1 /* Target-dependent code for GNU/Linux i386.
2 
3    Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "osabi.h"
29 #include "reggroups.h"
30 
31 #include "gdb_string.h"
32 
33 #include "i386-tdep.h"
34 #include "i386-linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 
38 /* Return the name of register REG.  */
39 
40 static const char *
41 i386_linux_register_name (int reg)
42 {
43   /* Deal with the extra "orig_eax" pseudo register.  */
44   if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45     return "orig_eax";
46 
47   return i386_register_name (reg);
48 }
49 
50 /* Return non-zero, when the register is in the corresponding register
51    group.  Put the LINUX_ORIG_EAX register in the system group.  */
52 static int
53 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54 				struct reggroup *group)
55 {
56   if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57     return (group == system_reggroup
58 	    || group == save_reggroup
59 	    || group == restore_reggroup);
60   return i386_register_reggroup_p (gdbarch, regnum, group);
61 }
62 
63 
64 /* Recognizing signal handler frames.  */
65 
66 /* GNU/Linux has two flavors of signals.  Normal signal handlers, and
67    "realtime" (RT) signals.  The RT signals can provide additional
68    information to the signal handler if the SA_SIGINFO flag is set
69    when establishing a signal handler using `sigaction'.  It is not
70    unlikely that future versions of GNU/Linux will support SA_SIGINFO
71    for normal signals too.  */
72 
73 /* When the i386 Linux kernel calls a signal handler and the
74    SA_RESTORER flag isn't set, the return address points to a bit of
75    code on the stack.  This function returns whether the PC appears to
76    be within this bit of code.
77 
78    The instruction sequence for normal signals is
79        pop    %eax
80        mov    $0x77, %eax
81        int    $0x80
82    or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83 
84    Checking for the code sequence should be somewhat reliable, because
85    the effect is to call the system call sigreturn.  This is unlikely
86    to occur anywhere other than in a signal trampoline.
87 
88    It kind of sucks that we have to read memory from the process in
89    order to identify a signal trampoline, but there doesn't seem to be
90    any other way.  Therefore we only do the memory reads if no
91    function name could be identified, which should be the case since
92    the code is on the stack.
93 
94    Detection of signal trampolines for handlers that set the
95    SA_RESTORER flag is in general not possible.  Unfortunately this is
96    what the GNU C Library has been doing for quite some time now.
97    However, as of version 2.1.2, the GNU C Library uses signal
98    trampolines (named __restore and __restore_rt) that are identical
99    to the ones used by the kernel.  Therefore, these trampolines are
100    supported too.  */
101 
102 #define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
103 #define LINUX_SIGTRAMP_OFFSET0	0
104 #define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
105 #define LINUX_SIGTRAMP_OFFSET1	1
106 #define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
107 #define LINUX_SIGTRAMP_OFFSET2	6
108 
109 static const unsigned char linux_sigtramp_code[] =
110 {
111   LINUX_SIGTRAMP_INSN0,					/* pop %eax */
112   LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
113   LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
114 };
115 
116 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117 
118 /* If NEXT_FRAME unwinds into a sigtramp routine, return the address
119    of the start of the routine.  Otherwise, return 0.  */
120 
121 static CORE_ADDR
122 i386_linux_sigtramp_start (struct frame_info *next_frame)
123 {
124   CORE_ADDR pc = frame_pc_unwind (next_frame);
125   unsigned char buf[LINUX_SIGTRAMP_LEN];
126 
127   /* We only recognize a signal trampoline if PC is at the start of
128      one of the three instructions.  We optimize for finding the PC at
129      the start, as will be the case when the trampoline is not the
130      first frame on the stack.  We assume that in the case where the
131      PC is not at the start of the instruction sequence, there will be
132      a few trailing readable bytes on the stack.  */
133 
134   if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
135     return 0;
136 
137   if (buf[0] != LINUX_SIGTRAMP_INSN0)
138     {
139       int adjust;
140 
141       switch (buf[0])
142 	{
143 	case LINUX_SIGTRAMP_INSN1:
144 	  adjust = LINUX_SIGTRAMP_OFFSET1;
145 	  break;
146 	case LINUX_SIGTRAMP_INSN2:
147 	  adjust = LINUX_SIGTRAMP_OFFSET2;
148 	  break;
149 	default:
150 	  return 0;
151 	}
152 
153       pc -= adjust;
154 
155       if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
156 	return 0;
157     }
158 
159   if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
160     return 0;
161 
162   return pc;
163 }
164 
165 /* This function does the same for RT signals.  Here the instruction
166    sequence is
167        mov    $0xad, %eax
168        int    $0x80
169    or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
