xref: /openbsd/gnu/usr.bin/binutils/gdb/m32r-tdep.c (revision 73471bf0)
1 /* Target-dependent code for Renesas M32R, for GDB.
2 
3    Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4    Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "trad-frame.h"
41 #include "dis-asm.h"
42 
43 #include "gdb_assert.h"
44 
45 #include "m32r-tdep.h"
46 
47 /* Local functions */
48 
49 extern void _initialize_m32r_tdep (void);
50 
51 static CORE_ADDR
52 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
53 {
54   /* Align to the size of an instruction (so that they can safely be
55      pushed onto the stack.  */
56   return sp & ~3;
57 }
58 
59 
60 /* Breakpoints
61 
62    The little endian mode of M32R is unique. In most of architectures,
63    two 16-bit instructions, A and B, are placed as the following:
64 
65    Big endian:
66    A0 A1 B0 B1
67 
68    Little endian:
69    A1 A0 B1 B0
70 
71    In M32R, they are placed like this:
72 
73    Big endian:
74    A0 A1 B0 B1
75 
76    Little endian:
77    B1 B0 A1 A0
78 
79    This is because M32R always fetches instructions in 32-bit.
80 
81    The following functions take care of this behavior. */
82 
83 static int
84 m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
85 {
86   int val;
87   char buf[4];
88   char bp_entry[] = { 0x10, 0xf1 };	/* dpt */
89 
90   /* Save the memory contents.  */
91   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
92   if (val != 0)
93     return val;			/* return error */
94 
95   /* Determine appropriate breakpoint contents and size for this address.  */
96   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
97     {
98       if ((addr & 3) == 0)
99 	{
100 	  buf[0] = bp_entry[0];
101 	  buf[1] = bp_entry[1];
102 	  buf[2] = contents_cache[2] & 0x7f;
103 	  buf[3] = contents_cache[3];
104 	}
105       else
106 	{
107 	  buf[0] = contents_cache[0];
108 	  buf[1] = contents_cache[1];
109 	  buf[2] = bp_entry[0];
110 	  buf[3] = bp_entry[1];
111 	}
112     }
113   else				/* little-endian */
114     {
115       if ((addr & 3) == 0)
116 	{
117 	  buf[0] = contents_cache[0];
118 	  buf[1] = contents_cache[1] & 0x7f;
119 	  buf[2] = bp_entry[1];
120 	  buf[3] = bp_entry[0];
121 	}
122       else
123 	{
124 	  buf[0] = bp_entry[1];
125 	  buf[1] = bp_entry[0];
126 	  buf[2] = contents_cache[2];
127 	  buf[3] = contents_cache[3];
128 	}
129     }
130 
131   /* Write the breakpoint.  */
132   val = target_write_memory (addr & 0xfffffffc, buf, 4);
133   return val;
134 }
135 
136 static int
137 m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
138 {
139   int val;
140   char buf[4];
141 
142   buf[0] = contents_cache[0];
143   buf[1] = contents_cache[1];
144   buf[2] = contents_cache[2];
145   buf[3] = contents_cache[3];
146 
147   /* Remove parallel bit.  */
148   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
149     {
150       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
151 	buf[2] &= 0x7f;
152     }
153   else				/* little-endian */
154     {
155       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
156 	buf[1] &= 0x7f;
157     }
158 
159   /* Write contents.  */
160   val = target_write_memory (addr & 0xfffffffc, buf, 4);
161   return val;
162 }
163 
164 static const unsigned char *
165 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
166 {
167   static char be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 };	/* dpt -> nop */
168   static char le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 };	/* dpt -> nop */
169   unsigned char *bp;
170 
171   /* Determine appropriate breakpoint.  */
172   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
173     {
174       if ((*pcptr & 3) == 0)
175 	{
176 	  bp = be_bp_entry;
177 	  *lenptr = 4;
178 	}
179       else
180 	{
181 	  bp = be_bp_entry;
182 	  *lenptr = 2;
183 	}
184     }
185   else
186     {
187       if ((*pcptr & 3) == 0)
188 	{
189 	  bp = le_bp_entry;
190 	  *lenptr = 4;
191 	}
192       else
193 	{
194 	  bp = le_bp_entry + 2;
195 	  *lenptr = 2;
196 	}
197     }
198 
199   return bp;
200 }
201 
202 
203 char *m32r_register_names[] = {
204   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
206   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
207   "evb"
208 };
209 
210 static const char *
211 m32r_register_name (int reg_nr)
212 {
213   if (reg_nr < 0)
214     return NULL;
215   if (reg_nr >= M32R_NUM_REGS)
216     return NULL;
217   return m32r_register_names[reg_nr];
218 }
219 
220 
221 /* Return the GDB type object for the "standard" data type
222    of data in register N.  */
223 
224 static struct type *
225 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
226 {
227   if (reg_nr == M32R_PC_REGNUM)
228     return builtin_type_void_func_ptr;
229   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
230     return builtin_type_void_data_ptr;
231   else
232     return builtin_type_int32;
233 }
234 
235 
236 /* Write into appropriate registers a function return value
237    of type TYPE, given in virtual format.
