1 /* Target-struct-independent code to start (run) and stop an inferior 2 process. 3 4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free 6 Software Foundation, Inc. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place - Suite 330, 23 Boston, MA 02111-1307, USA. */ 24 25 #include "defs.h" 26 #include "gdb_string.h" 27 #include <ctype.h> 28 #include "symtab.h" 29 #include "frame.h" 30 #include "inferior.h" 31 #include "breakpoint.h" 32 #include "gdb_wait.h" 33 #include "gdbcore.h" 34 #include "gdbcmd.h" 35 #include "cli/cli-script.h" 36 #include "target.h" 37 #include "gdbthread.h" 38 #include "annotate.h" 39 #include "symfile.h" 40 #include "top.h" 41 #include <signal.h> 42 #include "inf-loop.h" 43 #include "regcache.h" 44 #include "value.h" 45 #include "observer.h" 46 #include "language.h" 47 #include "gdb_assert.h" 48 49 /* Prototypes for local functions */ 50 51 static void signals_info (char *, int); 52 53 static void handle_command (char *, int); 54 55 static void sig_print_info (enum target_signal); 56 57 static void sig_print_header (void); 58 59 static void resume_cleanups (void *); 60 61 static int hook_stop_stub (void *); 62 63 static int restore_selected_frame (void *); 64 65 static void build_infrun (void); 66 67 static int follow_fork (void); 68 69 static void set_schedlock_func (char *args, int from_tty, 70 struct cmd_list_element *c); 71 72 struct execution_control_state; 73 74 static int currently_stepping (struct execution_control_state *ecs); 75 76 static void xdb_handle_command (char *args, int from_tty); 77 78 static int prepare_to_proceed (void); 79 80 void _initialize_infrun (void); 81 82 int inferior_ignoring_startup_exec_events = 0; 83 int inferior_ignoring_leading_exec_events = 0; 84 85 /* When set, stop the 'step' command if we enter a function which has 86 no line number information. The normal behavior is that we step 87 over such function. */ 88 int step_stop_if_no_debug = 0; 89 90 /* In asynchronous mode, but simulating synchronous execution. */ 91 92 int sync_execution = 0; 93 94 /* wait_for_inferior and normal_stop use this to notify the user 95 when the inferior stopped in a different thread than it had been 96 running in. */ 97 98 static ptid_t previous_inferior_ptid; 99 100 /* This is true for configurations that may follow through execl() and 101 similar functions. At present this is only true for HP-UX native. */ 102 103 #ifndef MAY_FOLLOW_EXEC 104 #define MAY_FOLLOW_EXEC (0) 105 #endif 106 107 static int may_follow_exec = MAY_FOLLOW_EXEC; 108 109 /* If the program uses ELF-style shared libraries, then calls to 110 functions in shared libraries go through stubs, which live in a 111 table called the PLT (Procedure Linkage Table). The first time the 112 function is called, the stub sends control to the dynamic linker, 113 which looks up the function's real address, patches the stub so 114 that future calls will go directly to the function, and then passes 115 control to the function. 116 117 If we are stepping at the source level, we don't want to see any of 118 this --- we just want to skip over the stub and the dynamic linker. 119 The simple approach is to single-step until control leaves the 120 dynamic linker. 121 122 However, on some systems (e.g., Red Hat's 5.2 distribution) the 123 dynamic linker calls functions in the shared C library, so you 124 can't tell from the PC alone whether the dynamic linker is still 125 running. In this case, we use a step-resume breakpoint to get us 126 past the dynamic linker, as if we were using "next" to step over a 127 function call. 128 129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic 130 linker code or not. Normally, this means we single-step. However, 131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an 132 address where we can place a step-resume breakpoint to get past the 133 linker's symbol resolution function. 134 135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a 136 pretty portable way, by comparing the PC against the address ranges 137 of the dynamic linker's sections. 138 139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since 140 it depends on internal details of the dynamic linker. It's usually 141 not too hard to figure out where to put a breakpoint, but it 142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of 143 sanity checking. If it can't figure things out, returning zero and 144 getting the (possibly confusing) stepping behavior is better than 145 signalling an error, which will obscure the change in the 146 inferior's state. */ 147 148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE 149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0 150 #endif 151 152 /* This function returns TRUE if pc is the address of an instruction 153 that lies within the dynamic linker (such as the event hook, or the 154 dld itself). 155 156 This function must be used only when a dynamic linker event has 157 been caught, and the inferior is being stepped out of the hook, or 158 undefined results are guaranteed. */ 159 160 #ifndef SOLIB_IN_DYNAMIC_LINKER 161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 162 #endif 163 164 /* On some systems, the PC may be left pointing at an instruction that won't 165 actually be executed. This is usually indicated by a bit in the PSW. If 166 we find ourselves in such a state, then we step the target beyond the 167 nullified instruction before returning control to the user so as to avoid 168 confusion. */ 169 170 #ifndef INSTRUCTION_NULLIFIED 171 #define INSTRUCTION_NULLIFIED 0 172 #endif 173 174 /* We can't step off a permanent breakpoint in the ordinary way, because we 175 can't remove it. Instead, we have to advance the PC to the next 176 instruction. This macro should expand to a pointer to a function that 177 does that, or zero if we have no such function. If we don't have a 178 definition for it, we have to report an error. */ 179 #ifndef SKIP_PERMANENT_BREAKPOINT 180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint) 181 static void 182 default_skip_permanent_breakpoint (void) 183 { 184 error ("\ 185 The program is stopped at a permanent breakpoint, but GDB does not know\n\ 186 how to step past a permanent breakpoint on this architecture. Try using\n\ 187 a command like `return' or `jump' to continue execution."); 188 } 189 #endif 190 191 192 /* Convert the #defines into values. This is temporary until wfi control 193 flow is completely sorted out. */ 194 195 #ifndef HAVE_STEPPABLE_WATCHPOINT 196 #define HAVE_STEPPABLE_WATCHPOINT 0 197 #else 198 #undef HAVE_STEPPABLE_WATCHPOINT 199 #define HAVE_STEPPABLE_WATCHPOINT 1 200 #endif 201 202 #ifndef CANNOT_STEP_HW_WATCHPOINTS 203 #define CANNOT_STEP_HW_WATCHPOINTS 0 204 #else 205 #undef CANNOT_STEP_HW_WATCHPOINTS 206 #define CANNOT_STEP_HW_WATCHPOINTS 1 207 #endif 208 209 /* Tables of how to react to signals; the user sets them. */ 210 211 static unsigned char *signal_stop; 212 static unsigned char *signal_print; 213 static unsigned char *signal_program; 214 215 #define SET_SIGS(nsigs,sigs,flags) \ 216 do { \ 217 int signum = (nsigs); \ 218 while (signum-- > 0) \ 219 if ((sigs)[signum]) \ 220 (flags)[signum] = 1; \ 221 } while (0) 222 223 #define UNSET_SIGS(nsigs,sigs,flags) \ 224 do { \ 225 int signum = (nsigs); \ 226 while (signum-- > 0) \ 227 if ((sigs)[signum]) \ 228 (flags)[signum] = 0; \ 229 } while (0) 230 231 /* Value to pass to target_resume() to cause all threads to resume */ 232 233 #define RESUME_ALL (pid_to_ptid (-1)) 234 235 /* Command list pointer for the "stop" placeholder. */ 236 237 static struct cmd_list_element *stop_command; 238 239 /* Nonzero if breakpoints are now inserted in the inferior. */ 240 241 static int breakpoints_inserted; 242 243 /* Function inferior was in as of last step command. */ 244 245 static struct symbol *step_start_function; 246 247 /* Nonzero if we are expecting a trace trap and should proceed from it. */ 248 249 static int trap_expected; 250 251 #ifdef SOLIB_ADD 252 /* Nonzero if we want to give control to the user when we're notified 253 of shared library events by the dynamic linker. */ 254 static int stop_on_solib_events; 255 #endif 256 257 /* Nonzero means expecting a trace trap 258 and should stop the inferior and return silently when it happens. */ 259 260 int stop_after_trap; 261 262 /* Nonzero means expecting a trap and caller will handle it themselves. 263 It is used after attach, due to attaching to a process; 264 when running in the shell before the child program has been exec'd; 265 and when running some kinds of remote stuff (FIXME?). */ 266 267 enum stop_kind stop_soon; 268 269 /* Nonzero if proceed is being used for a "finish" command or a similar 270 situation when stop_registers should be saved. */ 271 272 int proceed_to_finish; 273 274 /* Save register contents here when about to pop a stack dummy frame, 275 if-and-only-if proceed_to_finish is set. 276 Thus this contains the return value from the called function (assuming 277 values are returned in a register). */ 278 279 struct regcache *stop_registers; 280 281 /* Nonzero if program stopped due to error trying to insert breakpoints. */ 282 283 static int breakpoints_failed; 284 285 /* Nonzero after stop if current stack frame should be printed. */ 286 287 static int stop_print_frame; 288 289 static struct breakpoint *step_resume_breakpoint = NULL; 290 291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad 292 interactions with an inferior that is running a kernel function 293 (aka, a system call or "syscall"). wait_for_inferior therefore 294 may have a need to know when the inferior is in a syscall. This 295 is a count of the number of inferior threads which are known to 296 currently be running in a syscall. */ 297 static int number_of_threads_in_syscalls; 298 299 /* This is a cached copy of the pid/waitstatus of the last event 300 returned by target_wait()/deprecated_target_wait_hook(). This 301 information is returned by get_last_target_status(). */ 302 static ptid_t target_last_wait_ptid; 303 static struct target_waitstatus target_last_waitstatus; 304 305 /* This is used to remember when a fork, vfork or exec event 306 was caught by a catchpoint, and thus the event is to be 307 followed at the next resume of the inferior, and not 308 immediately. */ 309 static struct 310 { 311 enum target_waitkind kind; 312 struct 313 { 314 int parent_pid; 315 int child_pid; 316 } 317 fork_event; 318 char *execd_pathname; 319 } 320 pending_follow; 321 322 static const char follow_fork_mode_child[] = "child"; 323 static const char follow_fork_mode_parent[] = "parent"; 324 325 static const char *follow_fork_mode_kind_names[] = { 326 follow_fork_mode_child, 327 follow_fork_mode_parent, 328 NULL 329 }; 330 331 static const char *follow_fork_mode_string = follow_fork_mode_parent; 332 333 334 static int 335 follow_fork (void) 336 { 337 int follow_child = (follow_fork_mode_string == follow_fork_mode_child); 338 339 return target_follow_fork (follow_child); 340 } 341 342 void 343 follow_inferior_reset_breakpoints (void) 344 { 345 /* Was there a step_resume breakpoint? (There was if the user 346 did a "next" at the fork() call.) If so, explicitly reset its 347 thread number. 348 349 step_resumes are a form of bp that are made to be per-thread. 350 Since we created the step_resume bp when the parent process 351 was being debugged, and now are switching to the child process, 352 from the breakpoint package's viewpoint, that's a switch of 353 "threads". We must update the bp's notion of which thread 354 it is for, or it'll be ignored when it triggers. */ 355 356 if (step_resume_breakpoint) 357 breakpoint_re_set_thread (step_resume_breakpoint); 358 359 /* Reinsert all breakpoints in the child. The user may have set 360 breakpoints after catching the fork, in which case those 361 were never set in the child, but only in the parent. This makes 362 sure the inserted breakpoints match the breakpoint list. */ 363 364 breakpoint_re_set (); 365 insert_breakpoints (); 366 } 367 368 /* EXECD_PATHNAME is assumed to be non-NULL. */ 369 370 static void 371 follow_exec (int pid, char *execd_pathname) 372 { 373 int saved_pid = pid; 374 struct target_ops *tgt; 375 376 if (!may_follow_exec) 377 return; 378 379 /* This is an exec event that we actually wish to pay attention to. 380 Refresh our symbol table to the newly exec'd program, remove any 381 momentary bp's, etc. 382 383 If there are breakpoints, they aren't really inserted now, 384 since the exec() transformed our inferior into a fresh set 385 of instructions. 386 387 We want to preserve symbolic breakpoints on the list, since 388 we have hopes that they can be reset after the new a.out's 389 symbol table is read. 390 391 However, any "raw" breakpoints must be removed from the list 392 (e.g., the solib bp's), since their address is probably invalid 393 now. 394 395 And, we DON'T want to call delete_breakpoints() here, since 396 that may write the bp's "shadow contents" (the instruction 397 value that was overwritten witha TRAP instruction). Since 398 we now have a new a.out, those shadow contents aren't valid. */ 399 update_breakpoints_after_exec (); 400 401 /* If there was one, it's gone now. We cannot truly step-to-next 402 statement through an exec(). */ 403 step_resume_breakpoint = NULL; 404 step_range_start = 0; 405 step_range_end = 0; 406 407 /* What is this a.out's name? */ 408 printf_unfiltered ("Executing new program: %s\n", execd_pathname); 409 410 /* We've followed the inferior through an exec. Therefore, the 411 inferior has essentially been killed & reborn. */ 412 413 /* First collect the run target in effect. */ 414 tgt = find_run_target (); 415 /* If we can't find one, things are in a very strange state... */ 416 if (tgt == NULL) 417 error ("Could find run target to save before following exec"); 418 419 gdb_flush (gdb_stdout); 420 target_mourn_inferior (); 421 inferior_ptid = pid_to_ptid (saved_pid); 422 /* Because mourn_inferior resets inferior_ptid. */ 423 push_target (tgt); 424 425 /* That a.out is now the one to use. */ 426 exec_file_attach (execd_pathname, 0); 427 428 /* And also is where symbols can be found. */ 429 symbol_file_add_main (execd_pathname, 0); 430 431 /* Reset the shared library package. This ensures that we get 432 a shlib event when the child reaches "_start", at which point 433 the dld will have had a chance to initialize the child. */ 434 #if defined(SOLIB_RESTART) 435 SOLIB_RESTART (); 436 #endif 437 #ifdef SOLIB_CREATE_INFERIOR_HOOK 438 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); 439 #endif 440 441 /* Reinsert all breakpoints. (Those which were symbolic have 442 been reset to the proper address in the new a.out, thanks 443 to symbol_file_command...) */ 444 insert_breakpoints (); 445 446 /* The next resume of this inferior should bring it to the shlib 447 startup breakpoints. (If the user had also set bp's on 448 "main" from the old (parent) process, then they'll auto- 449 matically get reset there in the new process.) */ 450 } 451 452 /* Non-zero if we just simulating a single-step. This is needed 453 because we cannot remove the breakpoints in the inferior process 454 until after the `wait' in `wait_for_inferior'. */ 455 static int singlestep_breakpoints_inserted_p = 0; 456 457 /* The thread we inserted single-step breakpoints for. */ 458 static ptid_t singlestep_ptid; 459 460 /* If another thread hit the singlestep breakpoint, we save the original 461 thread here so that we can resume single-stepping it later. */ 462 static ptid_t saved_singlestep_ptid; 463 static int stepping_past_singlestep_breakpoint; 464 465 466 /* Things to clean up if we QUIT out of resume (). */ 467 static void 468 resume_cleanups (void *ignore) 469 { 470 normal_stop (); 471 } 472 473 static const char schedlock_off[] = "off"; 474 static const char schedlock_on[] = "on"; 475 static const char schedlock_step[] = "step"; 476 static const char *scheduler_mode = schedlock_off; 477 static const char *scheduler_enums[] = { 478 schedlock_off, 479 schedlock_on, 480 schedlock_step, 481 NULL 482 }; 483 484 static void 485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) 486 { 487 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set() 488 function clones the set command passed as a parameter. The clone 489 operation will include (BUG?) any ``set'' command callback, if 490 present. Commands like ``info set'' call all the ``show'' 491 command callbacks. Unfortunately, for ``show'' commands cloned 492 from ``set'', this includes callbacks belonging to ``set'' 493 commands. Making this worse, this only occures if 494 deprecated_add_show_from_set() is called after add_cmd_sfunc() 495 (BUG?). */ 496 if (cmd_type (c) == set_cmd) 497 if (!target_can_lock_scheduler) 498 { 499 scheduler_mode = schedlock_off; 500 error ("Target '%s' cannot support this command.", target_shortname); 501 } 502 } 503 504 505 /* Resume the inferior, but allow a QUIT. This is useful if the user 506 wants to interrupt some lengthy single-stepping operation 507 (for child processes, the SIGINT goes to the inferior, and so 508 we get a SIGINT random_signal, but for remote debugging and perhaps 509 other targets, that's not true). 