170 
171    The effect is to call the system call rt_sigreturn.  */
172 
173 #define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
174 #define LINUX_RT_SIGTRAMP_OFFSET0	0
175 #define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
176 #define LINUX_RT_SIGTRAMP_OFFSET1	5
177 
178 static const unsigned char linux_rt_sigtramp_code[] =
179 {
180   LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
181   LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
182 };
183 
184 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
185 
186 /* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
187    address of the start of the routine.  Otherwise, return 0.  */
188 
189 static CORE_ADDR
190 i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
191 {
192   CORE_ADDR pc = frame_pc_unwind (next_frame);
193   unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
194 
195   /* We only recognize a signal trampoline if PC is at the start of
196      one of the two instructions.  We optimize for finding the PC at
197      the start, as will be the case when the trampoline is not the
198      first frame on the stack.  We assume that in the case where the
199      PC is not at the start of the instruction sequence, there will be
200      a few trailing readable bytes on the stack.  */
201 
202   if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
203     return 0;
204 
205   if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
206     {
207       if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
208 	return 0;
209 
210       pc -= LINUX_RT_SIGTRAMP_OFFSET1;
211 
212       if (!safe_frame_unwind_memory (next_frame, pc, buf,
213 				     LINUX_RT_SIGTRAMP_LEN))
214 	return 0;
215     }
216 
217   if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
218     return 0;
219 
220   return pc;
221 }
222 
223 /* Return whether the frame preceding NEXT_FRAME corresponds to a
224    GNU/Linux sigtramp routine.  */
225 
226 static int
227 i386_linux_sigtramp_p (struct frame_info *next_frame)
228 {
229   CORE_ADDR pc = frame_pc_unwind (next_frame);
230   char *name;
231 
232   find_pc_partial_function (pc, &name, NULL, NULL);
233 
234   /* If we have NAME, we can optimize the search.  The trampolines are
235      named __restore and __restore_rt.  However, they aren't dynamically
236      exported from the shared C library, so the trampoline may appear to
237      be part of the preceding function.  This should always be sigaction,
238      __sigaction, or __libc_sigaction (all aliases to the same function).  */
239   if (name == NULL || strstr (name, "sigaction") != NULL)
240     return (i386_linux_sigtramp_start (next_frame) != 0
241 	    || i386_linux_rt_sigtramp_start (next_frame) != 0);
242 
243   return (strcmp ("__restore", name) == 0
244 	  || strcmp ("__restore_rt", name) == 0);
245 }
246 
247 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
248 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
249 
250 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
251    routine, return the address of the associated sigcontext structure.  */
252 
253 static CORE_ADDR
254 i386_linux_sigcontext_addr (struct frame_info *next_frame)
255 {
256   CORE_ADDR pc;
257   CORE_ADDR sp;
258   char buf[4];
259 
260   frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
261   sp = extract_unsigned_integer (buf, 4);
262 
263   pc = i386_linux_sigtramp_start (next_frame);
264   if (pc)
265     {
266       /* The sigcontext structure lives on the stack, right after
267 	 the signum argument.  We determine the address of the
268 	 sigcontext structure by looking at the frame's stack
269 	 pointer.  Keep in mind that the first instruction of the
270 	 sigtramp code is "pop %eax".  If the PC is after this
271 	 instruction, adjust the returned value accordingly.  */
272       if (pc == frame_pc_unwind (next_frame))
273 	return sp + 4;
274       return sp;
275     }
276 
277   pc = i386_linux_rt_sigtramp_start (next_frame);
278   if (pc)
279     {
280       CORE_ADDR ucontext_addr;
281 
282       /* The sigcontext structure is part of the user context.  A
283 	 pointer to the user context is passed as the third argument
284 	 to the signal handler.  */
285       read_memory (sp + 8, buf, 4);
286       ucontext_addr = extract_unsigned_integer (buf, 4);
287       return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
288     }
289 
290   error ("Couldn't recognize signal trampoline.");
291   return 0;
292 }
293 
294 /* Set the program counter for process PTID to PC.  */
295 
296 static void
297 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
298 {
299   write_register_pid (I386_EIP_REGNUM, pc, ptid);
300 
301   /* We must be careful with modifying the program counter.  If we
302      just interrupted a system call, the kernel might try to restart
303      it when we resume the inferior.  On restarting the system call,
304      the kernel will try backing up the program counter even though it
305      no longer points at the system call.  This typically results in a
306      SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
307      "orig_eax" pseudo-register.
