1 /* Target-dependent code for GNU/Linux i386. 2 3 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, 20 Boston, MA 02111-1307, USA. */ 21 22 #include "defs.h" 23 #include "gdbcore.h" 24 #include "frame.h" 25 #include "value.h" 26 #include "regcache.h" 27 #include "inferior.h" 28 #include "osabi.h" 29 #include "reggroups.h" 30 31 #include "gdb_string.h" 32 33 #include "i386-tdep.h" 34 #include "i386-linux-tdep.h" 35 #include "glibc-tdep.h" 36 #include "solib-svr4.h" 37 38 /* Return the name of register REG. */ 39 40 static const char * 41 i386_linux_register_name (int reg) 42 { 43 /* Deal with the extra "orig_eax" pseudo register. */ 44 if (reg == I386_LINUX_ORIG_EAX_REGNUM) 45 return "orig_eax"; 46 47 return i386_register_name (reg); 48 } 49 50 /* Return non-zero, when the register is in the corresponding register 51 group. Put the LINUX_ORIG_EAX register in the system group. */ 52 static int 53 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum, 54 struct reggroup *group) 55 { 56 if (regnum == I386_LINUX_ORIG_EAX_REGNUM) 57 return (group == system_reggroup 58 || group == save_reggroup 59 || group == restore_reggroup); 60 return i386_register_reggroup_p (gdbarch, regnum, group); 61 } 62 63 64 /* Recognizing signal handler frames. */ 65 66 /* GNU/Linux has two flavors of signals. Normal signal handlers, and 67 "realtime" (RT) signals. The RT signals can provide additional 68 information to the signal handler if the SA_SIGINFO flag is set 69 when establishing a signal handler using `sigaction'. It is not 70 unlikely that future versions of GNU/Linux will support SA_SIGINFO 71 for normal signals too. */ 72 73 /* When the i386 Linux kernel calls a signal handler and the 74 SA_RESTORER flag isn't set, the return address points to a bit of 75 code on the stack. This function returns whether the PC appears to 76 be within this bit of code. 77 78 The instruction sequence for normal signals is 79 pop %eax 80 mov $0x77, %eax 81 int $0x80 82 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80. 83 84 Checking for the code sequence should be somewhat reliable, because 85 the effect is to call the system call sigreturn. This is unlikely 86 to occur anywhere other than in a signal trampoline. 87 88 It kind of sucks that we have to read memory from the process in 89 order to identify a signal trampoline, but there doesn't seem to be 90 any other way. Therefore we only do the memory reads if no 91 function name could be identified, which should be the case since 92 the code is on the stack. 93 94 Detection of signal trampolines for handlers that set the 95 SA_RESTORER flag is in general not possible. Unfortunately this is 96 what the GNU C Library has been doing for quite some time now. 97 However, as of version 2.1.2, the GNU C Library uses signal 98 trampolines (named __restore and __restore_rt) that are identical 99 to the ones used by the kernel. Therefore, these trampolines are 100 supported too. */ 101 102 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */ 103 #define LINUX_SIGTRAMP_OFFSET0 0 104 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */ 105 #define LINUX_SIGTRAMP_OFFSET1 1 106 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */ 107 #define LINUX_SIGTRAMP_OFFSET2 6 108 109 static const unsigned char linux_sigtramp_code[] = 110 { 111 LINUX_SIGTRAMP_INSN0, /* pop %eax */ 112 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */ 113 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */ 114 }; 115 116 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code) 117 118 /* If NEXT_FRAME unwinds into a sigtramp routine, return the address 119 of the start of the routine. Otherwise, return 0. */ 120 121 static CORE_ADDR 122 i386_linux_sigtramp_start (struct frame_info *next_frame) 123 { 124 CORE_ADDR pc = frame_pc_unwind (next_frame); 125 unsigned char buf[LINUX_SIGTRAMP_LEN]; 126 127 /* We only recognize a signal trampoline if PC is at the start of 128 one of the three instructions. We optimize for finding the PC at 129 the start, as will be the case when the trampoline is not the 130 first frame on the stack. We assume that in the case where the 131 PC is not at the start of the instruction sequence, there will be 132 a few trailing readable bytes on the stack. */ 133 134 if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN)) 135 return 0; 136 137 if (buf[0] != LINUX_SIGTRAMP_INSN0) 138 { 139 int adjust; 140 141 switch (buf[0]) 142 { 143 case LINUX_SIGTRAMP_INSN1: 144 adjust = LINUX_SIGTRAMP_OFFSET1; 145 break; 146 case LINUX_SIGTRAMP_INSN2: 147 adjust = LINUX_SIGTRAMP_OFFSET2; 148 break; 149 default: 150 return 0; 151 } 152 153 pc -= adjust; 154 155 if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN)) 156 return 0; 157 } 158 159 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0) 160 return 0; 161 162 return pc; 163 } 164 165 /* This function does the same for RT signals. Here the instruction 166 sequence is 167 mov $0xad, %eax 168 int $0x80 169 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80. 