1 /* Intel 386 target-dependent stuff. 2 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software 5 Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "arch-utils.h" 26 #include "command.h" 27 #include "dummy-frame.h" 28 #include "dwarf2-frame.h" 29 #include "doublest.h" 30 #include "floatformat.h" 31 #include "frame.h" 32 #include "frame-base.h" 33 #include "frame-unwind.h" 34 #include "inferior.h" 35 #include "gdbcmd.h" 36 #include "gdbcore.h" 37 #include "objfiles.h" 38 #include "osabi.h" 39 #include "regcache.h" 40 #include "reggroups.h" 41 #include "regset.h" 42 #include "symfile.h" 43 #include "symtab.h" 44 #include "target.h" 45 #include "value.h" 46 #include "dis-asm.h" 47 48 #include "gdb_assert.h" 49 #include "gdb_string.h" 50 51 #include "i386-tdep.h" 52 #include "i387-tdep.h" 53 54 /* Register names. */ 55 56 static char *i386_register_names[] = 57 { 58 "eax", "ecx", "edx", "ebx", 59 "esp", "ebp", "esi", "edi", 60 "eip", "eflags", "cs", "ss", 61 "ds", "es", "fs", "gs", 62 "st0", "st1", "st2", "st3", 63 "st4", "st5", "st6", "st7", 64 "fctrl", "fstat", "ftag", "fiseg", 65 "fioff", "foseg", "fooff", "fop", 66 "xmm0", "xmm1", "xmm2", "xmm3", 67 "xmm4", "xmm5", "xmm6", "xmm7", 68 "mxcsr" 69 }; 70 71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names); 72 73 /* Register names for MMX pseudo-registers. */ 74 75 static char *i386_mmx_names[] = 76 { 77 "mm0", "mm1", "mm2", "mm3", 78 "mm4", "mm5", "mm6", "mm7" 79 }; 80 81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names); 82 83 static int 84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum) 85 { 86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum; 87 88 if (mm0_regnum < 0) 89 return 0; 90 91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs); 92 } 93 94 /* SSE register? */ 95 96 static int 97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum) 98 { 99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 100 101 #define I387_ST0_REGNUM tdep->st0_regnum 102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs 103 104 if (I387_NUM_XMM_REGS == 0) 105 return 0; 106 107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM); 108 109 #undef I387_ST0_REGNUM 110 #undef I387_NUM_XMM_REGS 111 } 112 113 static int 114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum) 115 { 116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 117 118 #define I387_ST0_REGNUM tdep->st0_regnum 119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs 120 121 if (I387_NUM_XMM_REGS == 0) 122 return 0; 123 124 return (regnum == I387_MXCSR_REGNUM); 125 126 #undef I387_ST0_REGNUM 127 #undef I387_NUM_XMM_REGS 128 } 129 130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum) 131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum) 132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs) 133 134 /* FP register? */ 135 136 int 137 i386_fp_regnum_p (int regnum) 138 { 139 if (I387_ST0_REGNUM < 0) 140 return 0; 141 142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM); 143 } 144 145 int 146 i386_fpc_regnum_p (int regnum) 147 { 148 if (I387_ST0_REGNUM < 0) 149 return 0; 150 151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM); 152 } 153 154 /* Return the name of register REGNUM. */ 155 156 const char * 157 i386_register_name (int regnum) 158 { 159 if (i386_mmx_regnum_p (current_gdbarch, regnum)) 160 return i386_mmx_names[regnum - I387_MM0_REGNUM]; 161 162 if (regnum >= 0 && regnum < i386_num_register_names) 163 return i386_register_names[regnum]; 164 165 return NULL; 166 } 167 168 /* Convert a dbx register number REG to the appropriate register 169 number used by GDB. */ 170 171 static int 172 i386_dbx_reg_to_regnum (int reg) 173 { 174 /* This implements what GCC calls the "default" register map 175 (dbx_register_map[]). */ 176 177 if (reg >= 0 && reg <= 7) 178 { 179 /* General-purpose registers. The debug info calls %ebp 180 register 4, and %esp register 5. */ 181 if (reg == 4) 182 return 5; 183 else if (reg == 5) 184 return 4; 185 else return reg; 186 } 187 else if (reg >= 12 && reg <= 19) 188 { 189 /* Floating-point registers. */ 190 return reg - 12 + I387_ST0_REGNUM; 191 } 192 else if (reg >= 21 && reg <= 28) 193 { 194 /* SSE registers. */ 195 return reg - 21 + I387_XMM0_REGNUM; 196 } 197 else if (reg >= 29 && reg <= 36) 198 { 199 /* MMX registers. */ 200 return reg - 29 + I387_MM0_REGNUM; 201 } 202 203 /* This will hopefully provoke a warning. */ 204 return NUM_REGS + NUM_PSEUDO_REGS; 205 } 206 207 /* Convert SVR4 register number REG to the appropriate register number 208 used by GDB. */ 209 210 static int 211 i386_svr4_reg_to_regnum (int reg) 212 { 213 /* This implements the GCC register map that tries to be compatible 214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */ 215 216 /* The SVR4 register numbering includes %eip and %eflags, and 217 numbers the floating point registers differently. */ 218 if (reg >= 0 && reg <= 9) 219 { 220 /* General-purpose registers. */ 221 return reg; 222 } 223 else if (reg >= 11 && reg <= 18) 224 { 225 /* Floating-point registers. */ 226 return reg - 11 + I387_ST0_REGNUM; 227 } 228 else if (reg >= 21) 229 { 230 /* The SSE and MMX registers have the same numbers as with dbx. */ 231 return i386_dbx_reg_to_regnum (reg); 232 } 233 234 /* This will hopefully provoke a warning. */ 235 return NUM_REGS + NUM_PSEUDO_REGS; 236 } 237 238 #undef I387_ST0_REGNUM 239 #undef I387_MM0_REGNUM 240 #undef I387_NUM_XMM_REGS 241 242 243 /* This is the variable that is set with "set disassembly-flavor", and 244 its legitimate values. */ 245 static const char att_flavor[] = "att"; 246 static const char intel_flavor[] = "intel"; 247 static const char *valid_flavors[] = 248 { 249 att_flavor, 250 intel_flavor, 251 NULL 252 }; 253 static const char *disassembly_flavor = att_flavor; 254 255 256 /* Use the program counter to determine the contents and size of a 257 breakpoint instruction. Return a pointer to a string of bytes that 258 encode a breakpoint instruction, store the length of the string in 259 *LEN and optionally adjust *PC to point to the correct memory 260 location for inserting the breakpoint. 261 262 On the i386 we have a single breakpoint that fits in a single byte 263 and can be inserted anywhere. 264 265 This function is 64-bit safe. */ 266 267 static const unsigned char * 268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len) 269 { 270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */ 271 272 *len = sizeof (break_insn); 273 return break_insn; 274 } 275 276 #ifdef I386_REGNO_TO_SYMMETRY 277 #error "The Sequent Symmetry is no longer supported." 278 #endif 279 280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi 281 and %esp "belong" to the calling function. Therefore these 282 registers should be saved if they're going to be modified. */ 283 284 /* The maximum number of saved registers. This should include all 285 registers mentioned above, and %eip. */ 286 #define I386_NUM_SAVED_REGS I386_NUM_GREGS 287 288 struct i386_frame_cache 289 { 290 /* Base address. */ 291 CORE_ADDR base; 292 CORE_ADDR sp_offset; 293 CORE_ADDR pc; 294 295 /* Saved registers. */ 296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS]; 297 CORE_ADDR saved_sp; 298 int pc_in_eax; 299 300 /* Stack space reserved for local variables. */ 301 long locals; 302 }; 303 304 /* Allocate and initialize a frame cache. */ 305 306 static struct i386_frame_cache * 307 i386_alloc_frame_cache (void) 308 { 309 struct i386_frame_cache *cache; 310 int i; 311 312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache); 313 314 /* Base address. */ 315 cache->base = 0; 316 cache->sp_offset = -4; 317 cache->pc = 0; 318 319 /* Saved registers. We initialize these to -1 since zero is a valid 320 offset (that's where %ebp is supposed to be stored). */ 321 for (i = 0; i < I386_NUM_SAVED_REGS; i++) 322 cache->saved_regs[i] = -1; 323 cache->saved_sp = 0; 324 cache->pc_in_eax = 0; 325 326 /* Frameless until proven otherwise. */ 327 cache->locals = -1; 328 329 return cache; 330 } 331 332 /* If the instruction at PC is a jump, return the address of its 333 target. Otherwise, return PC. */ 334 335 static CORE_ADDR 336 i386_follow_jump (CORE_ADDR pc) 337 { 338 unsigned char op; 339 long delta = 0; 340 int data16 = 0; 341 342 op = read_memory_unsigned_integer (pc, 1); 343 if (op == 0x66) 344 { 345 data16 = 1; 346 op = read_memory_unsigned_integer (pc + 1, 1); 347 } 348 349 switch (op) 350 { 351 case 0xe9: 352 /* Relative jump: if data16 == 0, disp32, else disp16. */ 353 if (data16) 354 { 355 delta = read_memory_integer (pc + 2, 2); 356 357 /* Include the size of the jmp instruction (including the 358 0x66 prefix). */ 359 delta += 4; 360 } 361 else 362 { 363 delta = read_memory_integer (pc + 1, 4); 364 365 /* Include the size of the jmp instruction. */ 366 delta += 5; 