238 
239    Things always get returned in RET1_REGNUM, RET2_REGNUM. */
240 
241 static void
242 m32r_store_return_value (struct type *type, struct regcache *regcache,
243 			 const void *valbuf)
244 {
245   CORE_ADDR regval;
246   int len = TYPE_LENGTH (type);
247 
248   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
249   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
250 
251   if (len > 4)
252     {
253       regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
254       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
255     }
256 }
257 
258 /* This is required by skip_prologue. The results of decoding a prologue
259    should be cached because this thrashing is getting nuts.  */
260 
261 static int
262 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
263 		 CORE_ADDR *pl_endptr, unsigned long *framelength)
264 {
265   unsigned long framesize;
266   int insn;
267   int op1;
268   CORE_ADDR after_prologue = 0;
269   CORE_ADDR after_push = 0;
270   CORE_ADDR after_stack_adjust = 0;
271   CORE_ADDR current_pc;
272   LONGEST return_value;
273 
274   framesize = 0;
275   after_prologue = 0;
276 
277   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
278     {
279       /* Check if current pc's location is readable. */
280       if (!safe_read_memory_integer (current_pc, 2, &return_value))
281 	return -1;
282 
283       insn = read_memory_unsigned_integer (current_pc, 2);
284 
285       if (insn == 0x0000)
286 	break;
287 
288       /* If this is a 32 bit instruction, we dont want to examine its
289          immediate data as though it were an instruction */
290       if (current_pc & 0x02)
291 	{
292 	  /* decode this instruction further */
293 	  insn &= 0x7fff;
294 	}
295       else
296 	{
297 	  if (insn & 0x8000)
298 	    {
299 	      if (current_pc == scan_limit)
300 		scan_limit += 2;	/* extend the search */
301 
302 	      current_pc += 2;	/* skip the immediate data */
303 
304 	      /* Check if current pc's location is readable. */
305 	      if (!safe_read_memory_integer (current_pc, 2, &return_value))
306 		return -1;
307 
308 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
309 		/* add 16 bit sign-extended offset */
310 		{
311 		  framesize +=
312 		    -((short) read_memory_unsigned_integer (current_pc, 2));
313 		}
314 	      else
315 		{
316 		  if (((insn >> 8) == 0xe4)	/* ld24 r4, xxxxxx; sub sp, r4 */
317 		      && safe_read_memory_integer (current_pc + 2, 2,
318 						   &return_value)
319 		      && read_memory_unsigned_integer (current_pc + 2,
320 						       2) == 0x0f24)
321 		    /* subtract 24 bit sign-extended negative-offset */
322 		    {
323 		      insn = read_memory_unsigned_integer (current_pc - 2, 4);
324 		      if (insn & 0x00800000)	/* sign extend */
325 			insn |= 0xff000000;	/* negative */
326 		      else
327 			insn &= 0x00ffffff;	/* positive */
328 		      framesize += insn;
329 		    }
330 		}
331 	      after_push = current_pc + 2;
332 	      continue;
333 	    }
334 	}
335       op1 = insn & 0xf000;	/* isolate just the first nibble */
336 
337       if ((insn & 0xf0ff) == 0x207f)
338 	{			/* st reg, @-sp */
339 	  int regno;
340 	  framesize += 4;
341 	  regno = ((insn >> 8) & 0xf);
342 	  after_prologue = 0;
343 	  continue;
344 	}
345       if ((insn >> 8) == 0x4f)	/* addi sp, xx */
346 	/* add 8 bit sign-extended offset */
347 	{
348 	  int stack_adjust = (char) (insn & 0xff);
349 
350 	  /* there are probably two of these stack adjustments:
351 	     1) A negative one in the prologue, and
352 	     2) A positive one in the epilogue.