510 511 STEP nonzero if we should step (zero to continue instead). 512 SIG is the signal to give the inferior (zero for none). */ 513 void 514 resume (int step, enum target_signal sig) 515 { 516 int should_resume = 1; 517 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); 518 QUIT; 519 520 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */ 521 522 523 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping 524 over an instruction that causes a page fault without triggering 525 a hardware watchpoint. The kernel properly notices that it shouldn't 526 stop, because the hardware watchpoint is not triggered, but it forgets 527 the step request and continues the program normally. 528 Work around the problem by removing hardware watchpoints if a step is 529 requested, GDB will check for a hardware watchpoint trigger after the 530 step anyway. */ 531 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted) 532 remove_hw_watchpoints (); 533 534 535 /* Normally, by the time we reach `resume', the breakpoints are either 536 removed or inserted, as appropriate. The exception is if we're sitting 537 at a permanent breakpoint; we need to step over it, but permanent 538 breakpoints can't be removed. So we have to test for it here. */ 539 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here) 540 SKIP_PERMANENT_BREAKPOINT (); 541 542 if (SOFTWARE_SINGLE_STEP_P () && step) 543 { 544 /* Do it the hard way, w/temp breakpoints */ 545 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ ); 546 /* ...and don't ask hardware to do it. */ 547 step = 0; 548 /* and do not pull these breakpoints until after a `wait' in 549 `wait_for_inferior' */ 550 singlestep_breakpoints_inserted_p = 1; 551 singlestep_ptid = inferior_ptid; 552 } 553 554 /* If there were any forks/vforks/execs that were caught and are 555 now to be followed, then do so. */ 556 switch (pending_follow.kind) 557 { 558 case TARGET_WAITKIND_FORKED: 559 case TARGET_WAITKIND_VFORKED: 560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; 561 if (follow_fork ()) 562 should_resume = 0; 563 break; 564 565 case TARGET_WAITKIND_EXECD: 566 /* follow_exec is called as soon as the exec event is seen. */ 567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; 568 break; 569 570 default: 571 break; 572 } 573 574 /* Install inferior's terminal modes. */ 575 target_terminal_inferior (); 576 577 if (should_resume) 578 { 579 ptid_t resume_ptid; 580 581 resume_ptid = RESUME_ALL; /* Default */ 582 583 if ((step || singlestep_breakpoints_inserted_p) 584 && (stepping_past_singlestep_breakpoint 585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ())))) 586 { 587 /* Stepping past a breakpoint without inserting breakpoints. 588 Make sure only the current thread gets to step, so that 589 other threads don't sneak past breakpoints while they are 590 not inserted. */ 591 592 resume_ptid = inferior_ptid; 593 } 594 595 if ((scheduler_mode == schedlock_on) 596 || (scheduler_mode == schedlock_step 597 && (step || singlestep_breakpoints_inserted_p))) 598 { 599 /* User-settable 'scheduler' mode requires solo thread resume. */ 600 resume_ptid = inferior_ptid; 601 } 602 603 if (CANNOT_STEP_BREAKPOINT) 604 { 605 /* Most targets can step a breakpoint instruction, thus 606 executing it normally. But if this one cannot, just 607 continue and we will hit it anyway. */ 608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) 609 step = 0; 610 } 611 target_resume (resume_ptid, step, sig); 612 } 613 614 discard_cleanups (old_cleanups); 615 } 616 617 618 /* Clear out all variables saying what to do when inferior is continued. 619 First do this, then set the ones you want, then call `proceed'. */ 620 621 void 622 clear_proceed_status (void) 623 { 624 trap_expected = 0; 625 step_range_start = 0; 626 step_range_end = 0; 627 step_frame_id = null_frame_id; 628 step_over_calls = STEP_OVER_UNDEBUGGABLE; 629 stop_after_trap = 0; 630 stop_soon = NO_STOP_QUIETLY; 631 proceed_to_finish = 0; 632 breakpoint_proceeded = 1; /* We're about to proceed... */ 633 634 /* Discard any remaining commands or status from previous stop. */ 635 bpstat_clear (&stop_bpstat); 636 } 637 638 /* This should be suitable for any targets that support threads. */ 639 640 static int 641 prepare_to_proceed (void) 642 { 643 ptid_t wait_ptid; 644 struct target_waitstatus wait_status; 645 646 /* Get the last target status returned by target_wait(). */ 647 get_last_target_status (&wait_ptid, &wait_status); 648 649 /* Make sure we were stopped either at a breakpoint, or because 650 of a Ctrl-C. */ 651 if (wait_status.kind != TARGET_WAITKIND_STOPPED 652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP 653 && wait_status.value.sig != TARGET_SIGNAL_INT)) 654 { 655 return 0; 656 } 657 658 if (!ptid_equal (wait_ptid, minus_one_ptid) 659 && !ptid_equal (inferior_ptid, wait_ptid)) 660 { 661 /* Switched over from WAIT_PID. */ 662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid); 663 664 if (wait_pc != read_pc ()) 665 { 666 /* Switch back to WAIT_PID thread. */ 667 inferior_ptid = wait_ptid; 668 669 /* FIXME: This stuff came from switch_to_thread() in 670 thread.c (which should probably be a public function). */ 671 flush_cached_frames (); 672 registers_changed (); 673 stop_pc = wait_pc; 674 select_frame (get_current_frame ()); 675 } 676 677 /* We return 1 to indicate that there is a breakpoint here, 678 so we need to step over it before continuing to avoid 679 hitting it straight away. */ 680 if (breakpoint_here_p (wait_pc)) 681 return 1; 682 } 683 684 return 0; 685 686 } 687 688 /* Record the pc of the program the last time it stopped. This is 689 just used internally by wait_for_inferior, but need to be preserved 690 over calls to it and cleared when the inferior is started. */ 691 static CORE_ADDR prev_pc; 692 693 /* Basic routine for continuing the program in various fashions. 694 695 ADDR is the address to resume at, or -1 for resume where stopped. 696 SIGGNAL is the signal to give it, or 0 for none, 697 or -1 for act according to how it stopped. 698 STEP is nonzero if should trap after one instruction. 699 -1 means return after that and print nothing. 700 You should probably set various step_... variables 701 before calling here, if you are stepping. 702 703 You should call clear_proceed_status before calling proceed. */ 704 705 void 706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step) 707 { 708 int oneproc = 0; 709 710 if (step > 0) 711 step_start_function = find_pc_function (read_pc ()); 712 if (step < 0) 713 stop_after_trap = 1; 714 715 if (addr == (CORE_ADDR) -1) 716 { 717 /* If there is a breakpoint at the address we will resume at, 718 step one instruction before inserting breakpoints 719 so that we do not stop right away (and report a second 720 hit at this breakpoint). */ 721 722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) 723 oneproc = 1; 724 725 #ifndef STEP_SKIPS_DELAY 726 #define STEP_SKIPS_DELAY(pc) (0) 727 #define STEP_SKIPS_DELAY_P (0) 728 #endif 729 /* Check breakpoint_here_p first, because breakpoint_here_p is fast 730 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY 731 is slow (it needs to read memory from the target). */ 732 if (STEP_SKIPS_DELAY_P 733 && breakpoint_here_p (read_pc () + 4) 734 && STEP_SKIPS_DELAY (read_pc ())) 735 oneproc = 1; 736 } 737 else 738 { 739 write_pc (addr); 740 } 741 742 /* In a multi-threaded task we may select another thread 743 and then continue or step. 744 745 But if the old thread was stopped at a breakpoint, it 746 will immediately cause another breakpoint stop without 747 any execution (i.e. it will report a breakpoint hit 748 incorrectly). So we must step over it first. 749 750 prepare_to_proceed checks the current thread against the thread 751 that reported the most recent event. If a step-over is required 752 it returns TRUE and sets the current thread to the old thread. */ 753 if (prepare_to_proceed () && breakpoint_here_p (read_pc ())) 754 oneproc = 1; 755 756 if (oneproc) 757 /* We will get a trace trap after one instruction. 758 Continue it automatically and insert breakpoints then. */ 759 trap_expected = 1; 760 else 761 { 762 insert_breakpoints (); 763 /* If we get here there was no call to error() in 764 insert breakpoints -- so they were inserted. */ 765 breakpoints_inserted = 1; 766 } 767 768 if (siggnal != TARGET_SIGNAL_DEFAULT) 769 stop_signal = siggnal; 770 /* If this signal should not be seen by program, 771 give it zero. Used for debugging signals. */ 772 else if (!signal_program[stop_signal]) 773 stop_signal = TARGET_SIGNAL_0; 774 775 annotate_starting (); 776 777 /* Make sure that output from GDB appears before output from the 778 inferior. */ 779 gdb_flush (gdb_stdout); 780 781 /* Refresh prev_pc value just prior to resuming. This used to be 782 done in stop_stepping, however, setting prev_pc there did not handle 783 scenarios such as inferior function calls or returning from 784 a function via the return command. In those cases, the prev_pc 785 value was not set properly for subsequent commands. The prev_pc value 786 is used to initialize the starting line number in the ecs. With an 787 invalid value, the gdb next command ends up stopping at the position 788 represented by the next line table entry past our start position. 789 On platforms that generate one line table entry per line, this 790 is not a problem. However, on the ia64, the compiler generates 791 extraneous line table entries that do not increase the line number. 792 When we issue the gdb next command on the ia64 after an inferior call 793 or a return command, we often end up a few instructions forward, still 794 within the original line we started. 795 796 An attempt was made to have init_execution_control_state () refresh 797 the prev_pc value before calculating the line number. This approach 798 did not work because on platforms that use ptrace, the pc register 799 cannot be read unless the inferior is stopped. At that point, we 800 are not guaranteed the inferior is stopped and so the read_pc () 801 call can fail. Setting the prev_pc value here ensures the value is 802 updated correctly when the inferior is stopped. */ 803 prev_pc = read_pc (); 804 805 /* Resume inferior. */ 806 resume (oneproc || step || bpstat_should_step (), stop_signal); 807 808 /* Wait for it to stop (if not standalone) 809 and in any case decode why it stopped, and act accordingly. */ 810 /* Do this only if we are not using the event loop, or if the target 811 does not support asynchronous execution. */ 812 if (!target_can_async_p ()) 813 { 814 wait_for_inferior (); 815 normal_stop (); 816 } 817 } 818 819 820 /* Start remote-debugging of a machine over a serial link. */ 821 822 void 823 start_remote (void) 824 { 825 init_thread_list (); 826 init_wait_for_inferior (); 827 stop_soon = STOP_QUIETLY; 828 trap_expected = 0; 829 830 /* Always go on waiting for the target, regardless of the mode. */ 831 /* FIXME: cagney/1999-09-23: At present it isn't possible to 832 indicate to wait_for_inferior that a target should timeout if 833 nothing is returned (instead of just blocking). Because of this, 834 targets expecting an immediate response need to, internally, set 835 things up so that the target_wait() is forced to eventually 836 timeout. */ 837 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to 838 differentiate to its caller what the state of the target is after 839 the initial open has been performed. Here we're assuming that 840 the target has stopped. It should be possible to eventually have 841 target_open() return to the caller an indication that the target 842 is currently running and GDB state should be set to the same as 843 for an async run. */ 844 wait_for_inferior (); 845 normal_stop (); 846 } 847 848 /* Initialize static vars when a new inferior begins. */ 849 850 void 851 init_wait_for_inferior (void) 852 { 853 /* These are meaningless until the first time through wait_for_inferior. */ 854 prev_pc = 0; 855 856 breakpoints_inserted = 0; 857 breakpoint_init_inferior (inf_starting); 858 859 /* Don't confuse first call to proceed(). */ 860 stop_signal = TARGET_SIGNAL_0; 861 862 /* The first resume is not following a fork/vfork/exec. */ 863 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */ 864 865 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */ 866 number_of_threads_in_syscalls = 0; 867 868 clear_proceed_status (); 869 870 stepping_past_singlestep_breakpoint = 0; 871 } 872 873 /* This enum encodes possible reasons for doing a target_wait, so that 874 wfi can call target_wait in one place. (Ultimately the call will be 875 moved out of the infinite loop entirely.) */ 876 877 enum infwait_states 878 { 879 infwait_normal_state, 880 infwait_thread_hop_state, 881 infwait_nullified_state, 882 infwait_nonstep_watch_state 883 }; 884 885 /* Why did the inferior stop? Used to print the appropriate messages 886 to the interface from within handle_inferior_event(). */ 887 enum inferior_stop_reason 888 { 889 /* We don't know why. */ 890 STOP_UNKNOWN, 891 /* Step, next, nexti, stepi finished. */ 892 END_STEPPING_RANGE, 893 /* Found breakpoint. */ 894 BREAKPOINT_HIT, 895 /* Inferior terminated by signal. */ 896 SIGNAL_EXITED, 897 /* Inferior exited. */ 898 EXITED, 899 /* Inferior received signal, and user asked to be notified. */ 900 SIGNAL_RECEIVED 901 }; 902 903 /* This structure contains what used to be local variables in 904 wait_for_inferior. Probably many of them can return to being 905 locals in handle_inferior_event. */ 906 907 struct execution_control_state 908 { 909 struct target_waitstatus ws; 910 struct target_waitstatus *wp; 911 int another_trap; 912 int random_signal; 913 CORE_ADDR stop_func_start; 914 CORE_ADDR stop_func_end; 915 char *stop_func_name; 916 struct symtab_and_line sal; 917 int current_line; 918 struct symtab *current_symtab; 919 int handling_longjmp; /* FIXME */ 920 ptid_t ptid; 921 ptid_t saved_inferior_ptid; 922 int step_after_step_resume_breakpoint; 923 int stepping_through_solib_after_catch; 924 bpstat stepping_through_solib_catchpoints; 925 int enable_hw_watchpoints_after_wait; 926 int new_thread_event; 927 struct target_waitstatus tmpstatus; 928 enum infwait_states infwait_state; 929 ptid_t waiton_ptid; 930 int wait_some_more; 931 }; 932 933 void init_execution_control_state (struct execution_control_state *ecs); 934 935 void handle_inferior_event (struct execution_control_state *ecs); 936 937 static void step_into_function (struct execution_control_state *ecs); 938 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); 939 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, 940 struct frame_id sr_id); 941 static void stop_stepping (struct execution_control_state *ecs); 942 static void prepare_to_wait (struct execution_control_state *ecs); 943 static void keep_going (struct execution_control_state *ecs); 944 static void print_stop_reason (enum inferior_stop_reason stop_reason, 945 int stop_info); 946 947 /* Wait for control to return from inferior to debugger. 948 If inferior gets a signal, we may decide to start it up again 949 instead of returning. That is why there is a loop in this function. 