367 } 368 break; 369 case 0xeb: 370 /* Relative jump, disp8 (ignore data16). */ 371 delta = read_memory_integer (pc + data16 + 1, 1); 372 373 delta += data16 + 2; 374 break; 375 } 376 377 return pc + delta; 378 } 379 380 /* Check whether PC points at a prologue for a function returning a 381 structure or union. If so, it updates CACHE and returns the 382 address of the first instruction after the code sequence that 383 removes the "hidden" argument from the stack or CURRENT_PC, 384 whichever is smaller. Otherwise, return PC. */ 385 386 static CORE_ADDR 387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc, 388 struct i386_frame_cache *cache) 389 { 390 /* Functions that return a structure or union start with: 391 392 popl %eax 0x58 393 xchgl %eax, (%esp) 0x87 0x04 0x24 394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00 395 396 (the System V compiler puts out the second `xchg' instruction, 397 and the assembler doesn't try to optimize it, so the 'sib' form 398 gets generated). This sequence is used to get the address of the 399 return buffer for a function that returns a structure. */ 400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 }; 401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 }; 402 unsigned char buf[4]; 403 unsigned char op; 404 405 if (current_pc <= pc) 406 return pc; 407 408 op = read_memory_unsigned_integer (pc, 1); 409 410 if (op != 0x58) /* popl %eax */ 411 return pc; 412 413 read_memory (pc + 1, buf, 4); 414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0) 415 return pc; 416 417 if (current_pc == pc) 418 { 419 cache->sp_offset += 4; 420 return current_pc; 421 } 422 423 if (current_pc == pc + 1) 424 { 425 cache->pc_in_eax = 1; 426 return current_pc; 427 } 428 429 if (buf[1] == proto1[1]) 430 return pc + 4; 431 else 432 return pc + 5; 433 } 434 435 static CORE_ADDR 436 i386_skip_probe (CORE_ADDR pc) 437 { 438 /* A function may start with 439 440 pushl constant 441 call _probe 442 addl $4, %esp 443 444 followed by 445 446 pushl %ebp 447 448 etc. */ 449 unsigned char buf[8]; 450 unsigned char op; 451 452 op = read_memory_unsigned_integer (pc, 1); 453 454 if (op == 0x68 || op == 0x6a) 455 { 456 int delta; 457 458 /* Skip past the `pushl' instruction; it has either a one-byte or a 459 four-byte operand, depending on the opcode. */ 460 if (op == 0x68) 461 delta = 5; 462 else 463 delta = 2; 464 465 /* Read the following 8 bytes, which should be `call _probe' (6 466 bytes) followed by `addl $4,%esp' (2 bytes). */ 467 read_memory (pc + delta, buf, sizeof (buf)); 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4) 469 pc += delta + sizeof (buf); 470 } 471 472 return pc; 473 } 474 475 /* Maximum instruction length we need to handle. */ 476 #define I386_MAX_INSN_LEN 6 477 478 /* Instruction description. */ 479 struct i386_insn 480 { 481 size_t len; 482 unsigned char insn[I386_MAX_INSN_LEN]; 483 unsigned char mask[I386_MAX_INSN_LEN]; 484 }; 485 486 /* Search for the instruction at PC in the list SKIP_INSNS. Return 487 the first instruction description that matches. Otherwise, return 488 NULL. */ 489 490 static struct i386_insn * 491 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns) 492 { 493 struct i386_insn *insn; 494 unsigned char op; 495 496 op = read_memory_unsigned_integer (pc, 1); 497 498 for (insn = skip_insns; insn->len > 0; insn++) 499 { 500 if ((op & insn->mask[0]) == insn->insn[0]) 501 { 502 unsigned char buf[I386_MAX_INSN_LEN - 1]; 503 size_t i; 504 505 gdb_assert (insn->len > 1); 506 gdb_assert (insn->len <= I386_MAX_INSN_LEN); 507 508 read_memory (pc + 1, buf, insn->len - 1); 509 for (i = 1; i < insn->len; i++) 510 { 511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i]) 512 break; 513 514 return insn; 515 } 516 } 517 } 518 519 return NULL; 520 } 521 522 /* Some special instructions that might be migrated by GCC into the 523 part of the prologue that sets up the new stack frame. Because the 524 stack frame hasn't been setup yet, no registers have been saved 525 yet, and only the scratch registers %eax, %ecx and %edx can be 526 touched. */ 527 528 struct i386_insn i386_frame_setup_skip_insns[] = 529 { 530 /* Check for `movb imm8, r' and `movl imm32, r'. 531 532 ??? Should we handle 16-bit operand-sizes here? */ 533 534 /* `movb imm8, %al' and `movb imm8, %ah' */ 535 /* `movb imm8, %cl' and `movb imm8, %ch' */ 536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } }, 537 /* `movb imm8, %dl' and `movb imm8, %dh' */ 538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } }, 539 /* `movl imm32, %eax' and `movl imm32, %ecx' */ 540 { 5, { 0xb8 }, { 0xfe } }, 541 /* `movl imm32, %edx' */ 542 { 5, { 0xba }, { 0xff } }, 543 544 /* Check for `mov imm32, r32'. Note that there is an alternative 545 encoding for `mov m32, %eax'. 546 547 ??? Should we handle SIB adressing here? 548 ??? Should we handle 16-bit operand-sizes here? */ 549 550 /* `movl m32, %eax' */ 551 { 5, { 0xa1 }, { 0xff } }, 552 /* `movl m32, %eax' and `mov; m32, %ecx' */ 553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } }, 554 /* `movl m32, %edx' */ 555 { 6, { 0x89, 0x15 }, {0xff, 0xff } }, 556 557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'. 558 Because of the symmetry, there are actually two ways to encode 559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and 560 opcode bytes 0x31 and 0x33 for `xorl'. */ 561 562 /* `subl %eax, %eax' */ 563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } }, 564 /* `subl %ecx, %ecx' */ 565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } }, 566 /* `subl %edx, %edx' */ 567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } }, 568 /* `xorl %eax, %eax' */ 569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } }, 570 /* `xorl %ecx, %ecx' */ 571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } }, 572 /* `xorl %edx, %edx' */ 573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } }, 574 { 0 } 575 }; 576 577 /* Check whether PC points at a code that sets up a new stack frame. 578 If so, it updates CACHE and returns the address of the first 579 instruction after the sequence that sets up the frame or LIMIT, 580 whichever is smaller. If we don't recognize the code, return PC. */ 581 582 static CORE_ADDR 583 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit, 584 struct i386_frame_cache *cache) 585 { 586 struct i386_insn *insn; 587 unsigned char op; 588 int skip = 0; 589 590 if (limit <= pc) 591 return limit; 592 593 op = read_memory_unsigned_integer (pc, 1); 594 595 if (op == 0x55) /* pushl %ebp */ 596 { 597 /* Take into account that we've executed the `pushl %ebp' that 598 starts this instruction sequence. */ 599 cache->saved_regs[I386_EBP_REGNUM] = 0; 600 cache->sp_offset += 4; 601 pc++; 602 603 /* If that's all, return now. */ 604 if (limit <= pc) 605 return limit; 606 607 /* Check for some special instructions that might be migrated by 608 GCC into the prologue and skip them. At this point in the 609 prologue, code should only touch the scratch registers %eax, 610 %ecx and %edx, so while the number of posibilities is sheer, 611 it is limited. 612 613 Make sure we only skip these instructions if we later see the 614 `movl %esp, %ebp' that actually sets up the frame. */ 615 while (pc + skip < limit) 616 { 617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns); 618 if (insn == NULL) 619 break; 620 621 skip += insn->len; 622 } 623 624 /* If that's all, return now. */ 625 if (limit <= pc + skip) 626 return limit; 627 628 op = read_memory_unsigned_integer (pc + skip, 1); 629 630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */ 631 switch (op) 632 { 633 case 0x8b: 634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec) 635 return pc; 636 break; 637 case 0x89: 638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5) 639 return pc; 640 break; 641 default: 642 return pc; 643 } 644 645 /* OK, we actually have a frame. We just don't know how large 646 it is yet. Set its size to zero. We'll adjust it if 647 necessary. We also now commit to skipping the special 648 instructions mentioned before. */ 649 cache->locals = 0; 650 pc += (skip + 2); 651 652 /* If that's all, return now. */ 653 if (limit <= pc) 654 return limit; 655 656 /* Check for stack adjustment 657 658 subl $XXX, %esp 659 660 NOTE: You can't subtract a 16-bit immediate from a 32-bit 661 reg, so we don't have to worry about a data16 prefix. */ 662 op = read_memory_unsigned_integer (pc, 1); 663 if (op == 0x83) 664 { 665 /* `subl' with 8-bit immediate. */ 666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec) 667 /* Some instruction starting with 0x83 other than `subl'. */ 668 return pc; 669 670 /* `subl' with signed 8-bit immediate (though it wouldn't 671 make sense to be negative). */ 672 cache->locals = read_memory_integer (pc + 2, 1); 673 return pc + 3; 674 } 675 else if (op == 0x81) 676 { 677 /* Maybe it is `subl' with a 32-bit immediate. */ 678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec) 679 /* Some instruction starting with 0x81 other than `subl'. */ 680 return pc; 681 682 /* It is `subl' with a 32-bit immediate. */ 683 cache->locals = read_memory_integer (pc + 2, 4); 684 return pc + 6; 685 } 686 else 687 { 688 /* Some instruction other than `subl'. */ 689 return pc; 690 } 691 } 692 else if (op == 0xc8) /* enter */ 693 { 694 cache->locals = read_memory_unsigned_integer (pc + 1, 2); 695 return pc + 4; 696 } 697 698 return pc; 699 } 700 701 /* Check whether PC points at code that saves registers on the stack. 