353 	     We are only interested in the first one.  */
354 
355 	  if (stack_adjust < 0)
356 	    {
357 	      framesize -= stack_adjust;
358 	      after_prologue = 0;
359 	      /* A frameless function may have no "mv fp, sp".
360 	         In that case, this is the end of the prologue.  */
361 	      after_stack_adjust = current_pc + 2;
362 	    }
363 	  continue;
364 	}
365       if (insn == 0x1d8f)
366 	{			/* mv fp, sp */
367 	  after_prologue = current_pc + 2;
368 	  break;		/* end of stack adjustments */
369 	}
370 
371       /* Nop looks like a branch, continue explicitly */
372       if (insn == 0x7000)
373 	{
374 	  after_prologue = current_pc + 2;
375 	  continue;		/* nop occurs between pushes */
376 	}
377       /* End of prolog if any of these are trap instructions */
378       if ((insn & 0xfff0) == 0x10f0)
379 	{
380 	  after_prologue = current_pc;
381 	  break;
382 	}
383       /* End of prolog if any of these are branch instructions */
384       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
385 	{
386 	  after_prologue = current_pc;
387 	  continue;
388 	}
389       /* Some of the branch instructions are mixed with other types */
390       if (op1 == 0x1000)
391 	{
392 	  int subop = insn & 0x0ff0;
393 	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
394 	    {
395 	      after_prologue = current_pc;
396 	      continue;		/* jmp , jl */
397 	    }
398 	}
399     }
400 
401   if (framelength)
402     *framelength = framesize;
403 
404   if (current_pc >= scan_limit)
405     {
406       if (pl_endptr)
407 	{
408 	  if (after_stack_adjust != 0)
409 	    /* We did not find a "mv fp,sp", but we DID find
410 	       a stack_adjust.  Is it safe to use that as the
411 	       end of the prologue?  I just don't know. */
412 	    {
413 	      *pl_endptr = after_stack_adjust;
414 	    }
415 	  else if (after_push != 0)
416 	    /* We did not find a "mv fp,sp", but we DID find
417 	       a push.  Is it safe to use that as the
418 	       end of the prologue?  I just don't know. */
419 	    {
420 	      *pl_endptr = after_push;
421 	    }
422 	  else
423 	    /* We reached the end of the loop without finding the end
424 	       of the prologue.  No way to win -- we should report failure.