950 When this function actually returns it means the inferior 951 should be left stopped and GDB should read more commands. */ 952 953 void 954 wait_for_inferior (void) 955 { 956 struct cleanup *old_cleanups; 957 struct execution_control_state ecss; 958 struct execution_control_state *ecs; 959 960 old_cleanups = make_cleanup (delete_step_resume_breakpoint, 961 &step_resume_breakpoint); 962 963 /* wfi still stays in a loop, so it's OK just to take the address of 964 a local to get the ecs pointer. */ 965 ecs = &ecss; 966 967 /* Fill in with reasonable starting values. */ 968 init_execution_control_state (ecs); 969 970 /* We'll update this if & when we switch to a new thread. */ 971 previous_inferior_ptid = inferior_ptid; 972 973 overlay_cache_invalid = 1; 974 975 /* We have to invalidate the registers BEFORE calling target_wait 976 because they can be loaded from the target while in target_wait. 977 This makes remote debugging a bit more efficient for those 978 targets that provide critical registers as part of their normal 979 status mechanism. */ 980 981 registers_changed (); 982 983 while (1) 984 { 985 if (deprecated_target_wait_hook) 986 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp); 987 else 988 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp); 989 990 /* Now figure out what to do with the result of the result. */ 991 handle_inferior_event (ecs); 992 993 if (!ecs->wait_some_more) 994 break; 995 } 996 do_cleanups (old_cleanups); 997 } 998 999 /* Asynchronous version of wait_for_inferior. It is called by the 1000 event loop whenever a change of state is detected on the file 1001 descriptor corresponding to the target. It can be called more than 1002 once to complete a single execution command. In such cases we need 1003 to keep the state in a global variable ASYNC_ECSS. If it is the 1004 last time that this function is called for a single execution 1005 command, then report to the user that the inferior has stopped, and 1006 do the necessary cleanups. */ 1007 1008 struct execution_control_state async_ecss; 1009 struct execution_control_state *async_ecs; 1010 1011 void 1012 fetch_inferior_event (void *client_data) 1013 { 1014 static struct cleanup *old_cleanups; 1015 1016 async_ecs = &async_ecss; 1017 1018 if (!async_ecs->wait_some_more) 1019 { 1020 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint, 1021 &step_resume_breakpoint); 1022 1023 /* Fill in with reasonable starting values. */ 1024 init_execution_control_state (async_ecs); 1025 1026 /* We'll update this if & when we switch to a new thread. */ 1027 previous_inferior_ptid = inferior_ptid; 1028 1029 overlay_cache_invalid = 1; 1030 1031 /* We have to invalidate the registers BEFORE calling target_wait 1032 because they can be loaded from the target while in target_wait. 1033 This makes remote debugging a bit more efficient for those 1034 targets that provide critical registers as part of their normal 1035 status mechanism. */ 1036 1037 registers_changed (); 1038 } 1039 1040 if (deprecated_target_wait_hook) 1041 async_ecs->ptid = 1042 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp); 1043 else 1044 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp); 1045 1046 /* Now figure out what to do with the result of the result. */ 1047 handle_inferior_event (async_ecs); 1048 1049 if (!async_ecs->wait_some_more) 1050 { 1051 /* Do only the cleanups that have been added by this 1052 function. Let the continuations for the commands do the rest, 1053 if there are any. */ 1054 do_exec_cleanups (old_cleanups); 1055 normal_stop (); 1056 if (step_multi && stop_step) 1057 inferior_event_handler (INF_EXEC_CONTINUE, NULL); 1058 else 1059 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 1060 } 1061 } 1062 1063 /* Prepare an execution control state for looping through a 1064 wait_for_inferior-type loop. */ 1065 1066 void 1067 init_execution_control_state (struct execution_control_state *ecs) 1068 { 1069 /* ecs->another_trap? */ 1070 ecs->random_signal = 0; 1071 ecs->step_after_step_resume_breakpoint = 0; 1072 ecs->handling_longjmp = 0; /* FIXME */ 1073 ecs->stepping_through_solib_after_catch = 0; 1074 ecs->stepping_through_solib_catchpoints = NULL; 1075 ecs->enable_hw_watchpoints_after_wait = 0; 1076 ecs->sal = find_pc_line (prev_pc, 0); 1077 ecs->current_line = ecs->sal.line; 1078 ecs->current_symtab = ecs->sal.symtab; 1079 ecs->infwait_state = infwait_normal_state; 1080 ecs->waiton_ptid = pid_to_ptid (-1); 1081 ecs->wp = &(ecs->ws); 1082 } 1083 1084 /* Return the cached copy of the last pid/waitstatus returned by 1085 target_wait()/deprecated_target_wait_hook(). The data is actually 1086 cached by handle_inferior_event(), which gets called immediately 1087 after target_wait()/deprecated_target_wait_hook(). */ 1088 1089 void 1090 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) 1091 { 1092 *ptidp = target_last_wait_ptid; 1093 *status = target_last_waitstatus; 1094 } 1095 1096 /* Switch thread contexts, maintaining "infrun state". */ 1097 1098 static void 1099 context_switch (struct execution_control_state *ecs) 1100 { 1101 /* Caution: it may happen that the new thread (or the old one!) 1102 is not in the thread list. In this case we must not attempt 1103 to "switch context", or we run the risk that our context may 1104 be lost. This may happen as a result of the target module 1105 mishandling thread creation. */ 1106 1107 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid)) 1108 { /* Perform infrun state context switch: */ 1109 /* Save infrun state for the old thread. */ 1110 save_infrun_state (inferior_ptid, prev_pc, 1111 trap_expected, step_resume_breakpoint, 1112 step_range_start, 1113 step_range_end, &step_frame_id, 1114 ecs->handling_longjmp, ecs->another_trap, 1115 ecs->stepping_through_solib_after_catch, 1116 ecs->stepping_through_solib_catchpoints, 1117 ecs->current_line, ecs->current_symtab); 1118 1119 /* Load infrun state for the new thread. */ 1120 load_infrun_state (ecs->ptid, &prev_pc, 1121 &trap_expected, &step_resume_breakpoint, 1122 &step_range_start, 1123 &step_range_end, &step_frame_id, 1124 &ecs->handling_longjmp, &ecs->another_trap, 1125 &ecs->stepping_through_solib_after_catch, 1126 &ecs->stepping_through_solib_catchpoints, 1127 &ecs->current_line, &ecs->current_symtab); 1128 } 1129 inferior_ptid = ecs->ptid; 1130 } 1131 1132 static void 1133 adjust_pc_after_break (struct execution_control_state *ecs) 1134 { 1135 CORE_ADDR breakpoint_pc; 1136 1137 /* If this target does not decrement the PC after breakpoints, then 1138 we have nothing to do. */ 1139 if (DECR_PC_AFTER_BREAK == 0) 1140 return; 1141 1142 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If 1143 we aren't, just return. 1144 1145 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not 1146 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented 1147 by software breakpoints should be handled through the normal breakpoint 1148 layer. 1149 1150 NOTE drow/2004-01-31: On some targets, breakpoints may generate 1151 different signals (SIGILL or SIGEMT for instance), but it is less 1152 clear where the PC is pointing afterwards. It may not match 1153 DECR_PC_AFTER_BREAK. I don't know any specific target that generates 1154 these signals at breakpoints (the code has been in GDB since at least 1155 1992) so I can not guess how to handle them here. 1156 1157 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS 1158 would have the PC after hitting a watchpoint affected by 1159 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set 1160 in GDB history, and it seems unlikely to be correct, so 1161 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */ 1162 1163 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) 1164 return; 1165 1166 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) 1167 return; 1168 1169 /* Find the location where (if we've hit a breakpoint) the 1170 breakpoint would be. */ 1171 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK; 1172 1173 if (SOFTWARE_SINGLE_STEP_P ()) 1174 { 1175 /* When using software single-step, a SIGTRAP can only indicate 1176 an inserted breakpoint. This actually makes things 1177 easier. */ 1178 if (singlestep_breakpoints_inserted_p) 1179 /* When software single stepping, the instruction at [prev_pc] 1180 is never a breakpoint, but the instruction following 1181 [prev_pc] (in program execution order) always is. Assume 1182 that following instruction was reached and hence a software 1183 breakpoint was hit. */ 1184 write_pc_pid (breakpoint_pc, ecs->ptid); 1185 else if (software_breakpoint_inserted_here_p (breakpoint_pc)) 1186 /* The inferior was free running (i.e., no single-step 1187 breakpoints inserted) and it hit a software breakpoint. */ 1188 write_pc_pid (breakpoint_pc, ecs->ptid); 1189 } 1190 else 1191 { 1192 /* When using hardware single-step, a SIGTRAP is reported for 1193 both a completed single-step and a software breakpoint. Need 1194 to differentiate between the two as the latter needs 1195 adjusting but the former does not. */ 1196 if (currently_stepping (ecs)) 1197 { 1198 if (prev_pc == breakpoint_pc 1199 && software_breakpoint_inserted_here_p (breakpoint_pc)) 1200 /* Hardware single-stepped a software breakpoint (as 1201 occures when the inferior is resumed with PC pointing 1202 at not-yet-hit software breakpoint). Since the 1203 breakpoint really is executed, the inferior needs to be 1204 backed up to the breakpoint address. */ 1205 write_pc_pid (breakpoint_pc, ecs->ptid); 1206 } 1207 else 1208 { 1209 if (software_breakpoint_inserted_here_p (breakpoint_pc)) 1210 /* The inferior was free running (i.e., no hardware 1211 single-step and no possibility of a false SIGTRAP) and 1212 hit a software breakpoint. */ 1213 write_pc_pid (breakpoint_pc, ecs->ptid); 1214 } 1215 } 1216 } 1217 1218 /* Given an execution control state that has been freshly filled in 1219 by an event from the inferior, figure out what it means and take 1220 appropriate action. */ 1221 1222 int stepped_after_stopped_by_watchpoint; 1223 1224 void 1225 handle_inferior_event (struct execution_control_state *ecs) 1226 { 1227 /* NOTE: cagney/2003-03-28: If you're looking at this code and 1228 thinking that the variable stepped_after_stopped_by_watchpoint 1229 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT, 1230 defined in the file "config/pa/nm-hppah.h", accesses the variable 1231 indirectly. Mutter something rude about the HP merge. */ 1232 int sw_single_step_trap_p = 0; 1233 int stopped_by_watchpoint = -1; /* Mark as unknown. */ 1234 1235 /* Cache the last pid/waitstatus. */ 1236 target_last_wait_ptid = ecs->ptid; 1237 target_last_waitstatus = *ecs->wp; 1238 1239 adjust_pc_after_break (ecs); 1240 1241 switch (ecs->infwait_state) 1242 { 1243 case infwait_thread_hop_state: 1244 /* Cancel the waiton_ptid. */ 1245 ecs->waiton_ptid = pid_to_ptid (-1); 1246 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event 1247 is serviced in this loop, below. */ 1248 if (ecs->enable_hw_watchpoints_after_wait) 1249 { 1250 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); 1251 ecs->enable_hw_watchpoints_after_wait = 0; 1252 } 1253 stepped_after_stopped_by_watchpoint = 0; 1254 break; 1255 1256 case infwait_normal_state: 1257 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event 1258 is serviced in this loop, below. */ 1259 if (ecs->enable_hw_watchpoints_after_wait) 1260 { 1261 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); 1262 ecs->enable_hw_watchpoints_after_wait = 0; 1263 } 1264 stepped_after_stopped_by_watchpoint = 0; 1265 break; 1266 1267 case infwait_nullified_state: 1268 stepped_after_stopped_by_watchpoint = 0; 1269 break; 1270 1271 case infwait_nonstep_watch_state: 1272 insert_breakpoints (); 1273 1274 /* FIXME-maybe: is this cleaner than setting a flag? Does it 1275 handle things like signals arriving and other things happening 1276 in combination correctly? */ 1277 stepped_after_stopped_by_watchpoint = 1; 1278 break; 1279 1280 default: 1281 internal_error (__FILE__, __LINE__, "bad switch"); 1282 } 1283 ecs->infwait_state = infwait_normal_state; 1284 1285 flush_cached_frames (); 1286 1287 /* If it's a new process, add it to the thread database */ 1288 1289 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) 1290 && !ptid_equal (ecs->ptid, minus_one_ptid) 1291 && !in_thread_list (ecs->ptid)); 1292 1293 if (ecs->ws.kind != TARGET_WAITKIND_EXITED 1294 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) 1295 { 1296 add_thread (ecs->ptid); 1297 1298 ui_out_text (uiout, "[New "); 1299 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid)); 1300 ui_out_text (uiout, "]\n"); 1301 } 1302 1303 switch (ecs->ws.kind) 1304 { 1305 case TARGET_WAITKIND_LOADED: 1306 /* Ignore gracefully during startup of the inferior, as it 1307 might be the shell which has just loaded some objects, 1308 otherwise add the symbols for the newly loaded objects. */ 1309 #ifdef SOLIB_ADD 1310 if (stop_soon == NO_STOP_QUIETLY) 1311 { 1312 /* Remove breakpoints, SOLIB_ADD might adjust 1313 breakpoint addresses via breakpoint_re_set. */ 1314 if (breakpoints_inserted) 1315 remove_breakpoints (); 1316 1317 /* Check for any newly added shared libraries if we're 1318 supposed to be adding them automatically. Switch 1319 terminal for any messages produced by 1320 breakpoint_re_set. */ 1321 target_terminal_ours_for_output (); 1322 /* NOTE: cagney/2003-11-25: Make certain that the target 1323 stack's section table is kept up-to-date. Architectures, 1324 (e.g., PPC64), use the section table to perform 1325 operations such as address => section name and hence 1326 require the table to contain all sections (including 1327 those found in shared libraries). */ 1328 /* NOTE: cagney/2003-11-25: Pass current_target and not 1329 exec_ops to SOLIB_ADD. This is because current GDB is 1330 only tooled to propagate section_table changes out from 1331 the "current_target" (see target_resize_to_sections), and 1332 not up from the exec stratum. This, of course, isn't 1333 right. "infrun.c" should only interact with the 1334 exec/process stratum, instead relying on the target stack 1335 to propagate relevant changes (stop, section table 1336 changed, ...) up to other layers. */ 1337 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); 1338 target_terminal_inferior (); 1339 1340 /* Reinsert breakpoints and continue. */ 1341 if (breakpoints_inserted) 1342 insert_breakpoints (); 1343 } 1344 #endif 1345 resume (0, TARGET_SIGNAL_0); 1346 prepare_to_wait (ecs); 1347 return; 1348 1349 case TARGET_WAITKIND_SPURIOUS: 1350 resume (0, TARGET_SIGNAL_0); 1351 prepare_to_wait (ecs); 1352 return; 1353 1354 case TARGET_WAITKIND_EXITED: 1355 target_terminal_ours (); /* Must do this before mourn anyway */ 1356 print_stop_reason (EXITED, ecs->ws.value.integer); 1357 1358 /* Record the exit code in the convenience variable $_exitcode, so 1359 that the user can inspect this again later. */ 1360 set_internalvar (lookup_internalvar ("_exitcode"), 1361 value_from_longest (builtin_type_int, 1362 (LONGEST) ecs->ws.value.integer)); 1363 gdb_flush (gdb_stdout); 1364 target_mourn_inferior (); 1365 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ 1366 stop_print_frame = 0; 1367 stop_stepping (ecs); 1368 return; 1369 1370 case TARGET_WAITKIND_SIGNALLED: 1371 stop_print_frame = 0; 1372 stop_signal = ecs->ws.value.sig; 1373 target_terminal_ours (); /* Must do this before mourn anyway */ 1374 1375 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't 1376 reach here unless the inferior is dead. However, for years 1377 target_kill() was called here, which hints that fatal signals aren't 1378 really fatal on some systems. If that's true, then some changes 1379 may be needed. */ 1380 target_mourn_inferior (); 1381 1382 print_stop_reason (SIGNAL_EXITED, stop_signal); 1383 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ 1384 stop_stepping (ecs); 1385 return; 1386 1387 /* The following are the only cases in which we keep going; 1388 the above cases end in a continue or goto. */ 1389 case TARGET_WAITKIND_FORKED: 1390 case TARGET_WAITKIND_VFORKED: 1391 stop_signal = TARGET_SIGNAL_TRAP; 1392 pending_follow.kind = ecs->ws.kind; 1393 1394 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid); 1395 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid; 1396 1397 stop_pc = read_pc (); 1398 1399 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); 1400 1401 ecs->random_signal = !bpstat_explains_signal (stop_bpstat); 1402 1403 /* If no catchpoint triggered for this, then keep going. */ 1404 if (ecs->random_signal) 1405 { 1406 stop_signal = TARGET_SIGNAL_0; 1407 keep_going (ecs); 1408 return; 1409 } 1410 goto process_event_stop_test; 1411 1412 case TARGET_WAITKIND_EXECD: 1413 stop_signal = TARGET_SIGNAL_TRAP; 1414 1415 /* NOTE drow/2002-12-05: This code should be pushed down into the 1416 target_wait function. Until then following vfork on HP/UX 10.20 1417 is probably broken by this. Of course, it's broken anyway. */ 1418 /* Is this a target which reports multiple exec events per actual 1419 call to exec()? (HP-UX using ptrace does, for example.) If so, 1420 ignore all but the last one. Just resume the exec'r, and wait 1421 for the next exec event. */ 1422 if (inferior_ignoring_leading_exec_events) 1423 { 1424 inferior_ignoring_leading_exec_events--; 1425 if (pending_follow.kind == TARGET_WAITKIND_VFORKED) 1426 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event. 