702 If so, it updates CACHE and returns the address of the first 703 instruction after the register saves or CURRENT_PC, whichever is 704 smaller. Otherwise, return PC. */ 705 706 static CORE_ADDR 707 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc, 708 struct i386_frame_cache *cache) 709 { 710 CORE_ADDR offset = 0; 711 unsigned char op; 712 int i; 713 714 if (cache->locals > 0) 715 offset -= cache->locals; 716 for (i = 0; i < 8 && pc < current_pc; i++) 717 { 718 op = read_memory_unsigned_integer (pc, 1); 719 if (op < 0x50 || op > 0x57) 720 break; 721 722 offset -= 4; 723 cache->saved_regs[op - 0x50] = offset; 724 cache->sp_offset += 4; 725 pc++; 726 } 727 728 return pc; 729 } 730 731 /* Do a full analysis of the prologue at PC and update CACHE 732 accordingly. Bail out early if CURRENT_PC is reached. Return the 733 address where the analysis stopped. 734 735 We handle these cases: 736 737 The startup sequence can be at the start of the function, or the 738 function can start with a branch to startup code at the end. 739 740 %ebp can be set up with either the 'enter' instruction, or "pushl 741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was 742 once used in the System V compiler). 743 744 Local space is allocated just below the saved %ebp by either the 745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 746 16-bit unsigned argument for space to allocate, and the 'addl' 747 instruction could have either a signed byte, or 32-bit immediate. 748 749 Next, the registers used by this function are pushed. With the 750 System V compiler they will always be in the order: %edi, %esi, 751 %ebx (and sometimes a harmless bug causes it to also save but not 752 restore %eax); however, the code below is willing to see the pushes 753 in any order, and will handle up to 8 of them. 754 755 If the setup sequence is at the end of the function, then the next 756 instruction will be a branch back to the start. */ 757 758 static CORE_ADDR 759 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, 760 struct i386_frame_cache *cache) 761 { 762 pc = i386_follow_jump (pc); 763 pc = i386_analyze_struct_return (pc, current_pc, cache); 764 pc = i386_skip_probe (pc); 765 pc = i386_analyze_frame_setup (pc, current_pc, cache); 766 return i386_analyze_register_saves (pc, current_pc, cache); 767 } 768 769 /* Return PC of first real instruction. */ 770 771 static CORE_ADDR 772 i386_skip_prologue (CORE_ADDR start_pc) 773 { 774 static unsigned char pic_pat[6] = 775 { 776 0xe8, 0, 0, 0, 0, /* call 0x0 */ 777 0x5b, /* popl %ebx */ 778 }; 779 struct i386_frame_cache cache; 780 CORE_ADDR pc; 781 unsigned char op; 782 int i; 783 784 cache.locals = -1; 785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache); 786 if (cache.locals < 0) 787 return start_pc; 788 789 /* Found valid frame setup. */ 790 791 /* The native cc on SVR4 in -K PIC mode inserts the following code 792 to get the address of the global offset table (GOT) into register 793 %ebx: 794 795 call 0x0 796 popl %ebx 797 movl %ebx,x(%ebp) (optional) 798 addl y,%ebx 799 800 This code is with the rest of the prologue (at the end of the 801 function), so we have to skip it to get to the first real 802 instruction at the start of the function. */ 803 804 for (i = 0; i < 6; i++) 805 { 806 op = read_memory_unsigned_integer (pc + i, 1); 807 if (pic_pat[i] != op) 808 break; 809 } 810 if (i == 6) 811 { 812 int delta = 6; 813 814 op = read_memory_unsigned_integer (pc + delta, 1); 815 816 if (op == 0x89) /* movl %ebx, x(%ebp) */ 817 { 818 op = read_memory_unsigned_integer (pc + delta + 1, 1); 819 820 if (op == 0x5d) /* One byte offset from %ebp. */ 821 delta += 3; 822 else if (op == 0x9d) /* Four byte offset from %ebp. */ 823 delta += 6; 824 else /* Unexpected instruction. */ 825 delta = 0; 826 827 op = read_memory_unsigned_integer (pc + delta, 1); 828 } 829 830 /* addl y,%ebx */ 831 if (delta > 0 && op == 0x81 832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3) 833 { 834 pc += delta + 6; 835 } 836 } 837 838 /* If the function starts with a branch (to startup code at the end) 839 the last instruction should bring us back to the first 840 instruction of the real code. */ 841 if (i386_follow_jump (start_pc) != start_pc) 842 pc = i386_follow_jump (pc); 843 844 return pc; 845 } 846 847 /* This function is 64-bit safe. */ 848 849 static CORE_ADDR 850 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 851 { 852 char buf[8]; 853 854 frame_unwind_register (next_frame, PC_REGNUM, buf); 855 return extract_typed_address (buf, builtin_type_void_func_ptr); 856 } 857 858 859 /* Normal frames. */ 860 861 static struct i386_frame_cache * 862 i386_frame_cache (struct frame_info *next_frame, void **this_cache) 863 { 864 struct i386_frame_cache *cache; 865 char buf[4]; 866 int i; 867 868 if (*this_cache) 869 return *this_cache; 870 871 cache = i386_alloc_frame_cache (); 872 *this_cache = cache; 873 874 /* In principle, for normal frames, %ebp holds the frame pointer, 875 which holds the base address for the current stack frame. 876 However, for functions that don't need it, the frame pointer is 877 optional. For these "frameless" functions the frame pointer is 878 actually the frame pointer of the calling frame. Signal 879 trampolines are just a special case of a "frameless" function. 880 They (usually) share their frame pointer with the frame that was 881 in progress when the signal occurred. */ 882 883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf); 884 cache->base = extract_unsigned_integer (buf, 4); 885 if (cache->base == 0) 886 return cache; 887 888 /* For normal frames, %eip is stored at 4(%ebp). */ 889 cache->saved_regs[I386_EIP_REGNUM] = 4; 890 891 cache->pc = frame_func_unwind (next_frame); 892 if (cache->pc != 0) 893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); 894 895 if (cache->locals < 0) 896 { 897 /* We didn't find a valid frame, which means that CACHE->base 898 currently holds the frame pointer for our calling frame. If 899 we're at the start of a function, or somewhere half-way its 900 prologue, the function's frame probably hasn't been fully 901 setup yet. Try to reconstruct the base address for the stack 902 frame by looking at the stack pointer. For truly "frameless" 903 functions this might work too. */ 904 905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); 906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset; 907 } 908 909 /* Now that we have the base address for the stack frame we can 910 calculate the value of %esp in the calling frame. */ 911 cache->saved_sp = cache->base + 8; 912 913 /* Adjust all the saved registers such that they contain addresses 914 instead of offsets. */ 915 for (i = 0; i < I386_NUM_SAVED_REGS; i++) 916 if (cache->saved_regs[i] != -1) 917 cache->saved_regs[i] += cache->base; 918 919 return cache; 920 } 921 922 static void 923 i386_frame_this_id (struct frame_info *next_frame, void **this_cache, 924 struct frame_id *this_id) 925 { 926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache); 927 928 /* This marks the outermost frame. */ 929 if (cache->base == 0) 930 return; 931 932 /* See the end of i386_push_dummy_call. */ 933 (*this_id) = frame_id_build (cache->base + 8, cache->pc); 934 } 935 936 static void 937 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache, 938 int regnum, int *optimizedp, 939 enum lval_type *lvalp, CORE_ADDR *addrp, 940 int *realnump, void *valuep) 941 { 942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache); 943 944 gdb_assert (regnum >= 0); 945 946 /* The System V ABI says that: 947 948 "The flags register contains the system flags, such as the 949 direction flag and the carry flag. The direction flag must be 950 set to the forward (that is, zero) direction before entry and 951 upon exit from a function. Other user flags have no specified 952 role in the standard calling sequence and are not preserved." 953 954 To guarantee the "upon exit" part of that statement we fake a 955 saved flags register that has its direction flag cleared. 956 957 Note that GCC doesn't seem to rely on the fact that the direction 958 flag is cleared after a function return; it always explicitly 959 clears the flag before operations where it matters. 