425 	       The way we do that is to return the original start_pc.
426 	       GDB will set a breakpoint at the start of the function (etc.) */
427 	    *pl_endptr = start_pc;
428 	}
429       return 0;
430     }
431 
432   if (after_prologue == 0)
433     after_prologue = current_pc;
434 
435   if (pl_endptr)
436     *pl_endptr = after_prologue;
437 
438   return 0;
439 }				/*  decode_prologue */
440 
441 /* Function: skip_prologue
442    Find end of function prologue */
443 
444 #define DEFAULT_SEARCH_LIMIT 128
445 
446 CORE_ADDR
447 m32r_skip_prologue (CORE_ADDR pc)
448 {
449   CORE_ADDR func_addr, func_end;
450   struct symtab_and_line sal;
451   LONGEST return_value;
452 
453   /* See what the symbol table says */
454 
455   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
456     {
457       sal = find_pc_line (func_addr, 0);
458 
459       if (sal.line != 0 && sal.end <= func_end)
460 	{
461 	  func_end = sal.end;
462 	}
463       else
464 	/* Either there's no line info, or the line after the prologue is after
465 	   the end of the function.  In this case, there probably isn't a
466 	   prologue.  */
467 	{
468 	  func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
469 	}
470     }
471   else
472     func_end = pc + DEFAULT_SEARCH_LIMIT;
473 
474   /* If pc's location is not readable, just quit. */
475   if (!safe_read_memory_integer (pc, 4, &return_value))
476     return pc;
477 
478   /* Find the end of prologue.  */
479   if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
480     return pc;
481 
482   return sal.end;
483 }
484 
485 struct m32r_unwind_cache
486 {
487   /* The previous frame's inner most stack address.  Used as this
488      frame ID's stack_addr.  */
489   CORE_ADDR prev_sp;
490   /* The frame's base, optionally used by the high-level debug info.  */
491   CORE_ADDR base;
492   int size;
493   /* How far the SP and r13 (FP) have been offset from the start of
494      the stack frame (as defined by the previous frame's stack
495      pointer).  */
496   LONGEST sp_offset;
497   LONGEST r13_offset;
498   int uses_frame;
499   /* Table indicating the location of each and every register.  */
500   struct trad_frame_saved_reg *saved_regs;
501 };
502 
503 /* Put here the code to store, into fi->saved_regs, the addresses of
504    the saved registers of frame described by FRAME_INFO.  This
505    includes special registers such as pc and fp saved in special ways
506    in the stack frame.  sp is even more special: the address we return
507    for it IS the sp for the next frame. */
508 
509 static struct m32r_unwind_cache *
510 m32r_frame_unwind_cache (struct frame_info *next_frame,
511 			 void **this_prologue_cache)
512 {
513   CORE_ADDR pc, scan_limit;
514   ULONGEST prev_sp;
515   ULONGEST this_base;
516   unsigned long op, op2;
517   int i;
518   struct m32r_unwind_cache *info;
519 
520 
521   if ((*this_prologue_cache))
522     return (*this_prologue_cache);
523 
524   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
525   (*this_prologue_cache) = info;
526   info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
527 
528   info->size = 0;
529   info->sp_offset = 0;
530   info->uses_frame = 0;
531 
532   scan_limit = frame_pc_unwind (next_frame);
533   for (pc = frame_func_unwind (next_frame);
534        pc > 0 && pc < scan_limit; pc += 2)
535     {
536       if ((pc & 2) == 0)
537 	{
538 	  op = get_frame_memory_unsigned (next_frame, pc, 4);
539 	  if ((op & 0x80000000) == 0x80000000)
540 	    {
541 	      /* 32-bit instruction */
542 	      if ((op & 0xffff0000) == 0x8faf0000)
543 		{
544 		  /* add3 sp,sp,xxxx */
545 		  short n = op & 0xffff;
546 		  info->sp_offset += n;
547 		}
548 	      else if (((op >> 8) == 0xe4)
549 		       && get_frame_memory_unsigned (next_frame, pc + 2,
550 						     2) == 0x0f24)
551 		{
552 		  /* ld24 r4, xxxxxx; sub sp, r4 */
553 		  unsigned long n = op & 0xffffff;
554 		  info->sp_offset += n;
555 		  pc += 2;	/* skip sub instruction */
556 		}
557 
558 	      if (pc == scan_limit)
559 		scan_limit += 2;	/* extend the search */