1427 parent_pid); 1428 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0); 1429 prepare_to_wait (ecs); 1430 return; 1431 } 1432 inferior_ignoring_leading_exec_events = 1433 target_reported_exec_events_per_exec_call () - 1; 1434 1435 pending_follow.execd_pathname = 1436 savestring (ecs->ws.value.execd_pathname, 1437 strlen (ecs->ws.value.execd_pathname)); 1438 1439 /* This causes the eventpoints and symbol table to be reset. Must 1440 do this now, before trying to determine whether to stop. */ 1441 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname); 1442 xfree (pending_follow.execd_pathname); 1443 1444 stop_pc = read_pc_pid (ecs->ptid); 1445 ecs->saved_inferior_ptid = inferior_ptid; 1446 inferior_ptid = ecs->ptid; 1447 1448 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); 1449 1450 ecs->random_signal = !bpstat_explains_signal (stop_bpstat); 1451 inferior_ptid = ecs->saved_inferior_ptid; 1452 1453 /* If no catchpoint triggered for this, then keep going. */ 1454 if (ecs->random_signal) 1455 { 1456 stop_signal = TARGET_SIGNAL_0; 1457 keep_going (ecs); 1458 return; 1459 } 1460 goto process_event_stop_test; 1461 1462 /* These syscall events are returned on HP-UX, as part of its 1463 implementation of page-protection-based "hardware" watchpoints. 1464 HP-UX has unfortunate interactions between page-protections and 1465 some system calls. Our solution is to disable hardware watches 1466 when a system call is entered, and reenable them when the syscall 1467 completes. The downside of this is that we may miss the precise 1468 point at which a watched piece of memory is modified. "Oh well." 1469 1470 Note that we may have multiple threads running, which may each 1471 enter syscalls at roughly the same time. Since we don't have a 1472 good notion currently of whether a watched piece of memory is 1473 thread-private, we'd best not have any page-protections active 1474 when any thread is in a syscall. Thus, we only want to reenable 1475 hardware watches when no threads are in a syscall. 1476 1477 Also, be careful not to try to gather much state about a thread 1478 that's in a syscall. It's frequently a losing proposition. */ 1479 case TARGET_WAITKIND_SYSCALL_ENTRY: 1480 number_of_threads_in_syscalls++; 1481 if (number_of_threads_in_syscalls == 1) 1482 { 1483 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); 1484 } 1485 resume (0, TARGET_SIGNAL_0); 1486 prepare_to_wait (ecs); 1487 return; 1488 1489 /* Before examining the threads further, step this thread to 1490 get it entirely out of the syscall. (We get notice of the 1491 event when the thread is just on the verge of exiting a 1492 syscall. Stepping one instruction seems to get it back 1493 into user code.) 1494 1495 Note that although the logical place to reenable h/w watches 1496 is here, we cannot. We cannot reenable them before stepping 1497 the thread (this causes the next wait on the thread to hang). 1498 1499 Nor can we enable them after stepping until we've done a wait. 1500 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait 1501 here, which will be serviced immediately after the target 1502 is waited on. */ 1503 case TARGET_WAITKIND_SYSCALL_RETURN: 1504 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); 1505 1506 if (number_of_threads_in_syscalls > 0) 1507 { 1508 number_of_threads_in_syscalls--; 1509 ecs->enable_hw_watchpoints_after_wait = 1510 (number_of_threads_in_syscalls == 0); 1511 } 1512 prepare_to_wait (ecs); 1513 return; 1514 1515 case TARGET_WAITKIND_STOPPED: 1516 stop_signal = ecs->ws.value.sig; 1517 break; 1518 1519 /* We had an event in the inferior, but we are not interested 1520 in handling it at this level. The lower layers have already 1521 done what needs to be done, if anything. 1522 1523 One of the possible circumstances for this is when the 1524 inferior produces output for the console. The inferior has 1525 not stopped, and we are ignoring the event. Another possible 1526 circumstance is any event which the lower level knows will be 1527 reported multiple times without an intervening resume. */ 1528 case TARGET_WAITKIND_IGNORE: 1529 prepare_to_wait (ecs); 1530 return; 1531 } 1532 1533 /* We may want to consider not doing a resume here in order to give 1534 the user a chance to play with the new thread. It might be good 1535 to make that a user-settable option. */ 1536 1537 /* At this point, all threads are stopped (happens automatically in 1538 either the OS or the native code). Therefore we need to continue 1539 all threads in order to make progress. */ 1540 if (ecs->new_thread_event) 1541 { 1542 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); 1543 prepare_to_wait (ecs); 1544 return; 1545 } 1546 1547 stop_pc = read_pc_pid (ecs->ptid); 1548 1549 if (stepping_past_singlestep_breakpoint) 1550 { 1551 gdb_assert (SOFTWARE_SINGLE_STEP_P () 1552 && singlestep_breakpoints_inserted_p); 1553 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); 1554 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); 1555 1556 stepping_past_singlestep_breakpoint = 0; 1557 1558 /* We've either finished single-stepping past the single-step 1559 breakpoint, or stopped for some other reason. It would be nice if 1560 we could tell, but we can't reliably. */ 1561 if (stop_signal == TARGET_SIGNAL_TRAP) 1562 { 1563 /* Pull the single step breakpoints out of the target. */ 1564 SOFTWARE_SINGLE_STEP (0, 0); 1565 singlestep_breakpoints_inserted_p = 0; 1566 1567 ecs->random_signal = 0; 1568 1569 ecs->ptid = saved_singlestep_ptid; 1570 context_switch (ecs); 1571 if (deprecated_context_hook) 1572 deprecated_context_hook (pid_to_thread_id (ecs->ptid)); 1573 1574 resume (1, TARGET_SIGNAL_0); 1575 prepare_to_wait (ecs); 1576 return; 1577 } 1578 } 1579 1580 stepping_past_singlestep_breakpoint = 0; 1581 1582 /* See if a thread hit a thread-specific breakpoint that was meant for 1583 another thread. If so, then step that thread past the breakpoint, 1584 and continue it. */ 1585 1586 if (stop_signal == TARGET_SIGNAL_TRAP) 1587 { 1588 int thread_hop_needed = 0; 1589 1590 /* Check if a regular breakpoint has been hit before checking 1591 for a potential single step breakpoint. Otherwise, GDB will 1592 not see this breakpoint hit when stepping onto breakpoints. */ 1593 if (breakpoints_inserted && breakpoint_here_p (stop_pc)) 1594 { 1595 ecs->random_signal = 0; 1596 if (!breakpoint_thread_match (stop_pc, ecs->ptid)) 1597 thread_hop_needed = 1; 1598 } 1599 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) 1600 { 1601 ecs->random_signal = 0; 1602 /* The call to in_thread_list is necessary because PTIDs sometimes 1603 change when we go from single-threaded to multi-threaded. If 1604 the singlestep_ptid is still in the list, assume that it is 1605 really different from ecs->ptid. */ 1606 if (!ptid_equal (singlestep_ptid, ecs->ptid) 1607 && in_thread_list (singlestep_ptid)) 1608 { 1609 thread_hop_needed = 1; 1610 stepping_past_singlestep_breakpoint = 1; 1611 saved_singlestep_ptid = singlestep_ptid; 1612 } 1613 } 1614 1615 if (thread_hop_needed) 1616 { 1617 int remove_status; 1618 1619 /* Saw a breakpoint, but it was hit by the wrong thread. 1620 Just continue. */ 1621 1622 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) 1623 { 1624 /* Pull the single step breakpoints out of the target. */ 1625 SOFTWARE_SINGLE_STEP (0, 0); 1626 singlestep_breakpoints_inserted_p = 0; 1627 } 1628 1629 remove_status = remove_breakpoints (); 1630 /* Did we fail to remove breakpoints? If so, try 1631 to set the PC past the bp. (There's at least 1632 one situation in which we can fail to remove 1633 the bp's: On HP-UX's that use ttrace, we can't 1634 change the address space of a vforking child 1635 process until the child exits (well, okay, not 1636 then either :-) or execs. */ 1637 if (remove_status != 0) 1638 { 1639 /* FIXME! This is obviously non-portable! */ 1640 write_pc_pid (stop_pc + 4, ecs->ptid); 1641 /* We need to restart all the threads now, 1642 * unles we're running in scheduler-locked mode. 1643 * Use currently_stepping to determine whether to 1644 * step or continue. 1645 */ 1646 /* FIXME MVS: is there any reason not to call resume()? */ 1647 if (scheduler_mode == schedlock_on) 1648 target_resume (ecs->ptid, 1649 currently_stepping (ecs), TARGET_SIGNAL_0); 1650 else 1651 target_resume (RESUME_ALL, 1652 currently_stepping (ecs), TARGET_SIGNAL_0); 1653 prepare_to_wait (ecs); 1654 return; 1655 } 1656 else 1657 { /* Single step */ 1658 breakpoints_inserted = 0; 1659 if (!ptid_equal (inferior_ptid, ecs->ptid)) 1660 context_switch (ecs); 1661 ecs->waiton_ptid = ecs->ptid; 1662 ecs->wp = &(ecs->ws); 1663 ecs->another_trap = 1; 1664 1665 ecs->infwait_state = infwait_thread_hop_state; 1666 keep_going (ecs); 1667 registers_changed (); 1668 return; 1669 } 1670 } 1671 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) 1672 { 1673 sw_single_step_trap_p = 1; 1674 ecs->random_signal = 0; 1675 } 1676 } 1677 else 1678 ecs->random_signal = 1; 1679 1680 /* See if something interesting happened to the non-current thread. If 1681 so, then switch to that thread. */ 1682 if (!ptid_equal (ecs->ptid, inferior_ptid)) 1683 { 1684 context_switch (ecs); 1685 1686 if (deprecated_context_hook) 1687 deprecated_context_hook (pid_to_thread_id (ecs->ptid)); 1688 1689 flush_cached_frames (); 1690 } 1691 1692 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) 1693 { 1694 /* Pull the single step breakpoints out of the target. */ 1695 SOFTWARE_SINGLE_STEP (0, 0); 1696 singlestep_breakpoints_inserted_p = 0; 1697 } 1698 1699 /* If PC is pointing at a nullified instruction, then step beyond 1700 it so that the user won't be confused when GDB appears to be ready 1701 to execute it. */ 1702 1703 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */ 1704 if (INSTRUCTION_NULLIFIED) 1705 { 1706 registers_changed (); 1707 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); 1708 1709 /* We may have received a signal that we want to pass to 1710 the inferior; therefore, we must not clobber the waitstatus 1711 in WS. */ 1712 1713 ecs->infwait_state = infwait_nullified_state; 1714 ecs->waiton_ptid = ecs->ptid; 1715 ecs->wp = &(ecs->tmpstatus); 1716 prepare_to_wait (ecs); 1717 return; 1718 } 1719 1720 /* It may not be necessary to disable the watchpoint to stop over 1721 it. For example, the PA can (with some kernel cooperation) 1722 single step over a watchpoint without disabling the watchpoint. */ 1723 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) 1724 { 1725 resume (1, 0); 1726 prepare_to_wait (ecs); 1727 return; 1728 } 1729 1730 /* It is far more common to need to disable a watchpoint to step 1731 the inferior over it. FIXME. What else might a debug 1732 register or page protection watchpoint scheme need here? */ 1733 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) 1734 { 1735 /* At this point, we are stopped at an instruction which has 1736 attempted to write to a piece of memory under control of 1737 a watchpoint. The instruction hasn't actually executed 1738 yet. If we were to evaluate the watchpoint expression 1739 now, we would get the old value, and therefore no change 1740 would seem to have occurred. 1741 1742 In order to make watchpoints work `right', we really need 1743 to complete the memory write, and then evaluate the 1744 watchpoint expression. The following code does that by 1745 removing the watchpoint (actually, all watchpoints and 1746 breakpoints), single-stepping the target, re-inserting 1747 watchpoints, and then falling through to let normal 1748 single-step processing handle proceed. Since this 1749 includes evaluating watchpoints, things will come to a 1750 stop in the correct manner. */ 1751 1752 remove_breakpoints (); 1753 registers_changed (); 1754 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */ 1755 1756 ecs->waiton_ptid = ecs->ptid; 1757 ecs->wp = &(ecs->ws); 1758 ecs->infwait_state = infwait_nonstep_watch_state; 1759 prepare_to_wait (ecs); 1760 return; 1761 } 1762 1763 /* It may be possible to simply continue after a watchpoint. */ 1764 if (HAVE_CONTINUABLE_WATCHPOINT) 1765 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws); 1766 1767 ecs->stop_func_start = 0; 1768 ecs->stop_func_end = 0; 1769 ecs->stop_func_name = 0; 1770 /* Don't care about return value; stop_func_start and stop_func_name 1771 will both be 0 if it doesn't work. */ 1772 find_pc_partial_function (stop_pc, &ecs->stop_func_name, 1773 &ecs->stop_func_start, &ecs->stop_func_end); 1774 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET; 1775 ecs->another_trap = 0; 1776 bpstat_clear (&stop_bpstat); 1777 stop_step = 0; 1778 stop_stack_dummy = 0; 1779 stop_print_frame = 1; 1780 ecs->random_signal = 0; 1781 stopped_by_random_signal = 0; 1782 breakpoints_failed = 0; 1783 1784 /* Look at the cause of the stop, and decide what to do. 1785 The alternatives are: 1786 1) break; to really stop and return to the debugger, 1787 2) drop through to start up again 1788 (set ecs->another_trap to 1 to single step once) 1789 3) set ecs->random_signal to 1, and the decision between 1 and 2 1790 will be made according to the signal handling tables. */ 1791 1792 /* First, distinguish signals caused by the debugger from signals 1793 that have to do with the program's own actions. Note that 1794 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending 1795 on the operating system version. Here we detect when a SIGILL or 1796 SIGEMT is really a breakpoint and change it to SIGTRAP. We do 1797 something similar for SIGSEGV, since a SIGSEGV will be generated 1798 when we're trying to execute a breakpoint instruction on a 1799 non-executable stack. This happens for call dummy breakpoints 1800 for architectures like SPARC that place call dummies on the 1801 stack. */ 1802 1803 if (stop_signal == TARGET_SIGNAL_TRAP 1804 || (breakpoints_inserted 1805 && (stop_signal == TARGET_SIGNAL_ILL 1806 || stop_signal == TARGET_SIGNAL_SEGV 1807 || stop_signal == TARGET_SIGNAL_EMT)) 1808 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP) 1809 { 1810 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) 1811 { 1812 stop_print_frame = 0; 1813 stop_stepping (ecs); 1814 return; 1815 } 1816 1817 /* This is originated from start_remote(), start_inferior() and 1818 shared libraries hook functions. */ 1819 if (stop_soon == STOP_QUIETLY) 1820 { 1821 stop_stepping (ecs); 1822 return; 1823 } 1824 1825 /* This originates from attach_command(). We need to overwrite 1826 the stop_signal here, because some kernels don't ignore a 1827 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call. 1828 See more comments in inferior.h. */ 1829 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP) 1830 { 1831 stop_stepping (ecs); 1832 if (stop_signal == TARGET_SIGNAL_STOP) 1833 stop_signal = TARGET_SIGNAL_0; 1834 return; 1835 } 1836 1837 /* Don't even think about breakpoints if just proceeded over a 1838 breakpoint. */ 1839 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected) 1840 bpstat_clear (&stop_bpstat); 1841 else 1842 { 1843 /* See if there is a breakpoint at the current PC. */ 1844 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 1845 stopped_by_watchpoint); 1846 1847 /* Following in case break condition called a 1848 function. */ 1849 stop_print_frame = 1; 1850 } 1851 1852 /* NOTE: cagney/2003-03-29: These two checks for a random signal 1853 at one stage in the past included checks for an inferior 1854 function call's call dummy's return breakpoint. The original 1855 comment, that went with the test, read: 1856 1857 ``End of a stack dummy. Some systems (e.g. Sony news) give 1858 another signal besides SIGTRAP, so check here as well as 1859 above.'' 1860 1861 If someone ever tries to get get call dummys on a 1862 non-executable stack to work (where the target would stop 1863 with something like a SIGSEGV), then those tests might need 1864 to be re-instated. Given, however, that the tests were only 1865 enabled when momentary breakpoints were not being used, I 1866 suspect that it won't be the case. 1867 1868 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to 1869 be necessary for call dummies on a non-executable stack on 1870 SPARC. */ 1871 1872 if (stop_signal == TARGET_SIGNAL_TRAP) 1873 ecs->random_signal 1874 = !