170 171 The effect is to call the system call rt_sigreturn. */ 172 173 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */ 174 #define LINUX_RT_SIGTRAMP_OFFSET0 0 175 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */ 176 #define LINUX_RT_SIGTRAMP_OFFSET1 5 177 178 static const unsigned char linux_rt_sigtramp_code[] = 179 { 180 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */ 181 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */ 182 }; 183 184 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code) 185 186 /* If NEXT_FRAME unwinds into an RT sigtramp routine, return the 187 address of the start of the routine. Otherwise, return 0. */ 188 189 static CORE_ADDR 190 i386_linux_rt_sigtramp_start (struct frame_info *next_frame) 191 { 192 CORE_ADDR pc = frame_pc_unwind (next_frame); 193 unsigned char buf[LINUX_RT_SIGTRAMP_LEN]; 194 195 /* We only recognize a signal trampoline if PC is at the start of 196 one of the two instructions. We optimize for finding the PC at 197 the start, as will be the case when the trampoline is not the 198 first frame on the stack. We assume that in the case where the 199 PC is not at the start of the instruction sequence, there will be 200 a few trailing readable bytes on the stack. */ 201 202 if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN)) 203 return 0; 204 205 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0) 206 { 207 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1) 208 return 0; 209 210 pc -= LINUX_RT_SIGTRAMP_OFFSET1; 211 212 if (!safe_frame_unwind_memory (next_frame, pc, buf, 213 LINUX_RT_SIGTRAMP_LEN)) 214 return 0; 215 } 216 217 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0) 218 return 0; 219 220 return pc; 221 } 222 223 /* Return whether the frame preceding NEXT_FRAME corresponds to a 224 GNU/Linux sigtramp routine. */ 225 226 static int 227 i386_linux_sigtramp_p (struct frame_info *next_frame) 228 { 229 CORE_ADDR pc = frame_pc_unwind (next_frame); 230 char *name; 231 232 find_pc_partial_function (pc, &name, NULL, NULL); 233 234 /* If we have NAME, we can optimize the search. The trampolines are 235 named __restore and __restore_rt. However, they aren't dynamically 236 exported from the shared C library, so the trampoline may appear to 237 be part of the preceding function. This should always be sigaction, 238 __sigaction, or __libc_sigaction (all aliases to the same function). */ 239 if (name == NULL || strstr (name, "sigaction") != NULL) 240 return (i386_linux_sigtramp_start (next_frame) != 0 241 || i386_linux_rt_sigtramp_start (next_frame) != 0); 242 243 return (strcmp ("__restore", name) == 0 244 || strcmp ("__restore_rt", name) == 0); 245 } 246 247 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */ 248 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20 249 250 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp 251 routine, return the address of the associated sigcontext structure. */ 252 253 static CORE_ADDR 254 i386_linux_sigcontext_addr (struct frame_info *next_frame) 255 { 256 CORE_ADDR pc; 257 CORE_ADDR sp; 258 char buf[4]; 259 260 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); 261 sp = extract_unsigned_integer (buf, 4); 262 263 pc = i386_linux_sigtramp_start (next_frame); 264 if (pc) 265 { 266 /* The sigcontext structure lives on the stack, right after 267 the signum argument. We determine the address of the 268 sigcontext structure by looking at the frame's stack 269 pointer. Keep in mind that the first instruction of the 270 sigtramp code is "pop %eax". If the PC is after this 271 instruction, adjust the returned value accordingly. */ 272 if (pc == frame_pc_unwind (next_frame)) 273 return sp + 4; 274 return sp; 275 } 276 277 pc = i386_linux_rt_sigtramp_start (next_frame); 278 if (pc) 279 { 280 CORE_ADDR ucontext_addr; 281 282 /* The sigcontext structure is part of the user context. A 283 pointer to the user context is passed as the third argument 284 to the signal handler. */ 285 read_memory (sp + 8, buf, 4); 286 ucontext_addr = extract_unsigned_integer (buf, 4); 287 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET; 288 } 289 290 error ("Couldn't recognize signal trampoline."); 291 return 0; 292 } 293 294 /* Set the program counter for process PTID to PC. */ 295 296 static void 297 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid) 298 { 299 write_register_pid (I386_EIP_REGNUM, pc, ptid); 300 301 /* We must be careful with modifying the program counter. If we 302 just interrupted a system call, the kernel might try to restart 303 it when we resume the inferior. On restarting the system call, 304 the kernel will try backing up the program counter even though it 305 no longer points at the system call. This typically results in a 306 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the 307 "orig_eax" pseudo-register. 