960 961 FIXME: kettenis/20030316: I'm not quite sure whether this is the 962 right thing to do. The way we fake the flags register here makes 963 it impossible to change it. */ 964 965 if (regnum == I386_EFLAGS_REGNUM) 966 { 967 *optimizedp = 0; 968 *lvalp = not_lval; 969 *addrp = 0; 970 *realnump = -1; 971 if (valuep) 972 { 973 ULONGEST val; 974 975 /* Clear the direction flag. */ 976 val = frame_unwind_register_unsigned (next_frame, 977 I386_EFLAGS_REGNUM); 978 val &= ~(1 << 10); 979 store_unsigned_integer (valuep, 4, val); 980 } 981 982 return; 983 } 984 985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax) 986 { 987 frame_register_unwind (next_frame, I386_EAX_REGNUM, 988 optimizedp, lvalp, addrp, realnump, valuep); 989 return; 990 } 991 992 if (regnum == I386_ESP_REGNUM && cache->saved_sp) 993 { 994 *optimizedp = 0; 995 *lvalp = not_lval; 996 *addrp = 0; 997 *realnump = -1; 998 if (valuep) 999 { 1000 /* Store the value. */ 1001 store_unsigned_integer (valuep, 4, cache->saved_sp); 1002 } 1003 return; 1004 } 1005 1006 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) 1007 { 1008 *optimizedp = 0; 1009 *lvalp = lval_memory; 1010 *addrp = cache->saved_regs[regnum]; 1011 *realnump = -1; 1012 if (valuep) 1013 { 1014 /* Read the value in from memory. */ 1015 read_memory (*addrp, valuep, 1016 register_size (current_gdbarch, regnum)); 1017 } 1018 return; 1019 } 1020 1021 frame_register_unwind (next_frame, regnum, 1022 optimizedp, lvalp, addrp, realnump, valuep); 1023 } 1024 1025 static const struct frame_unwind i386_frame_unwind = 1026 { 1027 NORMAL_FRAME, 1028 i386_frame_this_id, 1029 i386_frame_prev_register 1030 }; 1031 1032 static const struct frame_unwind * 1033 i386_frame_sniffer (struct frame_info *next_frame) 1034 { 1035 return &i386_frame_unwind; 1036 } 1037 1038 1039 /* Signal trampolines. */ 1040 1041 static struct i386_frame_cache * 1042 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) 1043 { 1044 struct i386_frame_cache *cache; 1045 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 1046 CORE_ADDR addr; 1047 char buf[4]; 1048 1049 if (*this_cache) 1050 return *this_cache; 1051 1052 cache = i386_alloc_frame_cache (); 1053 1054 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); 1055 cache->base = extract_unsigned_integer (buf, 4) - 4; 1056 1057 addr = tdep->sigcontext_addr (next_frame); 1058 if (tdep->sc_reg_offset) 1059 { 1060 int i; 1061 1062 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS); 1063 1064 for (i = 0; i < tdep->sc_num_regs; i++) 1065 if (tdep->sc_reg_offset[i] != -1) 1066 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; 1067 } 1068 else 1069 { 1070 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset; 1071 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset; 1072 } 1073 1074 *this_cache = cache; 1075 return cache; 1076 } 1077 1078 static void 1079 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, 1080 struct frame_id *this_id) 1081 { 1082 struct i386_frame_cache *cache = 1083 i386_sigtramp_frame_cache (next_frame, this_cache); 1084 1085 /* See the end of i386_push_dummy_call. */ 1086 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame)); 1087 } 1088 1089 static void 1090 i386_sigtramp_frame_prev_register (struct frame_info *next_frame, 1091 void **this_cache, 1092 int regnum, int *optimizedp, 1093 enum lval_type *lvalp, CORE_ADDR *addrp, 1094 int *realnump, void *valuep) 1095 { 1096 /* Make sure we've initialized the cache. */ 1097 i386_sigtramp_frame_cache (next_frame, this_cache); 1098 1099 i386_frame_prev_register (next_frame, this_cache, regnum, 1100 optimizedp, lvalp, addrp, realnump, valuep); 1101 } 1102 1103 static const struct frame_unwind i386_sigtramp_frame_unwind = 1104 { 1105 SIGTRAMP_FRAME, 1106 i386_sigtramp_frame_this_id, 1107 i386_sigtramp_frame_prev_register 1108 }; 1109 1110 static const struct frame_unwind * 1111 i386_sigtramp_frame_sniffer (struct frame_info *next_frame) 1112 { 1113 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); 1114 1115 /* We shouldn't even bother if we don't have a sigcontext_addr 1116 handler. */ 1117 if (tdep->sigcontext_addr == NULL) 1118 return NULL; 1119 1120 if (tdep->sigtramp_p != NULL) 1121 { 1122 if (tdep->sigtramp_p (next_frame)) 1123 return &i386_sigtramp_frame_unwind; 1124 } 1125 1126 if (tdep->sigtramp_start != 0) 1127 { 1128 CORE_ADDR pc = frame_pc_unwind (next_frame); 1129 1130 gdb_assert (tdep->sigtramp_end != 0); 1131 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) 1132 return &i386_sigtramp_frame_unwind; 1133 } 1134 1135 return NULL; 1136 } 1137 1138 1139 static CORE_ADDR 1140 i386_frame_base_address (struct frame_info *next_frame, void **this_cache) 1141 { 1142 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache); 1143 1144 return cache->base; 1145 } 1146 1147 static const struct frame_base i386_frame_base = 1148 { 1149 &i386_frame_unwind, 1150 i386_frame_base_address, 1151 i386_frame_base_address, 1152 i386_frame_base_address 1153 }; 1154 1155 static struct frame_id 1156 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) 1157 { 1158 char buf[4]; 1159 CORE_ADDR fp; 1160 1161 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf); 1162 fp = extract_unsigned_integer (buf, 4); 1163 1164 /* See the end of i386_push_dummy_call. */ 1165 return frame_id_build (fp + 8, frame_pc_unwind (next_frame)); 1166 } 1167 1168 1169 /* Figure out where the longjmp will land. Slurp the args out of the 1170 stack. We expect the first arg to be a pointer to the jmp_buf 1171 structure from which we extract the address that we will land at. 1172 This address is copied into PC. This routine returns non-zero on 1173 success. 1174 1175 This function is 64-bit safe. */ 1176 1177 static int 1178 i386_get_longjmp_target (CORE_ADDR *pc) 1179 { 1180 char buf[8]; 1181 CORE_ADDR sp, jb_addr; 1182 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset; 1183 int len = TYPE_LENGTH (builtin_type_void_func_ptr); 1184 1185 /* If JB_PC_OFFSET is -1, we have no way to find out where the 1186 longjmp will land. */ 1187 if (jb_pc_offset == -1) 1188 return 0; 1189 1190 /* Don't use I386_ESP_REGNUM here, since this function is also used 1191 for AMD64. */ 1192 regcache_cooked_read (current_regcache, SP_REGNUM, buf); 1193 sp = extract_typed_address (buf, builtin_type_void_data_ptr); 1194 if (target_read_memory (sp + len, buf, len)) 1195 return 0; 1196 1197 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr); 1198 if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) 1199 return 0; 1200 1201 *pc = extract_typed_address (buf, builtin_type_void_func_ptr); 1202 return 1; 1203 } 1204 1205 1206 static CORE_ADDR 1207 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1208 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 1209 struct value **args, CORE_ADDR sp, int struct_return, 1210 CORE_ADDR struct_addr) 1211 { 1212 char buf[4]; 1213 int i; 1214 1215 /* Push arguments in reverse order. */ 1216 for (i = nargs - 1; i >= 0; i--) 1217 { 1218 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); 1219 1220 /* The System V ABI says that: 1221 1222 "An argument's size is increased, if necessary, to make it a 1223 multiple of [32-bit] words. This may require tail padding, 1224 depending on the size of the argument." 1225 1226 This makes sure the stack says word-aligned. */ 1227 sp -= (len + 3) & ~3; 1228 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len); 1229 } 1230 1231 /* Push value address. */ 1232 if (struct_return) 1233 { 1234 sp -= 4; 1235 store_unsigned_integer (buf, 4, struct_addr); 1236 write_memory (sp, buf, 4); 1237 } 1238 1239 /* Store return address. */ 1240 sp -= 4; 1241 store_unsigned_integer (buf, 4, bp_addr); 1242 write_memory (sp, buf, 4); 1243 1244 /* Finally, update the stack pointer... */ 1245 store_unsigned_integer (buf, 4, sp); 1246 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf); 1247 1248 /* ...and fake a frame pointer. */ 1249 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf); 1250 1251 /* MarkK wrote: This "+ 8" is all over the place: 1252 (i386_frame_this_id, i386_sigtramp_frame_this_id, 1253 i386_unwind_dummy_id). It's there, since all frame unwinders for 1254 a given target have to agree (within a certain margin) on the 1255 definition of the stack address of a frame. Otherwise 1256 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the 1257 stack address *before* the function call as a frame's CFA. On 1258 the i386, when %ebp is used as a frame pointer, the offset 1259 between the contents %ebp and the CFA as defined by GCC. */ 1260 return sp + 8; 1261 } 1262 1263 /* These registers are used for returning integers (and on some 1264 targets also for returning `struct' and `union' values