(bpstat_explains_signal (stop_bpstat) 1875 || trap_expected 1876 || (step_range_end && step_resume_breakpoint == NULL)); 1877 else 1878 { 1879 ecs->random_signal = !bpstat_explains_signal (stop_bpstat); 1880 if (!ecs->random_signal) 1881 stop_signal = TARGET_SIGNAL_TRAP; 1882 } 1883 } 1884 1885 /* When we reach this point, we've pretty much decided 1886 that the reason for stopping must've been a random 1887 (unexpected) signal. */ 1888 1889 else 1890 ecs->random_signal = 1; 1891 1892 process_event_stop_test: 1893 /* For the program's own signals, act according to 1894 the signal handling tables. */ 1895 1896 if (ecs->random_signal) 1897 { 1898 /* Signal not for debugging purposes. */ 1899 int printed = 0; 1900 1901 stopped_by_random_signal = 1; 1902 1903 if (signal_print[stop_signal]) 1904 { 1905 printed = 1; 1906 target_terminal_ours_for_output (); 1907 print_stop_reason (SIGNAL_RECEIVED, stop_signal); 1908 } 1909 if (signal_stop[stop_signal]) 1910 { 1911 stop_stepping (ecs); 1912 return; 1913 } 1914 /* If not going to stop, give terminal back 1915 if we took it away. */ 1916 else if (printed) 1917 target_terminal_inferior (); 1918 1919 /* Clear the signal if it should not be passed. */ 1920 if (signal_program[stop_signal] == 0) 1921 stop_signal = TARGET_SIGNAL_0; 1922 1923 if (prev_pc == read_pc () 1924 && !breakpoints_inserted 1925 && breakpoint_here_p (read_pc ()) 1926 && step_resume_breakpoint == NULL) 1927 { 1928 /* We were just starting a new sequence, attempting to 1929 single-step off of a breakpoint and expecting a SIGTRAP. 1930 Intead this signal arrives. This signal will take us out 1931 of the stepping range so GDB needs to remember to, when 1932 the signal handler returns, resume stepping off that 1933 breakpoint. */ 1934 /* To simplify things, "continue" is forced to use the same 1935 code paths as single-step - set a breakpoint at the 1936 signal return address and then, once hit, step off that 1937 breakpoint. */ 1938 insert_step_resume_breakpoint_at_frame (get_current_frame ()); 1939 ecs->step_after_step_resume_breakpoint = 1; 1940 } 1941 else if (step_range_end != 0 1942 && stop_signal != TARGET_SIGNAL_0 1943 && stop_pc >= step_range_start && stop_pc < step_range_end 1944 && frame_id_eq (get_frame_id (get_current_frame ()), 1945 step_frame_id)) 1946 { 1947 /* The inferior is about to take a signal that will take it 1948 out of the single step range. Set a breakpoint at the 1949 current PC (which is presumably where the signal handler 1950 will eventually return) and then allow the inferior to 1951 run free. 1952 1953 Note that this is only needed for a signal delivered 1954 while in the single-step range. Nested signals aren't a 1955 problem as they eventually all return. */ 1956 insert_step_resume_breakpoint_at_frame (get_current_frame ()); 1957 } 1958 keep_going (ecs); 1959 return; 1960 } 1961 1962 /* Handle cases caused by hitting a breakpoint. */ 1963 { 1964 CORE_ADDR jmp_buf_pc; 1965 struct bpstat_what what; 1966 1967 what = bpstat_what (stop_bpstat); 1968 1969 if (what.call_dummy) 1970 { 1971 stop_stack_dummy = 1; 1972 } 1973 1974 switch (what.main_action) 1975 { 1976 case BPSTAT_WHAT_SET_LONGJMP_RESUME: 1977 /* If we hit the breakpoint at longjmp, disable it for the 1978 duration of this command. Then, install a temporary 1979 breakpoint at the target of the jmp_buf. */ 1980 disable_longjmp_breakpoint (); 1981 remove_breakpoints (); 1982 breakpoints_inserted = 0; 1983 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc)) 1984 { 1985 keep_going (ecs); 1986 return; 1987 } 1988 1989 /* Need to blow away step-resume breakpoint, as it 1990 interferes with us */ 1991 if (step_resume_breakpoint != NULL) 1992 { 1993 delete_step_resume_breakpoint (&step_resume_breakpoint); 1994 } 1995 1996 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id); 1997 ecs->handling_longjmp = 1; /* FIXME */ 1998 keep_going (ecs); 1999 return; 2000 2001 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: 2002 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: 2003 remove_breakpoints (); 2004 breakpoints_inserted = 0; 2005 disable_longjmp_breakpoint (); 2006 ecs->handling_longjmp = 0; /* FIXME */ 2007 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) 2008 break; 2009 /* else fallthrough */ 2010 2011 case BPSTAT_WHAT_SINGLE: 2012 if (breakpoints_inserted) 2013 { 2014 remove_breakpoints (); 2015 } 2016 breakpoints_inserted = 0; 2017 ecs->another_trap = 1; 2018 /* Still need to check other stuff, at least the case 2019 where we are stepping and step out of the right range. */ 2020 break; 2021 2022 case BPSTAT_WHAT_STOP_NOISY: 2023 stop_print_frame = 1; 2024 2025 /* We are about to nuke the step_resume_breakpointt via the 2026 cleanup chain, so no need to worry about it here. */ 2027 2028 stop_stepping (ecs); 2029 return; 2030 2031 case BPSTAT_WHAT_STOP_SILENT: 2032 stop_print_frame = 0; 2033 2034 /* We are about to nuke the step_resume_breakpoin via the 2035 cleanup chain, so no need to worry about it here. */ 2036 2037 stop_stepping (ecs); 2038 return; 2039 2040 case BPSTAT_WHAT_STEP_RESUME: 2041 /* This proably demands a more elegant solution, but, yeah 2042 right... 2043 2044 This function's use of the simple variable 2045 step_resume_breakpoint doesn't seem to accomodate 2046 simultaneously active step-resume bp's, although the 2047 breakpoint list certainly can. 2048 2049 If we reach here and step_resume_breakpoint is already 2050 NULL, then apparently we have multiple active 2051 step-resume bp's. We'll just delete the breakpoint we 2052 stopped at, and carry on. 2053 2054 Correction: what the code currently does is delete a 2055 step-resume bp, but it makes no effort to ensure that 2056 the one deleted is the one currently stopped at. MVS */ 2057 2058 if (step_resume_breakpoint == NULL) 2059 { 2060 step_resume_breakpoint = 2061 bpstat_find_step_resume_breakpoint (stop_bpstat); 2062 } 2063 delete_step_resume_breakpoint (&step_resume_breakpoint); 2064 if (ecs->step_after_step_resume_breakpoint) 2065 { 2066 /* Back when the step-resume breakpoint was inserted, we 2067 were trying to single-step off a breakpoint. Go back 2068 to doing that. */ 2069 ecs->step_after_step_resume_breakpoint = 0; 2070 remove_breakpoints (); 2071 breakpoints_inserted = 0; 2072 ecs->another_trap = 1; 2073 keep_going (ecs); 2074 return; 2075 } 2076 break; 2077 2078 case BPSTAT_WHAT_THROUGH_SIGTRAMP: 2079 /* If were waiting for a trap, hitting the step_resume_break 2080 doesn't count as getting it. */ 2081 if (trap_expected) 2082 ecs->another_trap = 1; 2083 break; 2084 2085 case BPSTAT_WHAT_CHECK_SHLIBS: 2086 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK: 2087 #ifdef SOLIB_ADD 2088 { 2089 /* Remove breakpoints, we eventually want to step over the 2090 shlib event breakpoint, and SOLIB_ADD might adjust 2091 breakpoint addresses via breakpoint_re_set. */ 2092 if (breakpoints_inserted) 2093 remove_breakpoints (); 2094 breakpoints_inserted = 0; 2095 2096 /* Check for any newly added shared libraries if we're 2097 supposed to be adding them automatically. Switch 2098 terminal for any messages produced by 2099 breakpoint_re_set. */ 2100 target_terminal_ours_for_output (); 2101 /* NOTE: cagney/2003-11-25: Make certain that the target 2102 stack's section table is kept up-to-date. Architectures, 2103 (e.g., PPC64), use the section table to perform 2104 operations such as address => section name and hence 2105 require the table to contain all sections (including 2106 those found in shared libraries). */ 2107 /* NOTE: cagney/2003-11-25: Pass current_target and not 2108 exec_ops to SOLIB_ADD. This is because current GDB is 2109 only tooled to propagate section_table changes out from 2110 the "current_target" (see target_resize_to_sections), and 2111 not up from the exec stratum. This, of course, isn't 2112 right. "infrun.c" should only interact with the 2113 exec/process stratum, instead relying on the target stack 2114 to propagate relevant changes (stop, section table 2115 changed, ...) up to other layers. */ 2116 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); 2117 target_terminal_inferior (); 2118 2119 /* Try to reenable shared library breakpoints, additional 2120 code segments in shared libraries might be mapped in now. */ 2121 re_enable_breakpoints_in_shlibs (); 2122 2123 /* For PIE executables, we dont really know where the 2124 breakpoints are going to be until we start up the 2125 inferior. */ 2126 re_enable_breakpoints_at_startup (); 2127 2128 /* If requested, stop when the dynamic linker notifies 2129 gdb of events. This allows the user to get control 2130 and place breakpoints in initializer routines for 2131 dynamically loaded objects (among other things). */ 2132 if (stop_on_solib_events || stop_stack_dummy) 2133 { 2134 stop_stepping (ecs); 2135 return; 2136 } 2137 2138 /* If we stopped due to an explicit catchpoint, then the 2139 (see above) call to SOLIB_ADD pulled in any symbols 2140 from a newly-loaded library, if appropriate. 2141 2142 We do want the inferior to stop, but not where it is 2143 now, which is in the dynamic linker callback. Rather, 2144 we would like it stop in the user's program, just after 2145 the call that caused this catchpoint to trigger. That 2146 gives the user a more useful vantage from which to 2147 examine their program's state. */ 2148 else if (what.main_action 2149 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK) 2150 { 2151 /* ??rehrauer: If I could figure out how to get the 2152 right return PC from here, we could just set a temp 2153 breakpoint and resume. I'm not sure we can without 2154 cracking open the dld's shared libraries and sniffing 2155 their unwind tables and text/data ranges, and that's 2156 not a terribly portable notion. 2157 2158 Until that time, we must step the inferior out of the 2159 dld callback, and also out of the dld itself (and any 2160 code or stubs in libdld.sl, such as "shl_load" and 2161 friends) until we reach non-dld code. At that point, 2162 we can stop stepping. */ 2163 bpstat_get_triggered_catchpoints (stop_bpstat, 2164 &ecs-> 2165 stepping_through_solib_catchpoints); 2166 ecs->stepping_through_solib_after_catch = 1; 2167 2168 /* Be sure to lift all breakpoints, so the inferior does 2169 actually step past this point... */ 2170 ecs->another_trap = 1; 2171 break; 2172 } 2173 else 2174 { 2175 /* We want to step over this breakpoint, then keep going. */ 2176 ecs->another_trap = 1; 2177 break; 2178 } 2179 } 2180 #endif 2181 break; 2182 2183 case BPSTAT_WHAT_LAST: 2184 /* Not a real code, but listed here to shut up gcc -Wall. */ 2185 2186 case BPSTAT_WHAT_KEEP_CHECKING: 2187 break; 2188 } 2189 } 2190 2191 /* We come here if we hit a breakpoint but should not 2192 stop for it. Possibly we also were stepping 2193 and should stop for that. So fall through and 2194 test for stepping. But, if not stepping, 2195 do not stop. */ 2196 2197 /* Are we stepping to get the inferior out of the dynamic 2198 linker's hook (and possibly the dld itself) after catching 2199 a shlib event? */ 2200 if (ecs->stepping_through_solib_after_catch) 2201 { 2202 #if defined(SOLIB_ADD) 2203 /* Have we reached our destination? If not, keep going. */ 2204 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) 2205 { 2206 ecs->another_trap = 1; 2207 keep_going (ecs); 2208 return; 2209 } 2210 #endif 2211 /* Else, stop and report the catchpoint(s) whose triggering 2212 caused us to begin stepping. */ 2213 ecs->stepping_through_solib_after_catch = 0; 2214 bpstat_clear (&stop_bpstat); 2215 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints); 2216 bpstat_clear (&ecs->stepping_through_solib_catchpoints); 2217 stop_print_frame = 1; 2218 stop_stepping (ecs); 2219 return; 2220 } 2221 2222 if (step_resume_breakpoint) 2223 { 2224 /* Having a step-resume breakpoint overrides anything 2225 else having to do with stepping commands until 2226 that breakpoint is reached. */ 2227 keep_going (ecs); 2228 return; 2229 } 2230 2231 if (step_range_end == 0) 2232 { 2233 /* Likewise if we aren't even stepping. */ 2234 keep_going (ecs); 2235 return; 2236 } 2237 2238 /* If stepping through a line, keep going if still within it. 2239 2240 Note that step_range_end is the address of the first instruction 2241 beyond the step range, and NOT the address of the last instruction 2242 within it! */ 2243 if (stop_pc >= step_range_start && stop_pc < step_range_end) 2244 { 2245 keep_going (ecs); 2246 return; 2247 } 2248 2249 /* We stepped out of the stepping range. */ 2250 2251 /* If we are stepping at the source level and entered the runtime 2252 loader dynamic symbol resolution code, we keep on single stepping 2253 until we exit the run time loader code and reach the callee's 2254 address. */ 2255 if (step_over_calls == STEP_OVER_UNDEBUGGABLE 2256 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)) 2257 { 2258 CORE_ADDR pc_after_resolver = 2259 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc); 2260 2261 if (pc_after_resolver) 2262 { 2263 /* Set up a step-resume breakpoint at the address 2264 indicated by SKIP_SOLIB_RESOLVER. */ 2265 struct symtab_and_line sr_sal; 2266 init_sal (&sr_sal); 2267 sr_sal.pc = pc_after_resolver; 2268 2269 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); 2270 } 2271 2272 keep_going (ecs); 2273 return; 2274 } 2275 2276 if (step_range_end != 1 2277 && (step_over_calls == STEP_OVER_UNDEBUGGABLE 2278 || step_over_calls == STEP_OVER_ALL) 2279 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME) 2280 { 2281 /* The inferior, while doing a "step" or "next", has ended up in 2282 a signal trampoline (either by a signal being delivered or by 2283 the signal handler returning). Just single-step until the 2284 inferior leaves the trampoline (either by calling the handler 2285 or returning). */ 2286 keep_going (ecs); 2287 return; 2288 } 2289 2290 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id)) 2291 { 2292 /* It's a subroutine call. */ 2293 CORE_ADDR real_stop_pc; 2294 2295 if ((step_over_calls == STEP_OVER_NONE) 2296 || ((step_range_end == 1) 2297 && in_prologue (prev_pc, ecs->stop_func_start))) 2298 { 2299 /* I presume that step_over_calls is only 0 when we're 2300 supposed to be stepping at the assembly language level 2301 ("stepi"). Just stop. */ 2302 /* Also, maybe we just did a "nexti" inside a prolog, so we 2303 thought it was a subroutine call but it was not. Stop as 2304 well. FENN */ 2305 stop_step = 1; 2306 print_stop_reason (END_STEPPING_RANGE, 0); 2307 stop_stepping (ecs); 2308 return; 2309 } 2310 2311 #ifdef DEPRECATED_IGNORE_HELPER_CALL 2312 /* On MIPS16, a function that returns a floating point value may 2313 call a library helper function to copy the return value to a 2314 floating point register. The DEPRECATED_IGNORE_HELPER_CALL 2315 macro returns non-zero if we should ignore (i.e. step over) 2316 this function call. */ 2317 /* FIXME: cagney/2004-07-21: These custom ``ignore frame when 2318 stepping'' function attributes (SIGTRAMP_FRAME, 2319 DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE, 2320 skip_language_trampoline frame, et.al.) need to be replaced 2321 with generic attributes bound to the frame's function. */ 2322 if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc)) 2323 { 2324 /* We're doing a "next", set a breakpoint at callee's return 2325 address (the address at which the caller will 2326 resume). */ 2327 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); 2328 keep_going (ecs); 2329 return; 2330 } 2331 #endif 2332 if (step_over_calls == STEP_OVER_ALL) 2333 { 2334 /* We're doing a "next", set a breakpoint at callee's return 2335 address (the address at which the caller will 2336 resume). */ 2337 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); 2338 keep_going (ecs); 2339 return; 2340 } 2341 2342 /* If we are in a function call trampoline (a stub between the 2343 calling routine and the real function), locate the real 2344 function. That's what tells us (a) whether we want to step 2345 into it at all, and (b) what prologue we want to run to the 2346 end of, if we do step into it. */ 2347 real_stop_pc = skip_language_trampoline (stop_pc); 2348 if (real_stop_pc == 0) 2349 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); 2350 if (real_stop_pc != 0) 2351 ecs->stop_func_start = real_stop_pc; 2352 2353 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)) 2354 { 2355 struct symtab_and_line sr_sal; 2356 init_sal (&sr_sal); 2357 sr_sal.pc = ecs->stop_func_start; 2358 2359 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); 2360 keep_going (ecs); 2361 return; 2362 } 2363 2364 /* If we have line number information for the function we are 2365 thinking of stepping into, step into it. 2366 2367 If there are several symtabs at that PC (e.g. with include 2368 files), just want to know whether *any* of them have line 2369 numbers. find_pc_line handles this. */ 2370 { 2371 struct symtab_and_line tmp_sal; 2372 2373 tmp_sal = find_pc_line (ecs->stop_func_start, 0); 2374 if (tmp_sal.line != 0) 2375 { 2376 step_into_function (ecs); 2377 return; 2378 } 2379 } 2380 2381 /* If we have no line number and the step-stop-if-no-debug is 2382 set, we stop the step so that the user has a chance to switch 2383 in assembly mode. */ 2384 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug) 2385 { 2386 stop_step = 1; 2387 print_stop_reason (END_STEPPING_RANGE, 0); 2388 stop_stepping (ecs); 2389 return; 2390 } 2391 2392 /* Set a breakpoint at callee's return address (the address at 2393 which the caller will resume). */ 2394 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); 2395 keep_going (ecs); 2396 return; 2397 } 2398 2399 /* If we're in the return path from a shared library trampoline, 2400 we want to proceed through the trampoline when stepping. */ 2401 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name)) 2402 { 2403 /* Determine where this trampoline returns. */ 2404 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); 2405 2406 /* Only proceed through if we know where it's going. */ 2407 if (real_stop_pc) 2408 { 2409 /* And put the step-breakpoint there and go until there. */ 2410 struct symtab_and_line sr_sal; 2411 2412 init_sal (&sr_sal); /* initialize to zeroes */ 2413 sr_sal.pc = real_stop_pc; 2414 sr_sal.section = find_pc_overlay (sr_sal.pc); 2415 2416 /* Do not specify what the fp should be when we stop since 2417 on some machines the prologue is where the new fp value 2418 is established. */ 2419 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); 2420 2421 /* Restart without fiddling with the step ranges or 2422 other state. */ 2423 keep_going (ecs); 2424 return; 2425 } 2426 } 2427 2428 /* NOTE: tausq/2004-05-24: This if block used to be done before all 2429 the trampoline processing logic, however, there are some trampolines 2430 that have no names, so we should do trampoline handling first. */ 2431 if (step_over_calls == STEP_OVER_UNDEBUGGABLE 2432 && ecs->stop_func_name == NULL) 2433 { 2434 /* The inferior just stepped into, or returned to, an 2435 undebuggable function (where there is no symbol, not even a 2436 minimal symbol, corresponding to the address where the 2437 inferior stopped). Since we want to skip this kind of code, 2438 we keep going until the inferior returns from this 2439 function. */ 2440 if (step_stop_if_no_debug) 2441 { 2442 /* If we have no line number and the step-stop-if-no-debug 2443 is set, we stop the step so that the user has a chance to 2444 switch in assembly mode. */ 2445 stop_step = 1; 2446 print_stop_reason (END_STEPPING_RANGE, 0); 2447 stop_stepping (ecs); 2448 return; 2449 } 2450 else 2451 { 2452 /* Set a breakpoint at callee's return address (the address 2453 at which the caller will resume). */ 2454 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); 2455 keep_going (ecs); 2456 return; 2457 } 2458 } 2459 2460 if (step_range_end == 1) 2461 { 2462 /* It is stepi or nexti. We always want to stop stepping after 2463 one instruction. */ 2464 stop_step = 1; 2465 print_stop_reason (END_STEPPING_RANGE, 0); 2466 stop_stepping (ecs); 2467 return; 2468 } 2469 2470 ecs->sal = find_pc_line (stop_pc, 0); 2471 2472 if (ecs->sal.line == 0) 2473 { 2474 /* We have no line number information. That means to stop 2475 stepping (does this always happen right after one instruction, 2476 when we do "s" in a function with no line numbers, 2477 or can this happen as a result of a return or longjmp?). */ 2478 stop_step = 1; 2479 print_stop_reason (END_STEPPING_RANGE, 0); 2480 stop_stepping (ecs); 2481 return; 2482 } 2483 2484 if ((stop_pc == ecs->sal.pc) 2485 && (ecs->current_line != ecs->sal.line 2486 || ecs->current_symtab != ecs->sal.symtab)) 2487 { 2488 /* We are at the start of a different line. So stop. Note that 2489 we don't stop if we step into the middle of a different line. 2490 That is said to make things like for (;;) statements work 2491 better. */ 2492 stop_step = 1; 2493 print_stop_reason (END_STEPPING_RANGE, 0); 2494 stop_stepping (ecs); 2495 return; 2496 } 2497 2498 /* We aren't done stepping. 2499 2500 Optimize by setting the stepping range to the line. 2501 (We might not be in the original line, but if we entered a 2502 new line in mid-statement, we continue stepping. This makes 2503 things like for(;;) statements work better.) */ 2504 2505 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end) 2506 { 2507 /* If this is the last line of the function, don't keep stepping 2508 (it would probably step us out of the function). 2509 This is particularly necessary for a one-line function, 2510 in which after skipping the prologue we better stop even though 2511 we will be in mid-line. */ 2512 stop_step = 1; 2513 print_stop_reason (END_STEPPING_RANGE, 0); 2514 stop_stepping (ecs); 2515 return; 2516 } 2517 step_range_start = ecs->sal.pc; 2518 step_range_end = ecs->sal.end; 2519 step_frame_id = get_frame_id (get_current_frame ()); 2520 ecs->current_line = ecs->sal.line; 2521 ecs->current_symtab = ecs->sal.symtab; 2522 2523 /* In the case where we just stepped out of a function into the 2524 middle of a line of the caller, continue stepping, but 2525 step_frame_id must be modified to current frame */ 2526 #if 0 2527 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too 2528 generous. It will trigger on things like a step into a frameless 2529 stackless leaf function. I think the logic should instead look 2530 at the unwound frame ID has that should give a more robust 2531 indication of what happened. */ 2532 if (step - ID == current - ID) 2533 still stepping in same function; 2534 else if (step - ID == unwind (current - ID)) 2535 stepped into a function; 2536 else 2537 stepped out of a function; 2538 /* Of course this assumes that the frame ID unwind code is robust 2539 and we're willing to introduce frame unwind logic into this 2540 function. Fortunately, those days are nearly upon us. */ 2541 #endif 2542 { 2543 struct frame_id current_frame = get_frame_id (get_current_frame ()); 2544 if (!(frame_id_inner (current_frame, step_frame_id))) 2545 step_frame_id = current_frame; 2546 } 2547 2548 keep_going (ecs); 2549 } 2550 2551 /* Are we in the middle of stepping? */ 2552 2553 static int 2554 currently_stepping (struct execution_control_state *ecs) 2555 { 2556 return ((!ecs->handling_longjmp 2557 && ((step_range_end && step_resume_breakpoint == NULL) 2558 || trap_expected)) 2559 || ecs->stepping_through_solib_after_catch 2560 || bpstat_should_step ()); 2561 } 2562 2563 /* Subroutine call with source code we should not step over. Do step 2564 to the first line of code in it. */ 2565 2566 static void 2567 step_into_function (struct execution_control_state *ecs) 2568 { 2569 struct symtab *s; 2570 struct symtab_and_line sr_sal; 2571 2572 s = find_pc_symtab (stop_pc); 2573 if (s && s->language != language_asm) 2574 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start); 2575 2576 ecs->sal = find_pc_line (ecs->stop_func_start, 0); 2577 /* Use the step_resume_break to step until the end of the prologue, 2578 even if that involves jumps (as it seems to on the vax under 2579 4.2). */ 2580 /* If the prologue ends in the middle of a source line, continue to 2581 the end of that source line (if it is still within the function). 2582 Otherwise, just go to end of prologue. */ 2583 if (ecs->sal.end 2584 && ecs->sal.pc != ecs->stop_func_start 2585 && ecs->sal.end < ecs->stop_func_end) 2586 ecs->stop_func_start = ecs->sal.end; 2587 2588 /* Architectures which require breakpoint adjustment might not be able 2589 to place a breakpoint at the computed address. If so, the test 2590 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust 2591 ecs->stop_func_start to an address at which a breakpoint may be 2592 legitimately placed. 2593 2594 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not 2595 made, GDB will enter an infinite loop when stepping through 2596 optimized code consisting of VLIW instructions which contain 2597 subinstructions corresponding to different source lines. On 2598 FR-V, it's not permitted to place a breakpoint on any but the 2599 first subinstruction of a VLIW instruction. When a breakpoint is 2600 set, GDB will adjust the breakpoint address to the beginning of 2601 the VLIW instruction. Thus, we need to make the corresponding 2602 adjustment here when computing the stop address. */ 2603 2604 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch)) 2605 { 2606 ecs->stop_func_start 2607 = gdbarch_adjust_breakpoint_address (current_gdbarch, 2608 ecs->stop_func_start); 2609 } 2610 2611 if (ecs->stop_func_start == stop_pc) 2612 { 2613 /* We are already there: stop now. */ 2614 stop_step = 1; 2615 print_stop_reason (END_STEPPING_RANGE, 0); 2616 stop_stepping (ecs); 2617 return; 2618 } 2619 else 2620 { 2621 /* Put the step-breakpoint there and go until there. */ 2622 init_sal (&sr_sal); /* initialize to zeroes */ 2623 sr_sal.pc = ecs->stop_func_start; 2624 sr_sal.section = find_pc_overlay (ecs->stop_func_start); 2625 2626 /* Do not specify what the fp should be when we stop since on 2627 some machines the prologue is where the new fp value is 2628 established. */ 2629 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); 2630 2631 /* And make sure stepping stops right away then. */ 2632 step_range_end = step_range_start; 2633 } 2634 keep_going (ecs); 2635 } 2636 2637 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID. 2638 This is used to both functions and to skip over code. */ 2639 2640 static void 2641 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, 2642 struct frame_id sr_id) 2643 { 2644 /* There should never be more than one step-resume breakpoint per 2645 thread, so we should never be setting a new 2646 step_resume_breakpoint when one is already active. */ 2647 gdb_assert (step_resume_breakpoint == NULL); 2648 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, 2649 bp_step_resume); 2650 if (breakpoints_inserted) 2651 insert_breakpoints (); 2652 } 2653 2654 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used 2655 to skip a function (next, skip-no-debug) or signal. It's assumed 2656 that the function/signal handler being skipped eventually returns 2657 to the breakpoint inserted at RETURN_FRAME.pc. 2658 2659 For the skip-function case, the function may have been reached by 2660 either single stepping a call / return / signal-return instruction, 2661 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs 2662 to the skip-function's caller. 2663 2664 For the signals case, this is called with the interrupted 2665 function's frame. The signal handler, when it returns, will resume 2666 the interrupted function at RETURN_FRAME.pc. */ 2667 2668 static void 2669 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) 2670 { 2671 struct symtab_and_line sr_sal; 2672 2673 init_sal (&sr_sal); /* initialize to zeros */ 2674 2675 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame)); 2676 sr_sal.section = find_pc_overlay (sr_sal.pc); 2677 2678 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame)); 2679 } 2680 2681 static void 2682 stop_stepping (struct execution_control_state *ecs) 2683 { 2684 /* Let callers know we don't want to wait for the inferior anymore. */ 2685 ecs->wait_some_more = 0; 2686 } 2687 2688 /* This function handles various cases where we need to continue 2689 waiting for the inferior. */ 2690 /* (Used to be the keep_going: label in the old wait_for_inferior) */ 2691 2692 static void 2693 keep_going (struct execution_control_state *ecs) 2694 { 2695 /* Save the pc before execution, to compare with pc after stop. */ 2696 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ 2697 2698 /* If we did not do break;, it means we should keep running the 2699 inferior and not return to debugger. */ 2700 2701 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) 2702 { 2703 /* We took a signal (which we are supposed to pass through to 2704 the inferior, else we'd have done a break above) and we 2705 haven't yet gotten our trap. Simply continue. */ 2706 resume (currently_stepping (ecs), stop_signal); 2707 } 2708 else 2709 { 2710 /* Either the trap was not expected, but we are continuing 2711 anyway (the user asked that this signal be passed to the 2712 child) 2713 -- or -- 2714 The signal was SIGTRAP, e.g. it was our signal, but we 2715 decided we should resume from it. 2716 2717 We're going to run this baby now! */ 2718 2719 if (!breakpoints_inserted && !ecs->another_trap) 2720 { 2721 breakpoints_failed = insert_breakpoints (); 2722 if (breakpoints_failed) 2723 { 2724 stop_stepping (ecs); 2725 return; 2726 } 2727 breakpoints_inserted = 1; 2728 } 2729 2730 trap_expected = ecs->another_trap; 2731 2732 /* Do not deliver SIGNAL_TRAP (except when the user explicitly 2733 specifies that such a signal should be delivered to the 2734 target program). 2735 2736 Typically, this would occure when a user is debugging a 2737 target monitor on a simulator: the target monitor sets a 2738 breakpoint; the simulator encounters this break-point and 2739 halts the simulation handing control to GDB; GDB, noteing 2740 that the break-point isn't valid, returns control back to the 2741 simulator; the simulator then delivers the hardware 2742 equivalent of a SIGNAL_TRAP to the program being debugged. */ 2743 2744 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal]) 2745 stop_signal = TARGET_SIGNAL_0; 2746 2747 2748 resume (currently_stepping (ecs), stop_signal); 2749 } 2750 2751 prepare_to_wait (ecs); 2752 } 2753 2754 /* This function normally comes after a resume, before 2755 handle_inferior_event exits. It takes care of any last bits of 2756 housekeeping, and sets the all-important wait_some_more flag. */ 2757 2758 static void 2759 prepare_to_wait (struct execution_control_state *ecs) 2760 { 2761 if (ecs->infwait_state == infwait_normal_state) 2762 { 2763 overlay_cache_invalid = 1; 2764 2765 /* We have to invalidate the registers BEFORE calling 2766 target_wait because they can be loaded from the target while 2767 in target_wait. This makes remote debugging a bit more 2768 efficient for those targets that provide critical registers 2769 as part of their normal status mechanism. */ 2770 2771 registers_changed (); 2772 ecs->waiton_ptid = pid_to_ptid (-1); 2773 ecs->wp = &(ecs->ws); 2774 } 2775 /* This is the old end of the while loop. Let everybody know we 2776 want to wait for the inferior some more and get called again 2777 soon. */ 2778 ecs->wait_some_more = 1; 2779 } 2780 2781 /* Print why the inferior has stopped. We always print something when 2782 the inferior exits, or receives a signal. The rest of the cases are 2783 dealt with later on in normal_stop() and print_it_typical(). Ideally 2784 there should be a call to this function from handle_inferior_event() 2785 each time stop_stepping() is called.*/ 2786 static void 2787 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) 2788 { 2789 switch (stop_reason) 2790 { 2791 case STOP_UNKNOWN: 2792 /* We don't deal with these cases from handle_inferior_event() 2793 yet. */ 2794 break; 2795 case END_STEPPING_RANGE: 2796 /* We are done with a step/next/si/ni command. */ 2797 /* For now print nothing. */ 2798 /* Print a message only if not in the middle of doing a "step n" 2799 operation for n > 1 */ 2800 if (!step_multi || !stop_step) 2801 if (ui_out_is_mi_like_p (uiout)) 2802 ui_out_field_string (uiout, "reason", "end-stepping-range"); 2803 break; 2804 case BREAKPOINT_HIT: 2805 /* We found a breakpoint. */ 2806 /* For now print nothing. */ 2807 break; 2808 case SIGNAL_EXITED: 2809 /* The inferior was terminated by a signal. */ 2810 annotate_signalled (); 2811 if (ui_out_is_mi_like_p (uiout)) 2812 ui_out_field_string (uiout, "reason", "exited-signalled"); 2813 ui_out_text (uiout, "\nProgram terminated with signal "); 2814 annotate_signal_name (); 2815 ui_out_field_string (uiout, "signal-name", 2816 target_signal_to_name (stop_info)); 2817 annotate_signal_name_end (); 2818 ui_out_text (uiout, ", "); 2819 annotate_signal_string (); 2820 ui_out_field_string (uiout, "signal-meaning", 2821 target_signal_to_string (stop_info)); 2822 annotate_signal_string_end (); 2823 ui_out_text (uiout, ".\n"); 2824 ui_out_text (uiout, "The program no longer exists.\n"); 2825 break; 2826 case EXITED: 2827 /* The inferior program is finished. */ 2828 annotate_exited (stop_info); 2829 if (stop_info) 2830 { 2831 if (ui_out_is_mi_like_p (uiout)) 2832 ui_out_field_string (uiout, "reason", "exited"); 2833 ui_out_text (uiout, "\nProgram exited with code "); 2834 ui_out_field_fmt (uiout, "exit-code", "0%o", 2835 (unsigned int) stop_info); 2836 ui_out_text (uiout, ".