308 309 Note that "orig_eax" is saved when setting up a dummy call frame. 310 This means that it is properly restored when that frame is 311 popped, and that the interrupted system call will be restarted 312 when we resume the inferior on return from a function call from 313 within GDB. In all other cases the system call will not be 314 restarted. */ 315 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid); 316 } 317 318 319 /* The register sets used in GNU/Linux ELF core-dumps are identical to 320 the register sets in `struct user' that are used for a.out 321 core-dumps. These are also used by ptrace(2). The corresponding 322 types are `elf_gregset_t' for the general-purpose registers (with 323 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t' 324 for the floating-point registers. 325 326 Those types used to be available under the names `gregset_t' and 327 `fpregset_t' too, and GDB used those names in the past. But those 328 names are now used for the register sets used in the `mcontext_t' 329 type, which have a different size and layout. */ 330 331 /* Mapping between the general-purpose registers in `struct user' 332 format and GDB's register cache layout. */ 333 334 /* From <sys/reg.h>. */ 335 static int i386_linux_gregset_reg_offset[] = 336 { 337 6 * 4, /* %eax */ 338 1 * 4, /* %ecx */ 339 2 * 4, /* %edx */ 340 0 * 4, /* %ebx */ 341 15 * 4, /* %esp */ 342 5 * 4, /* %ebp */ 343 3 * 4, /* %esi */ 344 4 * 4, /* %edi */ 345 12 * 4, /* %eip */ 346 14 * 4, /* %eflags */ 347 13 * 4, /* %cs */ 348 16 * 4, /* %ss */ 349 7 * 4, /* %ds */ 350 8 * 4, /* %es */ 351 9 * 4, /* %fs */ 352 10 * 4, /* %gs */ 353 -1, -1, -1, -1, -1, -1, -1, -1, 354 -1, -1, -1, -1, -1, -1, -1, -1, 355 -1, -1, -1, -1, -1, -1, -1, -1, 356 -1, 357 11 * 4 /* "orig_eax" */ 358 }; 359 360 /* Mapping between the general-purpose registers in `struct 361 sigcontext' format and GDB's register cache layout. */ 362 363 /* From <asm/sigcontext.h>. */ 364 static int i386_linux_sc_reg_offset[] = 365 { 366 11 * 4, /* %eax */ 367 10 * 4, /* %ecx */ 368 9 * 4, /* %edx */ 369 8 * 4, /* %ebx */ 370 7 * 4, /* %esp */ 371 6 * 4, /* %ebp */ 372 5 * 4, /* %esi */ 373 4 * 4, /* %edi */ 374 14 * 4, /* %eip */ 375 16 * 4, /* %eflags */ 376 15 * 4, /* %cs */ 377 18 * 4, /* %ss */ 378 3 * 4, /* %ds */ 379 2 * 4, /* %es */ 380 1 * 4, /* %fs */ 381 0 * 4 /* %gs */ 382 }; 383 384 static void 385 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 386 { 387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 388 389 /* GNU/Linux uses ELF. */ 390 i386_elf_init_abi (info, gdbarch); 391 392 /* Since we have the extra "orig_eax" register on GNU/Linux, we have 393 to adjust a few things. */ 394 395 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc); 396 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS); 397 set_gdbarch_register_name (gdbarch, i386_linux_register_name); 398 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p); 399 400 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset; 401 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset); 402 tdep->sizeof_gregset = 17 * 4; 403 404 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */ 405 406 tdep->sigtramp_p = i386_linux_sigtramp_p; 407 tdep->sigcontext_addr = i386_linux_sigcontext_addr; 408 tdep->sc_reg_offset = i386_linux_sc_reg_offset; 409 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset); 410 411 /* GNU/Linux uses SVR4-style shared libraries. */ 412 set_solib_svr4_fetch_link_map_offsets 413 (gdbarch, svr4_ilp32_fetch_link_map_offsets); 414 415 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */ 416 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); 417 } 418 419 /* Provide a prototype to silence -Wmissing-prototypes. */ 420 extern void _initialize_i386_linux_tdep (void); 421 422 void 423 _initialize_i386_linux_tdep (void) 424 { 425 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX, 426 i386_linux_init_abi); 427 } 428