when their 1265 size and alignment match an integer type). */ 1266 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */ 1267 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */ 1268 1269 /* Read, for architecture GDBARCH, a function return value of TYPE 1270 from REGCACHE, and copy that into VALBUF. */ 1271 1272 static void 1273 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type, 1274 struct regcache *regcache, void *valbuf) 1275 { 1276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1277 int len = TYPE_LENGTH (type); 1278 char buf[I386_MAX_REGISTER_SIZE]; 1279 1280 if (TYPE_CODE (type) == TYPE_CODE_FLT) 1281 { 1282 if (tdep->st0_regnum < 0) 1283 { 1284 warning ("Cannot find floating-point return value."); 1285 memset (valbuf, 0, len); 1286 return; 1287 } 1288 1289 /* Floating-point return values can be found in %st(0). Convert 1290 its contents to the desired type. This is probably not 1291 exactly how it would happen on the target itself, but it is 1292 the best we can do. */ 1293 regcache_raw_read (regcache, I386_ST0_REGNUM, buf); 1294 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type); 1295 } 1296 else 1297 { 1298 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM); 1299 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM); 1300 1301 if (len <= low_size) 1302 { 1303 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf); 1304 memcpy (valbuf, buf, len); 1305 } 1306 else if (len <= (low_size + high_size)) 1307 { 1308 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf); 1309 memcpy (valbuf, buf, low_size); 1310 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf); 1311 memcpy ((char *) valbuf + low_size, buf, len - low_size); 1312 } 1313 else 1314 internal_error (__FILE__, __LINE__, 1315 "Cannot extract return value of %d bytes long.", len); 1316 } 1317 } 1318 1319 /* Write, for architecture GDBARCH, a function return value of TYPE 1320 from VALBUF into REGCACHE. */ 1321 1322 static void 1323 i386_store_return_value (struct gdbarch *gdbarch, struct type *type, 1324 struct regcache *regcache, const void *valbuf) 1325 { 1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1327 int len = TYPE_LENGTH (type); 1328 1329 /* Define I387_ST0_REGNUM such that we use the proper definitions 1330 for the architecture. */ 1331 #define I387_ST0_REGNUM I386_ST0_REGNUM 1332 1333 if (TYPE_CODE (type) == TYPE_CODE_FLT) 1334 { 1335 ULONGEST fstat; 1336 char buf[I386_MAX_REGISTER_SIZE]; 1337 1338 if (tdep->st0_regnum < 0) 1339 { 1340 warning ("Cannot set floating-point return value."); 1341 return; 1342 } 1343 1344 /* Returning floating-point values is a bit tricky. Apart from 1345 storing the return value in %st(0), we have to simulate the 1346 state of the FPU at function return point. */ 1347 1348 /* Convert the value found in VALBUF to the extended 1349 floating-point format used by the FPU. This is probably 1350 not exactly how it would happen on the target itself, but 1351 it is the best we can do. */ 1352 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext); 1353 regcache_raw_write (regcache, I386_ST0_REGNUM, buf); 1354 1355 /* Set the top of the floating-point register stack to 7. The 1356 actual value doesn't really matter, but 7 is what a normal 1357 function return would end up with if the program started out 1358 with a freshly initialized FPU. */ 1359 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat); 1360 fstat |= (7 << 11); 1361 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat); 1362 1363 /* Mark %st(1) through %st(7) as empty. Since we set the top of 1364 the floating-point register stack to 7, the appropriate value 1365 for the tag word is 0x3fff. */ 1366 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff); 1367 } 1368 else 1369 { 1370 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM); 1371 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM); 1372 1373 if (len <= low_size) 1374 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf); 1375 else if (len <= (low_size + high_size)) 1376 { 1377 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf); 1378 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0, 1379 len - low_size, (char *) valbuf + low_size); 1380 } 1381 else 1382 internal_error (__FILE__, __LINE__, 1383 "Cannot store return value of %d bytes long.", len); 1384 } 1385 1386 #undef I387_ST0_REGNUM 1387 } 1388 1389 1390 /* This is the variable that is set with "set struct-convention", and 1391 its legitimate values. */ 1392 static const char default_struct_convention[] = "default"; 1393 static const char pcc_struct_convention[] = "pcc"; 1394 static const char reg_struct_convention[] = "reg"; 1395 static const char *valid_conventions[] = 1396 { 1397 default_struct_convention, 1398 pcc_struct_convention, 1399 reg_struct_convention, 1400 NULL 1401 }; 1402 static const char *struct_convention = default_struct_convention; 1403 1404 /* Return non-zero if TYPE, which is assumed to be a structure or 1405 union type, should be returned in registers for architecture 1406 GDBARCH. */ 1407 1408 static int 1409 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type) 1410 { 1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1412 enum type_code code = TYPE_CODE (type); 1413 int len = TYPE_LENGTH (type); 1414 1415 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); 1416 1417 if (struct_convention == pcc_struct_convention 1418 || (struct_convention == default_struct_convention 1419 && tdep->struct_return == pcc_struct_return)) 1420 return 0; 1421 1422 return (len == 1 || len == 2 || len == 4 || len == 8); 1423 } 1424 1425 /* Determine, for architecture GDBARCH, how a return value of TYPE 1426 should be returned. If it is supposed to be returned in registers, 1427 and READBUF is non-zero, read the appropriate value from REGCACHE, 1428 and copy it into READBUF. If WRITEBUF is non-zero, write the value 1429 from WRITEBUF into REGCACHE. */ 1430 1431 static enum return_value_convention 1432 i386_return_value (struct gdbarch *gdbarch, struct type *type, 1433 struct regcache *regcache, void *readbuf, 1434 const void *writebuf) 1435 { 1436 enum type_code code = TYPE_CODE (type); 1437 1438 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) 1439 && !i386_reg_struct_return_p (gdbarch, type)) 1440 { 1441 /* The System V ABI says that: 1442 1443 "A function that returns a structure or union also sets %eax 1444 to the value of the original address of the caller's area 1445 before it returns. Thus when the caller receives control 1446 again, the address of the returned object resides in register 1447 %eax and can be used to access the object." 1448 1449 So the ABI guarantees that we can always find the return 1450 value just after the function has returned. */ 1451 1452 if (readbuf) 1453 { 1454 ULONGEST addr; 1455 1456 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr); 1457 read_memory (addr, readbuf, TYPE_LENGTH (type)); 1458 } 1459 1460 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 1461 } 1462 1463 /* This special case is for structures consisting of a single 1464 `float' or `double' member. These structures are returned in 1465 %st(0). For these structures, we call ourselves recursively, 1466 changing TYPE into the type of the first member of the structure. 1467 Since that should work for all structures that have only one 1468 member, we don't bother to check the member's type here. */ 1469 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) 1470 { 1471 type = check_typedef (TYPE_FIELD_TYPE (type, 0)); 1472 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf); 1473 } 1474 1475 if (readbuf) 1476 i386_extract_return_value (gdbarch, type, regcache, readbuf); 1477 if (writebuf) 1478 i386_store_return_value (gdbarch, type, regcache, writebuf); 1479 1480 return RETURN_VALUE_REGISTER_CONVENTION; 1481 } 1482 1483 1484 /* Return the GDB type object for the "standard" data type of data in 1485 register REGNUM. Perhaps %esi and %edi should go here, but 1486 potentially they could be used for things other than address. */ 1487 1488 static struct type * 1489 i386_register_type (struct gdbarch *gdbarch, int regnum) 1490 { 1491 if (regnum == I386_EIP_REGNUM 1492 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM) 1493 return lookup_pointer_type (builtin_type_void); 1494 1495 if (i386_fp_regnum_p (regnum)) 1496 return builtin_type_i387_ext; 1497 1498 if (i386_sse_regnum_p (gdbarch, regnum)) 1499 return builtin_type_vec128i; 1500 1501 if (i386_mmx_regnum_p (gdbarch, regnum)) 1502 return builtin_type_vec64i; 1503 1504 return builtin_type_int; 1505 } 1506 1507 /* Map a cooked register onto a raw register or memory. For the i386, 1508 the MMX registers need to be mapped onto floating point registers. */ 1509 1510 static int 1511 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum) 