\n"); 2837 } 2838 else 2839 { 2840 if (ui_out_is_mi_like_p (uiout)) 2841 ui_out_field_string (uiout, "reason", "exited-normally"); 2842 ui_out_text (uiout, "\nProgram exited normally.\n"); 2843 } 2844 break; 2845 case SIGNAL_RECEIVED: 2846 /* Signal received. The signal table tells us to print about 2847 it. */ 2848 annotate_signal (); 2849 ui_out_text (uiout, "\nProgram received signal "); 2850 annotate_signal_name (); 2851 if (ui_out_is_mi_like_p (uiout)) 2852 ui_out_field_string (uiout, "reason", "signal-received"); 2853 ui_out_field_string (uiout, "signal-name", 2854 target_signal_to_name (stop_info)); 2855 annotate_signal_name_end (); 2856 ui_out_text (uiout, ", "); 2857 annotate_signal_string (); 2858 ui_out_field_string (uiout, "signal-meaning", 2859 target_signal_to_string (stop_info)); 2860 annotate_signal_string_end (); 2861 ui_out_text (uiout, ".\n"); 2862 break; 2863 default: 2864 internal_error (__FILE__, __LINE__, 2865 "print_stop_reason: unrecognized enum value"); 2866 break; 2867 } 2868 } 2869 2870 2871 /* Here to return control to GDB when the inferior stops for real. 2872 Print appropriate messages, remove breakpoints, give terminal our modes. 2873 2874 STOP_PRINT_FRAME nonzero means print the executing frame 2875 (pc, function, args, file, line number and line text). 2876 BREAKPOINTS_FAILED nonzero means stop was due to error 2877 attempting to insert breakpoints. */ 2878 2879 void 2880 normal_stop (void) 2881 { 2882 struct target_waitstatus last; 2883 ptid_t last_ptid; 2884 2885 get_last_target_status (&last_ptid, &last); 2886 2887 /* As with the notification of thread events, we want to delay 2888 notifying the user that we've switched thread context until 2889 the inferior actually stops. 2890 2891 There's no point in saying anything if the inferior has exited. 2892 Note that SIGNALLED here means "exited with a signal", not 2893 "received a signal". */ 2894 if (!ptid_equal (previous_inferior_ptid, inferior_ptid) 2895 && target_has_execution 2896 && last.kind != TARGET_WAITKIND_SIGNALLED 2897 && last.kind != TARGET_WAITKIND_EXITED) 2898 { 2899 target_terminal_ours_for_output (); 2900 printf_filtered ("[Switching to %s]\n", 2901 target_pid_or_tid_to_str (inferior_ptid)); 2902 previous_inferior_ptid = inferior_ptid; 2903 } 2904 2905 /* NOTE drow/2004-01-17: Is this still necessary? */ 2906 /* Make sure that the current_frame's pc is correct. This 2907 is a correction for setting up the frame info before doing 2908 DECR_PC_AFTER_BREAK */ 2909 if (target_has_execution) 2910 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to 2911 DECR_PC_AFTER_BREAK, the program counter can change. Ask the 2912 frame code to check for this and sort out any resultant mess. 2913 DECR_PC_AFTER_BREAK needs to just go away. */ 2914 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ()); 2915 2916 if (target_has_execution && breakpoints_inserted) 2917 { 2918 if (remove_breakpoints ()) 2919 { 2920 target_terminal_ours_for_output (); 2921 printf_filtered ("Cannot remove breakpoints because "); 2922 printf_filtered ("program is no longer writable.\n"); 2923 printf_filtered ("It might be running in another process.\n"); 2924 printf_filtered ("Further execution is probably impossible.\n"); 2925 } 2926 } 2927 breakpoints_inserted = 0; 2928 2929 /* Delete the breakpoint we stopped at, if it wants to be deleted. 2930 Delete any breakpoint that is to be deleted at the next stop. */ 2931 2932 breakpoint_auto_delete (stop_bpstat); 2933 2934 /* If an auto-display called a function and that got a signal, 2935 delete that auto-display to avoid an infinite recursion. */ 2936 2937 if (stopped_by_random_signal) 2938 disable_current_display (); 2939 2940 /* Don't print a message if in the middle of doing a "step n" 2941 operation for n > 1 */ 2942 if (step_multi && stop_step) 2943 goto done; 2944 2945 target_terminal_ours (); 2946 2947 /* Look up the hook_stop and run it (CLI internally handles problem 2948 of stop_command's pre-hook not existing). */ 2949 if (stop_command) 2950 catch_errors (hook_stop_stub, stop_command, 2951 "Error while running hook_stop:\n", RETURN_MASK_ALL); 2952 2953 if (!target_has_stack) 2954 { 2955 2956 goto done; 2957 } 2958 2959 /* Select innermost stack frame - i.e., current frame is frame 0, 2960 and current location is based on that. 2961 Don't do this on return from a stack dummy routine, 2962 or if the program has exited. */ 2963 2964 if (!stop_stack_dummy) 2965 { 2966 select_frame (get_current_frame ()); 2967 2968 /* Print current location without a level number, if 2969 we have changed functions or hit a breakpoint. 2970 Print source line if we have one. 2971 bpstat_print() contains the logic deciding in detail 2972 what to print, based on the event(s) that just occurred. */ 2973 2974 if (stop_print_frame && deprecated_selected_frame) 2975 { 2976 int bpstat_ret; 2977 int source_flag; 2978 int do_frame_printing = 1; 2979 2980 bpstat_ret = bpstat_print (stop_bpstat); 2981 switch (bpstat_ret) 2982 { 2983 case PRINT_UNKNOWN: 2984 /* FIXME: cagney/2002-12-01: Given that a frame ID does 2985 (or should) carry around the function and does (or 2986 should) use that when doing a frame comparison. */ 2987 if (stop_step 2988 && frame_id_eq (step_frame_id, 2989 get_frame_id (get_current_frame ())) 2990 && step_start_function == find_pc_function (stop_pc)) 2991 source_flag = SRC_LINE; /* finished step, just print source line */ 2992 else 2993 source_flag = SRC_AND_LOC; /* print location and source line */ 2994 break; 2995 case PRINT_SRC_AND_LOC: 2996 source_flag = SRC_AND_LOC; /* print location and source line */ 2997 break; 2998 case PRINT_SRC_ONLY: 2999 source_flag = SRC_LINE; 3000 break; 3001 case PRINT_NOTHING: 3002 source_flag = SRC_LINE; /* something bogus */ 3003 do_frame_printing = 0; 3004 break; 3005 default: 3006 internal_error (__FILE__, __LINE__, "Unknown value."); 3007 } 3008 /* For mi, have the same behavior every time we stop: 3009 print everything but the source line. */ 3010 if (ui_out_is_mi_like_p (uiout)) 3011 source_flag = LOC_AND_ADDRESS; 3012 3013 if (ui_out_is_mi_like_p (uiout)) 3014 ui_out_field_int (uiout, "thread-id", 3015 pid_to_thread_id (inferior_ptid)); 3016 /* The behavior of this routine with respect to the source 3017 flag is: 3018 SRC_LINE: Print only source line 3019 LOCATION: Print only location 3020 SRC_AND_LOC: Print location and source line */ 3021 if (do_frame_printing) 3022 print_stack_frame (get_selected_frame (), 0, source_flag); 3023 3024 /* Display the auto-display expressions. */ 3025 do_displays (); 3026 } 3027 } 3028 3029 /* Save the function value return registers, if we care. 3030 We might be about to restore their previous contents. */ 3031 if (proceed_to_finish) 3032 /* NB: The copy goes through to the target picking up the value of 3033 all the registers. */ 3034 regcache_cpy (stop_registers, current_regcache); 3035 3036 if (stop_stack_dummy) 3037 { 3038 /* Pop the empty frame that contains the stack dummy. POP_FRAME 3039 ends with a setting of the current frame, so we can use that 3040 next. */ 3041 frame_pop (get_current_frame ()); 3042 /* Set stop_pc to what it was before we called the function. 3043 Can't rely on restore_inferior_status because that only gets 3044 called if we don't stop in the called function. */ 3045 stop_pc = read_pc (); 3046 select_frame (get_current_frame ()); 3047 } 3048 3049 done: 3050 annotate_stopped (); 3051 observer_notify_normal_stop (stop_bpstat); 3052 } 3053 3054 static int 3055 hook_stop_stub (void *cmd) 3056 { 3057 execute_cmd_pre_hook ((struct cmd_list_element *) cmd); 3058 return (0); 3059 } 3060 3061 int 3062 signal_stop_state (int signo) 3063 { 3064 return signal_stop[signo]; 3065 } 3066 3067 int 3068 signal_print_state (int signo) 3069 { 3070 return signal_print[signo]; 3071 } 3072 3073 int 3074 signal_pass_state (int signo) 3075 { 3076 return signal_program[signo]; 3077 } 3078 3079 int 3080 signal_stop_update (int signo, int state) 3081 { 3082 int ret = signal_stop[signo]; 3083 signal_stop[signo] = state; 3084 return ret; 3085 } 3086 3087 int 3088 signal_print_update (int signo, int state) 3089 { 3090 int ret = signal_print[signo]; 3091 signal_print[signo] = state; 3092 return ret; 3093 } 3094 3095 int 3096 signal_pass_update (int signo, int state) 3097 { 3098 int ret = signal_program[signo]; 3099 signal_program[signo] = state; 3100 return ret; 3101 } 3102 3103 static void 3104 sig_print_header (void) 3105 { 3106 printf_filtered ("\ 3107 Signal Stop\tPrint\tPass to program\tDescription\n"); 3108 } 3109 3110 static void 3111 sig_print_info (enum target_signal oursig) 3112 { 3113 char *name = target_signal_to_name (oursig); 3114 int name_padding = 13 - strlen (name); 3115 3116 if (name_padding <= 0) 3117 name_padding = 0; 3118 3119 printf_filtered ("%s", name); 3120 printf_filtered ("%*.*s ", name_padding, name_padding, " "); 3121 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); 3122 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); 3123 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); 3124 printf_filtered ("%s\n", target_signal_to_string (oursig)); 3125 } 3126 3127 /* Specify how various signals in the inferior should be handled. */ 3128 3129 static void 3130 handle_command (char *args, int from_tty) 3131 { 3132 char **argv; 3133 int digits, wordlen; 3134 int sigfirst, signum, siglast; 3135 enum target_signal oursig; 3136 int allsigs; 3137 int nsigs; 3138 unsigned char *sigs; 3139 struct cleanup *old_chain; 3140 3141 if (args == NULL) 3142 { 3143 error_no_arg ("signal to handle"); 3144 } 3145 3146 /* Allocate and zero an array of flags for which signals to handle. */ 3147 3148 nsigs = (int) TARGET_SIGNAL_LAST; 3149 sigs = (unsigned char *) alloca (nsigs); 3150 memset (sigs, 0, nsigs); 3151 3152 /* Break the command line up into args. */ 3153 3154 argv = buildargv (args); 3155 if (argv == NULL) 3156 { 3157 nomem (0); 3158 } 3159 old_chain = make_cleanup_freeargv (argv); 3160 3161 /* Walk through the args, looking for signal oursigs, signal names, and 3162 actions. Signal numbers and signal names may be interspersed with 3163 actions, with the actions being performed for all signals cumulatively 3164 specified. Signal ranges can be specified as <LOW>-<HIGH>. */ 3165 3166 while (*argv != NULL) 3167 { 3168 wordlen = strlen (*argv); 3169 for (digits = 0; isdigit ((*argv)[digits]); digits++) 3170 {; 3171 } 3172 allsigs = 0; 3173 sigfirst = siglast = -1; 3174 3175 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) 3176 { 3177 /* Apply action to all signals except those used by the 3178 debugger. Silently skip those. */ 3179 allsigs = 1; 3180 sigfirst = 0; 3181 siglast = nsigs - 1; 3182 } 3183 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) 3184 { 3185 SET_SIGS (nsigs, sigs, signal_stop); 3186 SET_SIGS (nsigs, sigs, signal_print); 3187 } 3188 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) 3189 { 3190 UNSET_SIGS (nsigs, sigs, signal_program); 3191 } 3192 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) 3193 { 3194 SET_SIGS (nsigs, sigs, signal_print); 3195 } 3196 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) 3197 { 3198 SET_SIGS (nsigs, sigs, signal_program); 3199 } 3200 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) 3201 { 3202 UNSET_SIGS (nsigs, sigs, signal_stop); 3203 } 3204 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) 3205 { 3206 SET_SIGS (nsigs, sigs, signal_program); 3207 } 3208 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) 3209 { 3210 UNSET_SIGS (nsigs, sigs, signal_print); 3211 UNSET_SIGS (nsigs, sigs, signal_stop); 3212 } 3213 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) 3214 { 3215 UNSET_SIGS (nsigs, sigs, signal_program); 3216 } 3217 else if (digits > 0) 3218 { 3219 /* It is numeric. The numeric signal refers to our own 3220 internal signal numbering from target.h, not to host/target 3221 signal number. This is a feature; users really should be 3222 using symbolic names anyway, and the common ones like 3223 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ 3224 3225 sigfirst = siglast = (int) 3226 target_signal_from_command (atoi (*argv)); 3227 if ((*argv)[digits] == '-') 3228 { 3229 siglast = (int) 3230 target_signal_from_command (atoi ((*argv) + digits + 1)); 3231 } 3232 if (sigfirst > siglast) 3233 { 3234 /* Bet he didn't figure we'd think of this case... */ 3235 signum = sigfirst; 3236 sigfirst = siglast; 3237 siglast = signum; 3238 } 3239 } 3240 else 3241 { 3242 oursig = target_signal_from_name (*argv); 3243 if (oursig != TARGET_SIGNAL_UNKNOWN) 3244 { 3245 sigfirst = siglast = (int) oursig; 3246 } 3247 else 3248 { 3249 /* Not a number and not a recognized flag word => complain. */ 3250 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv); 3251 } 3252 } 3253 3254 /* If any signal numbers or symbol names were found, set flags for 3255 which signals to apply actions to. */ 3256 3257 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) 3258 { 3259 switch ((enum target_signal) signum) 3260 { 3261 case TARGET_SIGNAL_TRAP: 3262 case TARGET_SIGNAL_INT: 3263 if (!allsigs && !sigs[signum]) 3264 { 3265 if (query ("%s is used by the debugger.\n\ 3266 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum))) 3267 { 3268 sigs[signum] = 1; 3269 } 3270 else 3271 { 3272 printf_unfiltered ("Not confirmed, unchanged.\n"); 3273 gdb_flush (gdb_stdout); 3274 } 3275 } 3276 break; 3277 case TARGET_SIGNAL_0: 3278 case TARGET_SIGNAL_DEFAULT: 3279 case TARGET_SIGNAL_UNKNOWN: 3280 /* Make sure that "all" doesn't print these. */ 3281 break; 3282 default: 3283 sigs[signum] = 1; 3284 break; 3285 } 3286 } 3287 3288 argv++; 3289 } 3290 3291 target_notice_signals (inferior_ptid); 3292 3293 if (from_tty) 3294 { 3295 /* Show the results. */ 3296 sig_print_header (); 3297 for (signum = 0; signum < nsigs; signum++) 3298 { 3299 if (sigs[signum]) 3300 { 3301 sig_print_info (signum); 3302 } 3303 } 3304 } 3305 3306 do_cleanups (old_chain); 3307 } 3308 3309 static void 3310 xdb_handle_command (char *args, int from_tty) 3311 { 3312 char **argv; 3313 struct cleanup *old_chain; 3314 3315 /* Break the command line up into args. */ 3316 3317 argv = buildargv (args); 3318 if (argv == NULL) 3319 { 3320 nomem (0); 3321 } 3322 old_chain = make_cleanup_freeargv (argv); 3323 if (argv[1] != (char *) NULL) 3324 { 3325 char *argBuf; 3326 int bufLen; 3327 3328 bufLen = strlen (argv[0]) + 20; 3329 argBuf = (char *) xmalloc (bufLen); 3330 if (argBuf) 3331 { 3332 int validFlag = 1; 3333 enum target_signal oursig; 3334 3335 oursig = target_signal_from_name (argv[0]); 3336 memset (argBuf, 0, bufLen); 3337 if (strcmp (argv[1], "Q") == 0) 3338 sprintf (argBuf, "%s %s", argv[0], "noprint"); 3339 else 3340 { 3341 if (strcmp (argv[1], "s") == 0) 3342 { 3343 if (!signal_stop[oursig]) 3344 sprintf (argBuf, "%s %s", argv[0], "stop"); 3345 else 3346 sprintf (argBuf, "%s %s", argv[0], "nostop"); 3347 } 3348 else if (strcmp (argv[1], "i") == 0) 3349 { 3350 if (!signal_program[oursig]) 3351 sprintf (argBuf, "%s %s", argv[0], "pass"); 3352 else 3353 sprintf (argBuf, "%s %s", argv[0], "nopass"); 3354 } 3355 else if (strcmp (argv[1], "r") == 0) 3356 { 3357 if (!signal_print[oursig]) 3358 sprintf (argBuf, "%s %s", argv[0], "print"); 3359 else 3360 sprintf (argBuf, "%s %s", argv[0], "noprint"); 3361 } 3362 else 3363 validFlag = 0; 3364 } 3365 if (validFlag) 3366 handle_command (argBuf, from_tty); 3367 else 3368 printf_filtered ("Invalid signal handling flag.\n"); 3369 if (argBuf) 3370 xfree (argBuf); 3371 } 3372 } 3373 do_cleanups (old_chain); 3374 } 3375 3376 /* Print current contents of the tables set by the handle command. 3377 It is possible we should just be printing signals actually used 3378 by the current target (but for things to work right when switching 3379 targets, all signals should be in the signal tables). */ 3380 3381 static void 3382 signals_info (char *signum_exp, int from_tty) 3383 { 3384 enum target_signal oursig; 3385 sig_print_header (); 3386 3387 if (signum_exp) 3388 { 3389 /* First see if this is a symbol name. */ 3390 oursig = target_signal_from_name (signum_exp); 3391 if (oursig == TARGET_SIGNAL_UNKNOWN) 3392 { 3393 /* No, try numeric. */ 3394 oursig = 3395 target_signal_from_command (parse_and_eval_long (signum_exp)); 3396 } 3397 sig_print_info (oursig); 3398 return; 3399 } 3400 3401 printf_filtered ("\n"); 3402 /* These ugly casts brought to you by the native VAX compiler. */ 3403 for (oursig = TARGET_SIGNAL_FIRST; 3404 (int) oursig < (int) TARGET_SIGNAL_LAST; 3405 oursig = (enum target_signal) ((int) oursig + 1)) 3406 { 3407 QUIT; 3408 3409 if (oursig != TARGET_SIGNAL_UNKNOWN 3410 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) 3411 sig_print_info (oursig); 3412 } 3413 3414 printf_filtered ("\nUse the \"handle\" command to change these tables.