbarch_registration *gdbarch_registry = NULL; 1937 1938static void 1939append_name (const char ***buf, int *nr, const char *name) 1940{ 1941 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1)); 1942 (*buf)[*nr] = name; 1943 *nr += 1; 1944} 1945 1946const char ** 1947gdbarch_printable_names (void) 1948{ 1949 /* Accumulate a list of names based on the registed list of 1950 architectures. */ 1951 enum bfd_architecture a; 1952 int nr_arches = 0; 1953 const char **arches = NULL; 1954 struct gdbarch_registration *rego; 1955 for (rego = gdbarch_registry; 1956 rego != NULL; 1957 rego = rego->next) 1958 { 1959 const struct bfd_arch_info *ap; 1960 ap = bfd_lookup_arch (rego->bfd_architecture, 0); 1961 if (ap == NULL) 1962 internal_error (__FILE__, __LINE__, 1963 "gdbarch_architecture_names: multi-arch unknown"); 1964 do 1965 { 1966 append_name (&arches, &nr_arches, ap->printable_name); 1967 ap = ap->next; 1968 } 1969 while (ap != NULL); 1970 } 1971 append_name (&arches, &nr_arches, NULL); 1972 return arches; 1973} 1974 1975 1976void 1977gdbarch_register (enum bfd_architecture bfd_architecture, 1978 gdbarch_init_ftype *init, 1979 gdbarch_dump_tdep_ftype *dump_tdep) 1980{ 1981 struct gdbarch_registration **curr; 1982 const struct bfd_arch_info *bfd_arch_info; 1983 /* Check that BFD recognizes this architecture */ 1984 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); 1985 if (bfd_arch_info == NULL) 1986 { 1987 internal_error (__FILE__, __LINE__, 1988 "gdbarch: Attempt to register unknown architecture (%d)", 1989 bfd_architecture); 1990 } 1991 /* Check that we haven't seen this architecture before */ 1992 for (curr = &gdbarch_registry; 1993 (*curr) != NULL; 1994 curr = &(*curr)->next) 1995 { 1996 if (bfd_architecture == (*curr)->bfd_architecture) 1997 internal_error (__FILE__, __LINE__, 1998 "gdbarch: Duplicate registraration of architecture (%s)", 1999 bfd_arch_info->printable_name); 2000 } 2001 /* log it */ 2002 if (gdbarch_debug) 2003 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n", 2004 bfd_arch_info->printable_name, 2005 (long) init); 2006 /* Append it */ 2007 (*curr) = XMALLOC (struct gdbarch_registration); 2008 (*curr)->bfd_architecture = bfd_architecture; 2009 (*curr)->init = init; 2010 (*curr)->dump_tdep = dump_tdep; 2011 (*curr)->arches = NULL; 2012 (*curr)->next = NULL; 2013} 2014 2015void 2016register_gdbarch_init (enum bfd_architecture bfd_architecture, 2017 gdbarch_init_ftype *init) 2018{ 2019 gdbarch_register (bfd_architecture, init, NULL); 2020} 2021 2022 2023/* Look for an architecture using gdbarch_info. Base search on only 2024 BFD_ARCH_INFO and BYTE_ORDER. */ 2025 2026struct gdbarch_list * 2027gdbarch_list_lookup_by_info (struct gdbarch_list *arches, 2028 const struct gdbarch_info *info) 2029{ 2030 for (; arches != NULL; arches = arches->next) 2031 { 2032 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info) 2033 continue; 2034 if (info->byte_order != arches->gdbarch->byte_order) 2035 continue; 2036 if (info->osabi != arches->gdbarch->osabi) 2037 continue; 2038 return arches; 2039 } 2040 return NULL; 2041} 2042 2043 2044/* Find an architecture that matches the specified INFO. Create a new 2045 architecture if needed. Return that new architecture. Assumes 2046 that there is no current architecture. */ 2047 2048static struct gdbarch * 2049find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info) 2050{ 2051 struct gdbarch *new_gdbarch; 2052 struct gdbarch_registration *rego; 2053 2054 /* The existing architecture has been swapped out - all this code 2055 works from a clean slate. */ 2056 gdb_assert (current_gdbarch == NULL); 2057 2058 /* Fill in missing parts of the INFO struct using a number of 2059 sources: "set ..."; INFOabfd supplied; and the existing 2060 architecture. */ 2061 gdbarch_info_fill (old_gdbarch, &info); 2062 2063 /* Must have found some sort of architecture. */ 2064 gdb_assert (info.bfd_arch_info != NULL); 2065 2066 if (gdbarch_debug) 2067 { 2068 fprintf_unfiltered (gdb_stdlog, 2069 "find_arch_by_info: info.bfd_arch_info %s\n", 2070 (info.bfd_arch_info != NULL 2071 ? info.bfd_arch_info->printable_name 2072 : "(null)")); 2073 fprintf_unfiltered (gdb_stdlog, 2074 "find_arch_by_info: info.byte_order %d (%s)\n", 2075 info.byte_order, 2076 (info.byte_order == BFD_ENDIAN_BIG ? "big" 2077 : info.byte_order == BFD_ENDIAN_LITTLE ? "little" 2078 : "default")); 2079 fprintf_unfiltered (gdb_stdlog, 2080 "find_arch_by_info: info.osabi %d (%s)\n", 2081 info.osabi, gdbarch_osabi_name (info.osabi)); 2082 fprintf_unfiltered (gdb_stdlog, 2083 "find_arch_by_info: info.abfd 0x%lx\n", 2084 (long) info.abfd); 2085 fprintf_unfiltered (gdb_stdlog, 2086 "find_arch_by_info: info.tdep_info 0x%lx\n", 2087 (long) info.tdep_info); 2088 } 2089 2090 /* Find the tdep code that knows about this architecture. */ 2091 for (rego = gdbarch_registry; 2092 rego != NULL; 2093 rego = rego->next) 2094 if (rego->bfd_architecture == info.bfd_arch_info->arch) 2095 break; 2096 if (rego == NULL) 2097 { 2098 if (gdbarch_debug) 2099 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " 2100 "No matching architecture\n"); 2101 return 0; 2102 } 2103 2104 /* Ask the tdep code for an architecture that matches "info". */ 2105 new_gdbarch = rego->init (info, rego->arches); 2106 2107 /* Did the tdep code like it? No. Reject the change and revert to 2108 the old architecture. */ 2109 if (new_gdbarch == NULL) 2110 { 2111 if (gdbarch_debug) 2112 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " 2113 "Target rejected architecture\n"); 2114 return NULL; 2115 } 2116 2117 /* Is this a pre-existing architecture (as determined by already 2118 being initialized)? Move it to the front of the architecture 2119 list (keeping the list sorted Most Recently Used). */ 2120 if (new_gdbarch->initialized_p) 2121 { 2122 struct gdbarch_list **list; 2123 struct gdbarch_list *this; 2124 if (gdbarch_debug) 2125 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " 2126 "Previous architecture 0x%08lx (%s) selected\n", 2127 (long) new_gdbarch, 2128 new_gdbarch->bfd_arch_info->printable_name); 2129 /* Find the existing arch in the list. */ 2130 for (list = ®o->arches; 2131 (*list) != NULL && (*list)->gdbarch != new_gdbarch; 2132 list = &(*list)->next); 2133 /* It had better be in the list of architectures. */ 2134 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch); 2135 /* Unlink THIS. */ 2136 this = (*list); 2137 (*list) = this->next; 2138 /* Insert THIS at the front. */ 2139 this->next = rego->arches; 2140 rego->arches = this; 2141 /* Return it. */ 2142 return new_gdbarch; 2143 } 2144 2145 /* It's a new architecture. */ 2146 if (gdbarch_debug) 2147 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " 2148 "New architecture 0x%08lx (%s) selected\n", 2149 (long) new_gdbarch, 2150 new_gdbarch->bfd_arch_info->printable_name); 2151 2152 /* Insert the new architecture into the front of the architecture 2153 list (keep the list sorted Most Recently Used). */ 2154 { 2155 struct gdbarch_list *this = XMALLOC (struct gdbarch_list); 2156 this->next = rego->arches; 2157 this->gdbarch = new_gdbarch; 2158 rego->arches = this; 2159 } 2160 2161 /* Check that the newly installed architecture is valid. Plug in 2162 any post init values. */ 2163 new_gdbarch->dump_tdep = rego->dump_tdep; 2164 verify_gdbarch (new_gdbarch); 2165 new_gdbarch->initialized_p = 1; 2166 2167 /* Initialize any per-architecture swap areas. This phase requires 2168 a valid global CURRENT_GDBARCH. Set it momentarially, and then 2169 swap the entire architecture out. */ 2170 current_gdbarch = new_gdbarch; 2171 current_gdbarch_swap_init_hack (); 2172 current_gdbarch_swap_out_hack (); 2173 2174 if (gdbarch_debug) 2175 gdbarch_dump (new_gdbarch, gdb_stdlog); 2176 2177 return new_gdbarch; 2178} 2179 2180struct gdbarch * 2181gdbarch_find_by_info (struct gdbarch_info info) 2182{ 2183 /* Save the previously selected architecture, setting the global to 2184 NULL. This stops things like gdbarch->init() trying to use the 2185 previous architecture's configuration. The previous architecture 2186 may not even be of the same architecture family. The most recent 2187 architecture of the same family is found at the head of the 2188 rego->arches list. */ 2189 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack (); 2190 2191 /* Find the specified architecture. */ 2192 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info); 2193 2194 /* Restore the existing architecture. */ 2195 gdb_assert (current_gdbarch == NULL); 2196 current_gdbarch_swap_in_hack (old_gdbarch); 2197 2198 return new_gdbarch; 2199} 2200 2201/* Make the specified architecture current, swapping the existing one 2202 out. */ 2203 2204void 2205deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch) 2206{ 2207 gdb_assert (new_gdbarch != NULL); 2208 gdb_assert (current_gdbarch != NULL); 2209 gdb_assert (new_gdbarch->initialized_p); 2210 current_gdbarch_swap_out_hack (); 2211 current_gdbarch_swap_in_hack (new_gdbarch); 2212 architecture_changed_event (); 2213} 2214 2215extern void _initialize_gdbarch (void); 2216 2217void 2218_initialize_gdbarch (void) 2219{ 2220 struct cmd_list_element *c; 2221 2222 deprecated_add_show_from_set 2223 (add_set_cmd ("arch", 2224 class_maintenance, 2225 var_zinteger, 2226 (char *)&gdbarch_debug, 2227 "Set architecture debugging.\\n\\ 2228When non-zero, architecture debugging is enabled.", &setdebuglist), 2229 &showdebuglist); 2230 c = add_set_cmd ("archdebug", 2231 class_maintenance, 2232 var_zinteger, 2233 (char *)&gdbarch_debug, 2234 "Set architecture debugging.\\n\\ 2235When non-zero, architecture debugging is enabled.", &setlist); 2236 2237 deprecate_cmd (c, "set debug arch"); 2238 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch"); 2239} 2240EOF 2241 2242# close things off 2243exec 1>&2 2244#../move-if-change new-gdbarch.c gdbarch.c 2245compare_new gdbarch.c 2246