1512 { 1513 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); 1514 int mmxreg, fpreg; 1515 ULONGEST fstat; 1516 int tos; 1517 1518 /* Define I387_ST0_REGNUM such that we use the proper definitions 1519 for REGCACHE's architecture. */ 1520 #define I387_ST0_REGNUM tdep->st0_regnum 1521 1522 mmxreg = regnum - tdep->mm0_regnum; 1523 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat); 1524 tos = (fstat >> 11) & 0x7; 1525 fpreg = (mmxreg + tos) % 8; 1526 1527 return (I387_ST0_REGNUM + fpreg); 1528 1529 #undef I387_ST0_REGNUM 1530 } 1531 1532 static void 1533 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 1534 int regnum, void *buf) 1535 { 1536 if (i386_mmx_regnum_p (gdbarch, regnum)) 1537 { 1538 char mmx_buf[MAX_REGISTER_SIZE]; 1539 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum); 1540 1541 /* Extract (always little endian). */ 1542 regcache_raw_read (regcache, fpnum, mmx_buf); 1543 memcpy (buf, mmx_buf, register_size (gdbarch, regnum)); 1544 } 1545 else 1546 regcache_raw_read (regcache, regnum, buf); 1547 } 1548 1549 static void 1550 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, 1551 int regnum, const void *buf) 1552 { 1553 if (i386_mmx_regnum_p (gdbarch, regnum)) 1554 { 1555 char mmx_buf[MAX_REGISTER_SIZE]; 1556 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum); 1557 1558 /* Read ... */ 1559 regcache_raw_read (regcache, fpnum, mmx_buf); 1560 /* ... Modify ... (always little endian). */ 1561 memcpy (mmx_buf, buf, register_size (gdbarch, regnum)); 1562 /* ... Write. */ 1563 regcache_raw_write (regcache, fpnum, mmx_buf); 1564 } 1565 else 1566 regcache_raw_write (regcache, regnum, buf); 1567 } 1568 1569 1570 /* Return the register number of the register allocated by GCC after 1571 REGNUM, or -1 if there is no such register. */ 1572 1573 static int 1574 i386_next_regnum (int regnum) 1575 { 1576 /* GCC allocates the registers in the order: 1577 1578 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ... 1579 1580 Since storing a variable in %esp doesn't make any sense we return 1581 -1 for %ebp and for %esp itself. */ 1582 static int next_regnum[] = 1583 { 1584 I386_EDX_REGNUM, /* Slot for %eax. */ 1585 I386_EBX_REGNUM, /* Slot for %ecx. */ 1586 I386_ECX_REGNUM, /* Slot for %edx. */ 1587 I386_ESI_REGNUM, /* Slot for %ebx. */ 1588 -1, -1, /* Slots for %esp and %ebp. */ 1589 I386_EDI_REGNUM, /* Slot for %esi. */ 1590 I386_EBP_REGNUM /* Slot for %edi. */ 1591 }; 1592 1593 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0])) 1594 return next_regnum[regnum]; 1595 1596 return -1; 1597 } 1598 1599 /* Return nonzero if a value of type TYPE stored in register REGNUM 1600 needs any special handling. */ 1601 1602 static int 1603 i386_convert_register_p (int regnum, struct type *type) 1604 { 1605 int len = TYPE_LENGTH (type); 1606 1607 /* Values may be spread across multiple registers. Most debugging 1608 formats aren't expressive enough to specify the locations, so 1609 some heuristics is involved. Right now we only handle types that 1610 have a length that is a multiple of the word size, since GCC 1611 doesn't seem to put any other types into registers. */ 1612 if (len > 4 && len % 4 == 0) 1613 { 1614 int last_regnum = regnum; 1615 1616 while (len > 4) 1617 { 1618 last_regnum = i386_next_regnum (last_regnum); 1619 len -= 4; 1620 } 1621 1622 if (last_regnum != -1) 1623 return 1; 1624 } 1625 1626 return i386_fp_regnum_p (regnum); 1627 } 1628 1629 /* Read a value of type TYPE from register REGNUM in frame FRAME, and 1630 return its contents in TO. */ 1631 1632 static void 1633 i386_register_to_value (struct frame_info *frame, int regnum, 1634 struct type *type, void *to) 1635 { 1636 int len = TYPE_LENGTH (type); 1637 char *buf = to; 1638 1639 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't 1640 available in FRAME (i.e. if it wasn't saved)? */ 1641 1642 if (i386_fp_regnum_p (regnum)) 1643 { 1644 i387_register_to_value (frame, regnum, type, to); 1645 return; 1646 } 1647 1648 /* Read a value spread across multiple registers. */ 1649 1650 gdb_assert (len > 4 && len % 4 == 0); 1651 1652 while (len > 0) 1653 { 1654 gdb_assert (regnum != -1); 1655 gdb_assert (register_size (current_gdbarch, regnum) == 4); 1656 1657 get_frame_register (frame, regnum, buf); 1658 regnum = i386_next_regnum (regnum); 1659 len -= 4; 1660 buf += 4; 1661 } 1662 } 1663 1664 /* Write the contents FROM of a value of type TYPE into register 1665 REGNUM in frame FRAME. */ 1666 1667 static void 1668 i386_value_to_register (struct frame_info *frame, int regnum, 1669 struct type *type, const void *from) 1670 { 1671 int len = TYPE_LENGTH (type); 1672 const char *buf = from; 1673 1674 if (i386_fp_regnum_p (regnum)) 1675 { 1676 i387_value_to_register (frame, regnum, type, from); 1677 return; 1678 } 1679 1680 /* Write a value spread across multiple registers. */ 1681 1682 gdb_assert (len > 4 && len % 4 == 0); 1683 1684 while (len > 0) 1685 { 1686 gdb_assert (regnum != -1); 1687 gdb_assert (register_size (current_gdbarch, regnum) == 4); 1688 1689 put_frame_register (frame, regnum, buf); 1690 regnum = i386_next_regnum (regnum); 1691 len -= 4; 1692 buf += 4; 1693 } 1694 } 1695 1696 /* Supply register REGNUM from the buffer specified by GREGS and LEN 1697 in the general-purpose register set REGSET to register cache 1698 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ 1699 1700 void 1701 i386_supply_gregset (const struct regset *regset, struct regcache *regcache, 1702 int regnum, const void *gregs, size_t len) 1703 { 1704 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); 1705 const char *regs = gregs; 1706 int i; 1707 1708 gdb_assert (len == tdep->sizeof_gregset); 1709 1710 for (i = 0; i < tdep->gregset_num_regs; i++) 1711 { 1712 if ((regnum == i || regnum == -1) 1713 && tdep->gregset_reg_offset[i] != -1) 1714 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]); 1715 } 1716 } 1717 1718 /* Collect register REGNUM from the register cache REGCACHE and store 1719 it in the buffer specified by GREGS and LEN as described by the 1720 general-purpose register set REGSET. If REGNUM is -1, do this for 1721 all registers in REGSET. */ 1722 1723 void 1724 i386_collect_gregset (const struct regset *regset, 1725 const struct regcache *regcache, 1726 int regnum, void *gregs, size_t len) 1727 { 1728 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); 1729 char *regs = gregs; 1730 int i; 1731 1732 gdb_assert (len == tdep->sizeof_gregset); 1733 1734 for (i = 0; i < tdep->gregset_num_regs; i++) 1735 { 1736 if ((regnum == i || regnum == -1) 1737 && tdep->gregset_reg_offset[i] != -1) 1738 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]); 1739 } 1740 } 1741 1742 /* Supply register REGNUM from the buffer specified by FPREGS and LEN 1743 in the floating-point register set REGSET to register cache 1744 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ 1745 1746 static void 1747 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache, 1748 int regnum, const void *fpregs, size_t len) 1749 { 1750 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); 1751 1752 if (len == I387_SIZEOF_FXSAVE) 1753 { 1754 i387_supply_fxsave (regcache, regnum, fpregs); 1755 return; 1756 } 1757 1758 gdb_assert (len == tdep->sizeof_fpregset); 1759 i387_supply_fsave (regcache, regnum, fpregs); 1760 } 1761 1762 /* Collect register REGNUM from the register cache REGCACHE and store 1763 it in the buffer specified by FPREGS and LEN as described by the 1764 floating-point register set REGSET. If REGNUM is -1, do this for 1765 all registers in REGSET. */ 1766 1767 static void 1768 i386_collect_fpregset (const struct regset *regset, 1769 const struct regcache *regcache, 1770 int regnum, void *fpregs, size_t len) 1771 { 1772 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); 1773 1774 if (len == I387_SIZEOF_FXSAVE) 1775 { 1776 i387_collect_fxsave (regcache, regnum, fpregs); 1777 return; 1778 } 1779 1780 gdb_assert (len == tdep->sizeof_fpregset); 1781 i387_collect_fsave (regcache, regnum, fpregs); 1782 } 1783 1784 /* Return the appropriate register set for the core section identified 1785 by SECT_NAME and SECT_SIZE. */ 1786 1787 const struct regset * 1788 i386_regset_from_core_section (struct gdbarch *gdbarch, 1789 const char *sect_name, size_t sect_size) 1790 { 1791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1792 1793 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset) 1794 { 1795 if (tdep->gregset == NULL) 1796 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset, 1797 i386_collect_gregset); 1798 return tdep->gregset; 1799 } 1800 1801 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) 1802 || (strcmp (sect_name, ".reg-xfp") == 0 1803 && sect_size == I387_SIZEOF_FXSAVE)) 1804 { 1805 if (tdep->fpregset == NULL) 1806 