\n"); 3415 } 3416 3417 struct inferior_status 3418 { 3419 enum target_signal stop_signal; 3420 CORE_ADDR stop_pc; 3421 bpstat stop_bpstat; 3422 int stop_step; 3423 int stop_stack_dummy; 3424 int stopped_by_random_signal; 3425 int trap_expected; 3426 CORE_ADDR step_range_start; 3427 CORE_ADDR step_range_end; 3428 struct frame_id step_frame_id; 3429 enum step_over_calls_kind step_over_calls; 3430 CORE_ADDR step_resume_break_address; 3431 int stop_after_trap; 3432 int stop_soon; 3433 struct regcache *stop_registers; 3434 3435 /* These are here because if call_function_by_hand has written some 3436 registers and then decides to call error(), we better not have changed 3437 any registers. */ 3438 struct regcache *registers; 3439 3440 /* A frame unique identifier. */ 3441 struct frame_id selected_frame_id; 3442 3443 int breakpoint_proceeded; 3444 int restore_stack_info; 3445 int proceed_to_finish; 3446 }; 3447 3448 void 3449 write_inferior_status_register (struct inferior_status *inf_status, int regno, 3450 LONGEST val) 3451 { 3452 int size = register_size (current_gdbarch, regno); 3453 void *buf = alloca (size); 3454 store_signed_integer (buf, size, val); 3455 regcache_raw_write (inf_status->registers, regno, buf); 3456 } 3457 3458 /* Save all of the information associated with the inferior<==>gdb 3459 connection. INF_STATUS is a pointer to a "struct inferior_status" 3460 (defined in inferior.h). */ 3461 3462 struct inferior_status * 3463 save_inferior_status (int restore_stack_info) 3464 { 3465 struct inferior_status *inf_status = XMALLOC (struct inferior_status); 3466 3467 inf_status->stop_signal = stop_signal; 3468 inf_status->stop_pc = stop_pc; 3469 inf_status->stop_step = stop_step; 3470 inf_status->stop_stack_dummy = stop_stack_dummy; 3471 inf_status->stopped_by_random_signal = stopped_by_random_signal; 3472 inf_status->trap_expected = trap_expected; 3473 inf_status->step_range_start = step_range_start; 3474 inf_status->step_range_end = step_range_end; 3475 inf_status->step_frame_id = step_frame_id; 3476 inf_status->step_over_calls = step_over_calls; 3477 inf_status->stop_after_trap = stop_after_trap; 3478 inf_status->stop_soon = stop_soon; 3479 /* Save original bpstat chain here; replace it with copy of chain. 3480 If caller's caller is walking the chain, they'll be happier if we 3481 hand them back the original chain when restore_inferior_status is 3482 called. */ 3483 inf_status->stop_bpstat = stop_bpstat; 3484 stop_bpstat = bpstat_copy (stop_bpstat); 3485 inf_status->breakpoint_proceeded = breakpoint_proceeded; 3486 inf_status->restore_stack_info = restore_stack_info; 3487 inf_status->proceed_to_finish = proceed_to_finish; 3488 3489 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers); 3490 3491 inf_status->registers = regcache_dup (current_regcache); 3492 3493 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame); 3494 return inf_status; 3495 } 3496 3497 static int 3498 restore_selected_frame (void *args) 3499 { 3500 struct frame_id *fid = (struct frame_id *) args; 3501 struct frame_info *frame; 3502 3503 frame = frame_find_by_id (*fid); 3504 3505 /* If inf_status->selected_frame_id is NULL, there was no previously 3506 selected frame. */ 3507 if (frame == NULL) 3508 { 3509 warning ("Unable to restore previously selected frame.\n"); 3510 return 0; 3511 } 3512 3513 select_frame (frame); 3514 3515 return (1); 3516 } 3517 3518 void 3519 restore_inferior_status (struct inferior_status *inf_status) 3520 { 3521 stop_signal = inf_status->stop_signal; 3522 stop_pc = inf_status->stop_pc; 3523 stop_step = inf_status->stop_step; 3524 stop_stack_dummy = inf_status->stop_stack_dummy; 3525 stopped_by_random_signal = inf_status->stopped_by_random_signal; 3526 trap_expected = inf_status->trap_expected; 3527 step_range_start = inf_status->step_range_start; 3528 step_range_end = inf_status->step_range_end; 3529 step_frame_id = inf_status->step_frame_id; 3530 step_over_calls = inf_status->step_over_calls; 3531 stop_after_trap = inf_status->stop_after_trap; 3532 stop_soon = inf_status->stop_soon; 3533 bpstat_clear (&stop_bpstat); 3534 stop_bpstat = inf_status->stop_bpstat; 3535 breakpoint_proceeded = inf_status->breakpoint_proceeded; 3536 proceed_to_finish = inf_status->proceed_to_finish; 3537 3538 /* FIXME: Is the restore of stop_registers always needed. */ 3539 regcache_xfree (stop_registers); 3540 stop_registers = inf_status->stop_registers; 3541 3542 /* The inferior can be gone if the user types "print exit(0)" 3543 (and perhaps other times). */ 3544 if (target_has_execution) 3545 /* NB: The register write goes through to the target. */ 3546 regcache_cpy (current_regcache, inf_status->registers); 3547 regcache_xfree (inf_status->registers); 3548 3549 /* FIXME: If we are being called after stopping in a function which 3550 is called from gdb, we should not be trying to restore the 3551 selected frame; it just prints a spurious error message (The 3552 message is useful, however, in detecting bugs in gdb (like if gdb 3553 clobbers the stack)). In fact, should we be restoring the 3554 inferior status at all in that case? . */ 3555 3556 if (target_has_stack && inf_status->restore_stack_info) 3557 { 3558 /* The point of catch_errors is that if the stack is clobbered, 3559 walking the stack might encounter a garbage pointer and 3560 error() trying to dereference it. */ 3561 if (catch_errors 3562 (restore_selected_frame, &inf_status->selected_frame_id, 3563 "Unable to restore previously selected frame:\n", 3564 RETURN_MASK_ERROR) == 0) 3565 /* Error in restoring the selected frame. Select the innermost 3566 frame. */ 3567 select_frame (get_current_frame ()); 3568 3569 } 3570 3571 xfree (inf_status); 3572 } 3573 3574 static void 3575 do_restore_inferior_status_cleanup (void *sts) 3576 { 3577 restore_inferior_status (sts); 3578 } 3579 3580 struct cleanup * 3581 make_cleanup_restore_inferior_status (struct inferior_status *inf_status) 3582 { 3583 return make_cleanup (do_restore_inferior_status_cleanup, inf_status); 3584 } 3585 3586 void 3587 discard_inferior_status (struct inferior_status *inf_status) 3588 { 3589 /* See save_inferior_status for info on stop_bpstat. */ 3590 bpstat_clear (&inf_status->stop_bpstat); 3591 regcache_xfree (inf_status->registers); 3592 regcache_xfree (inf_status->stop_registers); 3593 xfree (inf_status); 3594 } 3595 3596 int 3597 inferior_has_forked (int pid, int *child_pid) 3598 { 3599 struct target_waitstatus last; 3600 ptid_t last_ptid; 3601 3602 get_last_target_status (&last_ptid, &last); 3603 3604 if (last.kind != TARGET_WAITKIND_FORKED) 3605 return 0; 3606 3607 if (ptid_get_pid (last_ptid) != pid) 3608 return 0; 3609 3610 *child_pid = last.value.related_pid; 3611 return 1; 3612 } 3613 3614 int 3615 inferior_has_vforked (int pid, int *child_pid) 3616 { 3617 struct target_waitstatus last; 3618 ptid_t last_ptid; 3619 3620 get_last_target_status (&last_ptid, &last); 3621 3622 if (last.kind != TARGET_WAITKIND_VFORKED) 3623 return 0; 3624 3625 if (ptid_get_pid (last_ptid) != pid) 3626 return 0; 3627 3628 *child_pid = last.value.related_pid; 3629 return 1; 3630 } 3631 3632 int 3633 inferior_has_execd (int pid, char **execd_pathname) 3634 { 3635 struct target_waitstatus last; 3636 ptid_t last_ptid; 3637 3638 get_last_target_status (&last_ptid, &last); 3639 3640 if (last.kind != TARGET_WAITKIND_EXECD) 3641 return 0; 3642 3643 if (ptid_get_pid (last_ptid) != pid) 3644 return 0; 3645 3646 *execd_pathname = xstrdup (last.value.execd_pathname); 3647 return 1; 3648 } 3649 3650 /* Oft used ptids */ 3651 ptid_t null_ptid; 3652 ptid_t minus_one_ptid; 3653 3654 /* Create a ptid given the necessary PID, LWP, and TID components. */ 3655 3656 ptid_t 3657 ptid_build (int pid, long lwp, long tid) 3658 { 3659 ptid_t ptid; 3660 3661 ptid.pid = pid; 3662 ptid.lwp = lwp; 3663 ptid.tid = tid; 3664 return ptid; 3665 } 3666 3667 /* Create a ptid from just a pid. */ 3668 3669 ptid_t 3670 pid_to_ptid (int pid) 3671 { 3672 return ptid_build (pid, 0, 0); 3673 } 3674 3675 /* Fetch the pid (process id) component from a ptid. */ 3676 3677 int 3678 ptid_get_pid (ptid_t ptid) 3679 { 3680 return ptid.pid; 3681 } 3682 3683 /* Fetch the lwp (lightweight process) component from a ptid. */ 3684 3685 long 3686 ptid_get_lwp (ptid_t ptid) 3687 { 3688 return ptid.lwp; 3689 } 3690 3691 /* Fetch the tid (thread id) component from a ptid. */ 3692 3693 long 3694 ptid_get_tid (ptid_t ptid) 3695 { 3696 return ptid.tid; 3697 } 3698 3699 /* ptid_equal() is used to test equality of two ptids. */ 3700 3701 int 3702 ptid_equal (ptid_t ptid1, ptid_t ptid2) 3703 { 3704 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp 3705 && ptid1.tid == ptid2.tid); 3706 } 3707 3708 /* restore_inferior_ptid() will be used by the cleanup machinery 3709 to restore the inferior_ptid value saved in a call to 3710 save_inferior_ptid(). */ 3711 3712 static void 3713 restore_inferior_ptid (void *arg) 3714 { 3715 ptid_t *saved_ptid_ptr = arg; 3716 inferior_ptid = *saved_ptid_ptr; 3717 xfree (arg); 3718 } 3719 3720 /* Save the value of inferior_ptid so that it may be restored by a 3721 later call to do_cleanups(). Returns the struct cleanup pointer 3722 needed for later doing the cleanup. */ 3723 3724 struct cleanup * 3725 save_inferior_ptid (void) 3726 { 3727 ptid_t *saved_ptid_ptr; 3728 3729 saved_ptid_ptr = xmalloc (sizeof (ptid_t)); 3730 *saved_ptid_ptr = inferior_ptid; 3731 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); 3732 } 3733 3734 3735 static void 3736 build_infrun (void) 3737 { 3738 stop_registers = regcache_xmalloc (current_gdbarch); 3739 } 3740 3741 void 3742 _initialize_infrun (void) 3743 { 3744 int i; 3745 int numsigs; 3746 struct cmd_list_element *c; 3747 3748 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers); 3749 deprecated_register_gdbarch_swap (NULL, 0, build_infrun); 3750 3751 add_info ("signals", signals_info, 3752 "What debugger does when program gets various signals.\n\ 3753 Specify a signal as argument to print info on that signal only."); 3754 add_info_alias ("handle", "signals", 0); 3755 3756 add_com ("handle", class_run, handle_command, 3757 concat ("Specify how to handle a signal.\n\ 3758 Args are signals and actions to apply to those signals.\n\ 3759 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 3760 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 3761 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 3762 The special arg \"all\" is recognized to mean all signals except those\n\ 3763 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ 3764 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ 3765 Stop means reenter debugger if this signal happens (implies print).\n\ 3766 Print means print a message if this signal happens.\n\ 3767 Pass means let program see this signal; otherwise program doesn't know.\n\ 3768 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 3769 Pass and Stop may be combined.", NULL)); 3770 if (xdb_commands) 3771 { 3772 add_com ("lz", class_info, signals_info, 3773 "What debugger does when program gets various signals.\n\ 3774 Specify a signal as argument to print info on that signal only."); 3775 add_com ("z", class_run, xdb_handle_command, 3776 concat ("Specify how to handle a signal.\n\ 3777 Args are signals and actions to apply to those signals.\n\ 3778 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 3779 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 3780 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 3781 The special arg \"all\" is recognized to mean all signals except those\n\ 3782 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\ 3783 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ 3784 nopass), \"Q\" (noprint)\n\ 3785 Stop means reenter debugger if this signal happens (implies print).\n\ 3786 Print means print a message if this signal happens.\n\ 3787 Pass means let program see this signal; otherwise program doesn't know.\n\ 3788 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 3789 Pass and Stop may be combined.", NULL)); 3790 } 3791 3792 if (!dbx_commands) 3793 stop_command = 3794 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\ 3795 This allows you to set a list of commands to be run each time execution\n\ 3796 of the program stops.", &cmdlist); 3797 3798 numsigs = (int) TARGET_SIGNAL_LAST; 3799 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); 3800 signal_print = (unsigned char *) 3801 xmalloc (sizeof (signal_print[0]) * numsigs); 3802 signal_program = (unsigned char *) 3803 xmalloc (sizeof (signal_program[0]) * numsigs); 3804 for (i = 0; i < numsigs; i++) 3805 { 3806 signal_stop[i] = 1; 3807 signal_print[i] = 1; 3808 signal_program[i] = 1; 3809 } 3810 3811 /* Signals caused by debugger's own actions 3812 should not be given to the program afterwards. */ 3813 signal_program[TARGET_SIGNAL_TRAP] = 0; 3814 signal_program[TARGET_SIGNAL_INT] = 0; 3815 3816 /* Signals that are not errors should not normally enter the debugger. */ 3817 signal_stop[TARGET_SIGNAL_ALRM] = 0; 3818 signal_print[TARGET_SIGNAL_ALRM] = 0; 3819 signal_stop[TARGET_SIGNAL_VTALRM] = 0; 3820 signal_print[TARGET_SIGNAL_VTALRM] = 0; 3821 signal_stop[TARGET_SIGNAL_PROF] = 0; 3822 signal_print[TARGET_SIGNAL_PROF] = 0; 3823 signal_stop[TARGET_SIGNAL_CHLD] = 0; 3824 signal_print[TARGET_SIGNAL_CHLD] = 0; 3825 signal_stop[TARGET_SIGNAL_IO] = 0; 3826 signal_print[TARGET_SIGNAL_IO] = 0; 3827 signal_stop[TARGET_SIGNAL_POLL] = 0; 3828 signal_print[TARGET_SIGNAL_POLL] = 0; 3829 signal_stop[TARGET_SIGNAL_URG] = 0; 3830 signal_print[TARGET_SIGNAL_URG] = 0; 3831 signal_stop[TARGET_SIGNAL_WINCH] = 0; 3832 signal_print[TARGET_SIGNAL_WINCH] = 0; 3833 3834 /* These signals are used internally by user-level thread 3835 implementations. (See signal(5) on Solaris.) Like the above 3836 signals, a healthy program receives and handles them as part of 3837 its normal operation. */ 3838 signal_stop[TARGET_SIGNAL_LWP] = 0; 3839 signal_print[TARGET_SIGNAL_LWP] = 0; 3840 signal_stop[TARGET_SIGNAL_WAITING] = 0; 3841 signal_print[TARGET_SIGNAL_WAITING] = 0; 3842 signal_stop[TARGET_SIGNAL_CANCEL] = 0; 3843 signal_print[TARGET_SIGNAL_CANCEL] = 0; 3844 3845 #ifdef SOLIB_ADD 3846 deprecated_add_show_from_set 3847 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger, 3848 (char *) &stop_on_solib_events, 3849 "Set stopping for shared library events.\n\ 3850 If nonzero, gdb will give control to the user when the dynamic linker\n\ 3851 notifies gdb of shared library events. The most common event of interest\n\ 3852 to the user would be loading/unloading of a new library.\n", &setlist), &showlist); 3853 #endif 3854 3855 c = add_set_enum_cmd ("follow-fork-mode", 3856 class_run, 3857 follow_fork_mode_kind_names, &follow_fork_mode_string, 3858 "Set debugger response to a program call of fork \ 3859 or vfork.\n\ 3860 A fork or vfork creates a new process. follow-fork-mode can be:\n\ 3861 parent - the original process is debugged after a fork\n\ 3862 child - the new process is debugged after a fork\n\ 3863 The unfollowed process will continue to run.\n\ 3864 By default, the debugger will follow the parent process.", &setlist); 3865 deprecated_add_show_from_set (c, &showlist); 3866 3867 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */ 3868 &scheduler_mode, /* current mode */ 3869 "Set mode for locking scheduler during execution.\n\ 3870 off == no locking (threads may preempt at any time)\n\ 3871 on == full locking (no thread except the current thread may run)\n\ 3872 step == scheduler locked during every single-step operation.\n\ 3873 In this mode, no other thread may run during a step command.\n\ 3874 Other threads may run while stepping over a function call ('next').", &setlist); 3875 3876 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */ 3877 deprecated_add_show_from_set (c, &showlist); 3878 3879 c = add_set_cmd ("step-mode", class_run, 3880 var_boolean, (char *) &step_stop_if_no_debug, 3881 "Set mode of the step operation. When set, doing a step over a\n\ 3882 function without debug line information will stop at the first\n\ 3883 instruction of that function. Otherwise, the function is skipped and\n\ 3884 the step command stops at a different source line.", &setlist); 3885 deprecated_add_show_from_set (c, &showlist); 3886 3887 /* ptid initializations */ 3888 null_ptid = ptid_build (0, 0, 0); 3889 minus_one_ptid = ptid_build (-1, 0, 0); 3890 inferior_ptid = null_ptid; 3891 target_last_wait_ptid = minus_one_ptid; 3892 } 3893