308 
309      Note that "orig_eax" is saved when setting up a dummy call frame.
310      This means that it is properly restored when that frame is
311      popped, and that the interrupted system call will be restarted
312      when we resume the inferior on return from a function call from
313      within GDB.  In all other cases the system call will not be
314      restarted.  */
315   write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
316 }
317 
318 
319 /* The register sets used in GNU/Linux ELF core-dumps are identical to
320    the register sets in `struct user' that are used for a.out
321    core-dumps.  These are also used by ptrace(2).  The corresponding
322    types are `elf_gregset_t' for the general-purpose registers (with
323    `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
324    for the floating-point registers.
325 
326    Those types used to be available under the names `gregset_t' and
327    `fpregset_t' too, and GDB used those names in the past.  But those
328    names are now used for the register sets used in the `mcontext_t'
329    type, which have a different size and layout.  */
330 
331 /* Mapping between the general-purpose registers in `struct user'
332    format and GDB's register cache layout.  */
333 
334 /* From <sys/reg.h>.  */
335 static int i386_linux_gregset_reg_offset[] =
336 {
337   6 * 4,			/* %eax */
338   1 * 4,			/* %ecx */
339   2 * 4,			/* %edx */
340   0 * 4,			/* %ebx */
341   15 * 4,			/* %esp */
342   5 * 4,			/* %ebp */
343   3 * 4,			/* %esi */
344   4 * 4,			/* %edi */
345   12 * 4,			/* %eip */
346   14 * 4,			/* %eflags */
347   13 * 4,			/* %cs */
348   16 * 4,			/* %ss */
349   7 * 4,			/* %ds */
350   8 * 4,			/* %es */
351   9 * 4,			/* %fs */
352   10 * 4,			/* %gs */
353   -1, -1, -1, -1, -1, -1, -1, -1,
354   -1, -1, -1, -1, -1, -1, -1, -1,
355   -1, -1, -1, -1, -1, -1, -1, -1,
356   -1,
357   11 * 4			/* "orig_eax" */
358 };
359 
360 /* Mapping between the general-purpose registers in `struct
361    sigcontext' format and GDB's register cache layout.  */
362 
363 /* From <asm/sigcontext.h>.  */
364 static int i386_linux_sc_reg_offset[] =
365 {
366   11 * 4,			/* %eax */
367   10 * 4,			/* %ecx */
368   9 * 4,			/* %edx */
369   8 * 4,			/* %ebx */
370   7 * 4,			/* %esp */
371   6 * 4,			/* %ebp */
372   5 * 4,			/* %esi */
373   4 * 4,			/* %edi */
374   14 * 4,			/* %eip */
375   16 * 4,			/* %eflags */
376   15 * 4,			/* %cs */
377   18 * 4,			/* %ss */
378   3 * 4,			/* %ds */
379   2 * 4,			/* %es */
380   1 * 4,			/* %fs */
381   0 * 4				/* %gs */
382 };
383 
384 static void
385 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
386 {
387   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 
389   /* GNU/Linux uses ELF.  */
390   i386_elf_init_abi (info, gdbarch);
391 
392   /* Since we have the extra "orig_eax" register on GNU/Linux, we have
393      to adjust a few things.  */
394 
395   set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
396   set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
397   set_gdbarch_register_name (gdbarch, i386_linux_register_name);
398   set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
399 
400   tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
401   tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
402   tdep->sizeof_gregset = 17 * 4;
403 
404   tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */
405 
406   tdep->sigtramp_p = i386_linux_sigtramp_p;
407   tdep->sigcontext_addr = i386_linux_sigcontext_addr;
408   tdep->sc_reg_offset = i386_linux_sc_reg_offset;
409   tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
410 
411   /* GNU/Linux uses SVR4-style shared libraries.  */
412   set_solib_svr4_fetch_link_map_offsets
413     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
414 
415   /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
416   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
417 }
418 
419 /* Provide a prototype to silence -Wmissing-prototypes.  */
420 extern void _initialize_i386_linux_tdep (void);
421 
422 void
423 _initialize_i386_linux_tdep (void)
424 {
425   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
426 			  i386_linux_init_abi);
427 }
428