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset, 1807 i386_collect_fpregset); 1808 return tdep->fpregset; 1809 } 1810 1811 return NULL; 1812 } 1813 1814 1815 #ifdef STATIC_TRANSFORM_NAME 1816 /* SunPRO encodes the static variables. This is not related to C++ 1817 mangling, it is done for C too. */ 1818 1819 char * 1820 sunpro_static_transform_name (char *name) 1821 { 1822 char *p; 1823 if (IS_STATIC_TRANSFORM_NAME (name)) 1824 { 1825 /* For file-local statics there will be a period, a bunch of 1826 junk (the contents of which match a string given in the 1827 N_OPT), a period and the name. For function-local statics 1828 there will be a bunch of junk (which seems to change the 1829 second character from 'A' to 'B'), a period, the name of the 1830 function, and the name. So just skip everything before the 1831 last period. */ 1832 p = strrchr (name, '.'); 1833 if (p != NULL) 1834 name = p + 1; 1835 } 1836 return name; 1837 } 1838 #endif /* STATIC_TRANSFORM_NAME */ 1839 1840 1841 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */ 1842 1843 CORE_ADDR 1844 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name) 1845 { 1846 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */ 1847 { 1848 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4); 1849 struct minimal_symbol *indsym = 1850 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0; 1851 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0; 1852 1853 if (symname) 1854 { 1855 if (strncmp (symname, "__imp_", 6) == 0 1856 || strncmp (symname, "_imp_", 5) == 0) 1857 return name ? 1 : read_memory_unsigned_integer (indirect, 4); 1858 } 1859 } 1860 return 0; /* Not a trampoline. */ 1861 } 1862 1863 1864 /* Return whether the frame preceding NEXT_FRAME corresponds to a 1865 sigtramp routine. */ 1866 1867 static int 1868 i386_sigtramp_p (struct frame_info *next_frame) 1869 { 1870 CORE_ADDR pc = frame_pc_unwind (next_frame); 1871 char *name; 1872 1873 find_pc_partial_function (pc, &name, NULL, NULL); 1874 return (name && strcmp ("_sigtramp", name) == 0); 1875 } 1876 1877 1878 /* We have two flavours of disassembly. The machinery on this page 1879 deals with switching between those. */ 1880 1881 static int 1882 i386_print_insn (bfd_vma pc, struct disassemble_info *info) 1883 { 1884 gdb_assert (disassembly_flavor == att_flavor 1885 || disassembly_flavor == intel_flavor); 1886 1887 /* FIXME: kettenis/20020915: Until disassembler_options is properly 1888 constified, cast to prevent a compiler warning. */ 1889 info->disassembler_options = (char *) disassembly_flavor; 1890 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach; 1891 1892 return print_insn_i386 (pc, info); 1893 } 1894 1895 1896 /* There are a few i386 architecture variants that differ only 1897 slightly from the generic i386 target. For now, we don't give them 1898 their own source file, but include them here. As a consequence, 1899 they'll always be included. */ 1900 1901 /* System V Release 4 (SVR4). */ 1902 1903 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4 1904 sigtramp routine. */ 1905 1906 static int 1907 i386_svr4_sigtramp_p (struct frame_info *next_frame) 1908 { 1909 CORE_ADDR pc = frame_pc_unwind (next_frame); 1910 char *name; 1911 1912 /* UnixWare uses _sigacthandler. The origin of the other symbols is 1913 currently unknown. */ 1914 find_pc_partial_function (pc, &name, NULL, NULL); 1915 return (name && (strcmp ("_sigreturn", name) == 0 1916 || strcmp ("_sigacthandler", name) == 0 1917 || strcmp ("sigvechandler", name) == 0)); 1918 } 1919 1920 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp 1921 routine, return the address of the associated sigcontext (ucontext) 1922 structure. */ 1923 1924 static CORE_ADDR 1925 i386_svr4_sigcontext_addr (struct frame_info *next_frame) 1926 { 1927 char buf[4]; 1928 CORE_ADDR sp; 1929 1930 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); 1931 sp = extract_unsigned_integer (buf, 4); 1932 1933 return read_memory_unsigned_integer (sp + 8, 4); 1934 } 1935 1936 1937 /* Generic ELF. */ 1938 1939 void 1940 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1941 { 1942 /* We typically use stabs-in-ELF with the SVR4 register numbering. */ 1943 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum); 1944 } 1945 1946 /* System V Release 4 (SVR4). */ 1947 1948 void 1949 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1950 { 1951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1952 1953 /* System V Release 4 uses ELF. */ 1954 i386_elf_init_abi (info, gdbarch); 1955 1956 /* System V Release 4 has shared libraries. */ 1957 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); 1958 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); 1959 1960 tdep->sigtramp_p = i386_svr4_sigtramp_p; 1961 tdep->sigcontext_addr = i386_svr4_sigcontext_addr; 1962 tdep->sc_pc_offset = 36 + 14 * 4; 1963 tdep->sc_sp_offset = 36 + 17 * 4; 1964 1965 tdep->jb_pc_offset = 20; 1966 } 1967 1968 /* DJGPP. */ 1969 1970 static void 1971 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1972 { 1973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1974 1975 /* DJGPP doesn't have any special frames for signal handlers. */ 1976 tdep->sigtramp_p = NULL; 1977 1978 tdep->jb_pc_offset = 36; 1979 } 1980 1981 /* NetWare. */ 1982 1983 static void 1984 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 1985 { 1986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1987 1988 tdep->jb_pc_offset = 24; 1989 } 1990 1991 1992 /* i386 register groups. In addition to the normal groups, add "mmx" 1993 and "sse". */ 1994 1995 static struct reggroup *i386_sse_reggroup; 1996 static struct reggroup *i386_mmx_reggroup; 1997 1998 static void 1999 i386_init_reggroups (void) 2000 { 2001 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP); 2002 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP); 2003 } 2004 2005 static void 2006 i386_add_reggroups (struct gdbarch *gdbarch) 2007 { 2008 reggroup_add (gdbarch, i386_sse_reggroup); 2009 reggroup_add (gdbarch, i386_mmx_reggroup); 2010 reggroup_add (gdbarch, general_reggroup); 2011 reggroup_add (gdbarch, float_reggroup); 2012 reggroup_add (gdbarch, all_reggroup); 2013 reggroup_add (gdbarch, save_reggroup); 2014 reggroup_add (gdbarch, restore_reggroup); 2015 reggroup_add (gdbarch, vector_reggroup); 2016 reggroup_add (gdbarch, system_reggroup); 2017 } 2018 2019 int 2020 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum, 2021 struct reggroup *group) 2022 { 2023 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum) 2024 || i386_mxcsr_regnum_p (gdbarch, regnum)); 2025 int fp_regnum_p = (i386_fp_regnum_p (regnum) 2026 || i386_fpc_regnum_p (regnum)); 2027 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum)); 2028 2029 if (group == i386_mmx_reggroup) 2030 return mmx_regnum_p; 2031 if (group == i386_sse_reggroup) 2032 return sse_regnum_p; 2033 if (group == vector_reggroup) 2034 return (mmx_regnum_p || sse_regnum_p); 2035 if (group == float_reggroup) 2036 return fp_regnum_p; 2037 if (group == general_reggroup) 2038 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p); 2039 2040 return default_register_reggroup_p (gdbarch, regnum, group); 2041 } 2042 2043 2044 /* Get the ARGIth function argument for the current function. */ 2045 2046 static CORE_ADDR 2047 i386_fetch_pointer_argument (struct frame_info *frame, int argi, 2048 struct type *type) 2049 { 2050 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM); 2051 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4); 2052 } 2053 2054 2055 static struct gdbarch * 2056 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 2057 { 2058 struct gdbarch_tdep *tdep; 2059 struct gdbarch *gdbarch; 2060 2061 /* If there is already a candidate, use it. */ 2062 arches = gdbarch_list_lookup_by_info (arches, &info); 2063 if (arches != NULL) 2064 return arches->gdbarch; 2065 2066 /* Allocate space for the new architecture. */ 2067 tdep = XMALLOC (struct gdbarch_tdep); 2068 gdbarch = gdbarch_alloc (&info, tdep); 2069 2070 /* General-purpose registers. */ 2071 tdep->gregset = NULL; 2072 tdep->gregset_reg_offset = NULL; 2073 tdep->gregset_num_regs = I386_NUM_GREGS; 2074 tdep->sizeof_gregset = 0; 2075 2076 /* Floating-point registers. */ 2077 tdep->fpregset = NULL; 2078 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE; 2079 2080 /* The default settings include the FPU registers, the MMX registers 2081 and the SSE registers. This can be overridden for a specific ABI 2082 by adjusting the members `st0_regnum', `mm0_regnum' and 2083 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers 2084 will show up in the output of "info all-registers". Ideally we 2085 should try to autodetect whether they are available, such that we 2086 can prevent "info all-registers" from displaying registers that 2087 aren't available. 