560 	      pc += 2;		/* skip the immediate data */
561 	      continue;
562 	    }
563 	}
564 
565       /* 16-bit instructions */
566       op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
567       if ((op & 0xf0ff) == 0x207f)
568 	{
569 	  /* st rn, @-sp */
570 	  int regno = ((op >> 8) & 0xf);
571 	  info->sp_offset -= 4;
572 	  info->saved_regs[regno].addr = info->sp_offset;
573 	}
574       else if ((op & 0xff00) == 0x4f00)
575 	{
576 	  /* addi sp, xx */
577 	  int n = (char) (op & 0xff);
578 	  info->sp_offset += n;
579 	}
580       else if (op == 0x1d8f)
581 	{
582 	  /* mv fp, sp */
583 	  info->uses_frame = 1;
584 	  info->r13_offset = info->sp_offset;
585 	  break;		/* end of stack adjustments */
586 	}
587       else if ((op & 0xfff0) == 0x10f0)
588 	{
589 	  /* end of prologue if this is a trap instruction */
590 	  break;		/* end of stack adjustments */
591 	}
592     }
593 
594   info->size = -info->sp_offset;
595 
596   /* Compute the previous frame's stack pointer (which is also the
597      frame's ID's stack address), and this frame's base pointer.  */
598   if (info->uses_frame)
599     {
600       /* The SP was moved to the FP.  This indicates that a new frame
601          was created.  Get THIS frame's FP value by unwinding it from
602          the next frame.  */
603       this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
604       /* The FP points at the last saved register.  Adjust the FP back
605          to before the first saved register giving the SP.  */
606       prev_sp = this_base + info->size;
607     }
608   else
609     {
610       /* Assume that the FP is this frame's SP but with that pushed
611          stack space added back.  */
612       this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
613       prev_sp = this_base + info->size;
614     }
615 
616   /* Convert that SP/BASE into real addresses.  */
617   info->prev_sp = prev_sp;
618   info->base = this_base;
619 
620   /* Adjust all the saved registers so that they contain addresses and
621      not offsets.  */
622   for (i = 0; i < NUM_REGS - 1; i++)
623     if (trad_frame_addr_p (info->saved_regs, i))
624       info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
625 
626   /* The call instruction moves the caller's PC in the callee's LR.
627      Since this is an unwind, do the reverse.  Copy the location of LR
628      into PC (the address / regnum) so that a request for PC will be
629      converted into a request for the LR.  */
630   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
631 
632   /* The previous frame's SP needed to be computed.  Save the computed
633      value.  */
634   trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
635 
636   return info;
637 }
638 
639 static CORE_ADDR
640 m32r_read_pc (ptid_t ptid)
641 {
642   ptid_t save_ptid;
643   ULONGEST pc;
644 
645   save_ptid = inferior_ptid;
646   inferior_ptid = ptid;
647   regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
648   inferior_ptid = save_ptid;
649   return pc;
650 }
651 
652 static void
653 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
654 {
655   ptid_t save_ptid;
656 
657   save_ptid = inferior_ptid;
658   inferior_ptid = ptid;
659   write_register (M32R_PC_REGNUM, val);
660   inferior_ptid = save_ptid;
661 }
662 
663 static CORE_ADDR
664 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
665 {
666   return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
667 }
668 
669 
670 static CORE_ADDR
671 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
672 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
673 		      struct value **args, CORE_ADDR sp, int struct_return,
674 		      CORE_ADDR struct_addr)
675 {
676   int stack_offset, stack_alloc;
677   int argreg = ARG1_REGNUM;
678   int argnum;
679   struct type *type;
680   enum type_code typecode;
681   CORE_ADDR regval;
682   char *val;
683   char valbuf[MAX_REGISTER_SIZE];
684   int len;
685   int odd_sized_struct;
686 
687   /* first force sp to a 4-byte alignment */
688   sp = sp & ~3;