2088 2089 NOTE: kevinb/2003-07-13: ... if it's a choice between printing 2090 [the SSE registers] always (even when they don't exist) or never 2091 showing them to the user (even when they do exist), I prefer the 2092 former over the latter. */ 2093 2094 tdep->st0_regnum = I386_ST0_REGNUM; 2095 2096 /* The MMX registers are implemented as pseudo-registers. Put off 2097 calculating the register number for %mm0 until we know the number 2098 of raw registers. */ 2099 tdep->mm0_regnum = 0; 2100 2101 /* I386_NUM_XREGS includes %mxcsr, so substract one. */ 2102 tdep->num_xmm_regs = I386_NUM_XREGS - 1; 2103 2104 tdep->jb_pc_offset = -1; 2105 tdep->struct_return = pcc_struct_return; 2106 tdep->sigtramp_start = 0; 2107 tdep->sigtramp_end = 0; 2108 tdep->sigtramp_p = i386_sigtramp_p; 2109 tdep->sigcontext_addr = NULL; 2110 tdep->sc_reg_offset = NULL; 2111 tdep->sc_pc_offset = -1; 2112 tdep->sc_sp_offset = -1; 2113 2114 /* The format used for `long double' on almost all i386 targets is 2115 the i387 extended floating-point format. In fact, of all targets 2116 in the GCC 2.95 tree, only OSF/1 does it different, and insists 2117 on having a `long double' that's not `long' at all. */ 2118 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext); 2119 2120 /* Although the i387 extended floating-point has only 80 significant 2121 bits, a `long double' actually takes up 96, probably to enforce 2122 alignment. */ 2123 set_gdbarch_long_double_bit (gdbarch, 96); 2124 2125 /* The default ABI includes general-purpose registers, 2126 floating-point registers, and the SSE registers. */ 2127 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); 2128 set_gdbarch_register_name (gdbarch, i386_register_name); 2129 set_gdbarch_register_type (gdbarch, i386_register_type); 2130 2131 /* Register numbers of various important registers. */ 2132 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */ 2133 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */ 2134 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */ 2135 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */ 2136 2137 /* NOTE: kettenis/20040418: GCC does have two possible register 2138 numbering schemes on the i386: dbx and SVR4. These schemes 2139 differ in how they number %ebp, %esp, %eflags, and the 2140 floating-point registers, and are implemented by the arrays 2141 dbx_register_map[] and svr4_dbx_register_map in 2142 gcc/config/i386.c. GCC also defines a third numbering scheme in 2143 gcc/config/i386.c, which it designates as the "default" register 2144 map used in 64bit mode. This last register numbering scheme is 2145 implemented in dbx64_register_map, and is used for AMD64; see 2146 amd64-tdep.c. 2147 2148 Currently, each GCC i386 target always uses the same register 2149 numbering scheme across all its supported debugging formats 2150 i.e. SDB (COFF), stabs and DWARF 2. This is because 2151 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the 2152 DBX_REGISTER_NUMBER macro which is defined by each target's 2153 respective config header in a manner independent of the requested 2154 output debugging format. 2155 2156 This does not match the arrangement below, which presumes that 2157 the SDB and stabs numbering schemes differ from the DWARF and 2158 DWARF 2 ones. The reason for this arrangement is that it is 2159 likely to get the numbering scheme for the target's 2160 default/native debug format right. For targets where GCC is the 2161 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for 2162 targets where the native toolchain uses a different numbering 2163 scheme for a particular debug format (stabs-in-ELF on Solaris) 2164 the defaults below will have to be overridden, like 2165 i386_elf_init_abi() does. */ 2166 2167 /* Use the dbx register numbering scheme for stabs and COFF. */ 2168 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum); 2169 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum); 2170 2171 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */ 2172 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum); 2173 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum); 2174 2175 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to 2176 be in use on any of the supported i386 targets. */ 2177 2178 set_gdbarch_print_float_info (gdbarch, i387_print_float_info); 2179 2180 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target); 2181 2182 /* Call dummy code. */ 2183 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call); 2184 2185 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p); 2186 set_gdbarch_register_to_value (gdbarch, i386_register_to_value); 2187 set_gdbarch_value_to_register (gdbarch, i386_value_to_register); 2188 2189 set_gdbarch_return_value (gdbarch, i386_return_value); 2190 2191 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue); 2192 2193 /* Stack grows downward. */ 2194 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 2195 2196 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc); 2197 set_gdbarch_decr_pc_after_break (gdbarch, 1); 2198 2199 set_gdbarch_frame_args_skip (gdbarch, 8); 2200 2201 /* Wire in the MMX registers. */ 2202 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs); 2203 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read); 2204 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write); 2205 2206 set_gdbarch_print_insn (gdbarch, i386_print_insn); 2207 2208 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id); 2209 2210 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc); 2211 2212 /* Add the i386 register groups. */ 2213 i386_add_reggroups (gdbarch); 2214 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p); 2215 2216 /* Helper for function argument information. */ 2217 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument); 2218 2219 /* Hook in the DWARF CFI frame unwinder. */ 2220 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); 2221 2222 frame_base_set_default (gdbarch, &i386_frame_base); 2223 2224 /* Hook in ABI-specific overrides, if they have been registered. */ 2225 gdbarch_init_osabi (info, gdbarch); 2226 2227 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer); 2228 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer); 2229 2230 /* If we have a register mapping, enable the generic core file 2231 support, unless it has already been enabled. */ 2232 if (tdep->gregset_reg_offset 2233 && !gdbarch_regset_from_core_section_p (gdbarch)) 2234 set_gdbarch_regset_from_core_section (gdbarch, 2235 i386_regset_from_core_section); 2236 2237 /* Unless support for MMX has been disabled, make %mm0 the first 2238 pseudo-register. */ 2239 if (tdep->mm0_regnum == 0) 2240 tdep->mm0_regnum = gdbarch_num_regs (gdbarch); 2241 2242 return gdbarch; 2243 } 2244 2245 static enum gdb_osabi 2246 i386_coff_osabi_sniffer (bfd *abfd) 2247 { 2248 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0 2249 || strcmp (bfd_get_target (abfd), "coff-go32") == 0) 2250 return GDB_OSABI_GO32; 2251 2252 return GDB_OSABI_UNKNOWN; 2253 } 2254 2255 static enum gdb_osabi 2256 i386_nlm_osabi_sniffer (bfd *abfd) 2257 { 2258 return GDB_OSABI_NETWARE; 2259 } 2260 2261 2262 /* Provide a prototype to silence -Wmissing-prototypes. */ 2263 void _initialize_i386_tdep (void); 2264 2265 void 2266 _initialize_i386_tdep (void) 2267 { 2268 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init); 2269 2270 /* Add the variable that controls the disassembly flavor. */ 2271 { 2272 struct cmd_list_element *new_cmd; 2273 2274 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, 2275 valid_flavors, 2276 &disassembly_flavor, 2277 "\ 2278 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \ 2279 and the default value is \"att\".", 2280 &setlist); 2281 deprecated_add_show_from_set (new_cmd, &showlist); 2282 } 2283 2284 /* Add the variable that controls the convention for returning 2285 structs. */ 2286 { 2287 struct cmd_list_element *new_cmd; 2288 2289 new_cmd = add_set_enum_cmd ("struct-convention", no_class, 2290 valid_conventions, 2291 &struct_convention, "\ 2292 Set the convention for returning small structs, valid values \ 2293 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".", 2294 &setlist); 2295 deprecated_add_show_from_set (new_cmd, &showlist); 2296 } 2297 2298 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour, 2299 i386_coff_osabi_sniffer); 2300 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour, 2301 i386_nlm_osabi_sniffer); 2302 2303 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4, 2304 i386_svr4_init_abi); 2305 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32, 2306 i386_go32_init_abi); 2307 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE, 2308 i386_nw_init_abi); 2309 2310 /* Initialize the i386 specific register groups. */ 2311 i386_init_reggroups (); 2312 } 2313