689 
690   /* Set the return address.  For the m32r, the return breakpoint is
691      always at BP_ADDR.  */
692   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
693 
694   /* If STRUCT_RETURN is true, then the struct return address (in
695      STRUCT_ADDR) will consume the first argument-passing register.
696      Both adjust the register count and store that value.  */
697   if (struct_return)
698     {
699       regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
700       argreg++;
701     }
702 
703   /* Now make sure there's space on the stack */
704   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
705     stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
706   sp -= stack_alloc;		/* make room on stack for args */
707 
708   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
709     {
710       type = VALUE_TYPE (args[argnum]);
711       typecode = TYPE_CODE (type);
712       len = TYPE_LENGTH (type);
713 
714       memset (valbuf, 0, sizeof (valbuf));
715 
716       /* Passes structures that do not fit in 2 registers by reference.  */
717       if (len > 8
718 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
719 	{
720 	  store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
721 	  typecode = TYPE_CODE_PTR;
722 	  len = 4;
723 	  val = valbuf;
724 	}
725       else if (len < 4)
726 	{
727 	  /* value gets right-justified in the register or stack word */
728 	  memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729 		  (char *) VALUE_CONTENTS (args[argnum]), len);
730 	  val = valbuf;
731 	}
732       else
733 	val = (char *) VALUE_CONTENTS (args[argnum]);
734 
735       while (len > 0)
736 	{
737 	  if (argreg > ARGN_REGNUM)
738 	    {
739 	      /* must go on the stack */
740 	      write_memory (sp + stack_offset, val, 4);
741 	      stack_offset += 4;
742 	    }
743 	  else if (argreg <= ARGN_REGNUM)
744 	    {
745 	      /* there's room in a register */
746 	      regval =
747 		extract_unsigned_integer (val,
748 					  register_size (gdbarch, argreg));
749 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
750 	    }
751 
752 	  /* Store the value 4 bytes at a time.  This means that things
753 	     larger than 4 bytes may go partly in registers and partly
754 	     on the stack.  */
755 	  len -= register_size (gdbarch, argreg);
756 	  val += register_size (gdbarch, argreg);
757 	}
758     }
759 
760   /* Finally, update the SP register.  */
761   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
762 
763   return sp;
764 }
765 
766 
767 /* Given a return value in `regbuf' with a type `valtype',
768    extract and copy its value into `valbuf'.  */
769 
770 static void
771 m32r_extract_return_value (struct type *type, struct regcache *regcache,
772 			   void *dst)
773 {
774   bfd_byte *valbuf = dst;
775   int len = TYPE_LENGTH (type);
776   ULONGEST tmp;
777 
778   /* By using store_unsigned_integer we avoid having to do
779      anything special for small big-endian values.  */
780   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
781   store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
782 
783   /* Ignore return values more than 8 bytes in size because the m32r
784      returns anything more than 8 bytes in the stack. */
785   if (len > 4)
786     {
787       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
788       store_unsigned_integer (valbuf + len - 4, 4, tmp);
789     }
790 }
791 
792 enum return_value_convention
793 m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
794 		   struct regcache *regcache, void *readbuf,
795 		   const void *writebuf)
796 {
797   if (TYPE_LENGTH (valtype) > 8)
798     return RETURN_VALUE_STRUCT_CONVENTION;
799   else
800     {
801       if (readbuf != NULL)
802 	m32r_extract_return_value (valtype, regcache, readbuf);
803       if (writebuf != NULL)
804 	m32r_store_return_value (valtype, regcache, writebuf);
805       return RETURN_VALUE_REGISTER_CONVENTION;
806     }
807 }
808 
809 
810 
811 static CORE_ADDR
812 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
813 {
814   return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
815 }
816 
817 /* Given a GDB frame, determine the address of the calling function's
818    frame.  This will be used to create a new GDB frame struct.  */
819 
820 static void
821 m32r_frame_this_id (struct frame_info *next_frame,
822 		    void **this_prologue_cache, struct frame_id *this_id)
823 {
824   struct m32r_unwind_cache *info
825     = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
826   CORE_ADDR base;
827   CORE_ADDR func;
828   struct minimal_symbol *msym_stack;
829   struct frame_id id;
830 
831   /* The FUNC is easy.  */
832   func = frame_func_unwind (next_frame);
833 
834   /* Check if the stack is empty.  */
835   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
836   if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
837     return;
838 
839   /* Hopefully the prologue analysis either correctly determined the
840      frame's base (which is the SP from the previous frame), or set
841      that base to "NULL".  */
842   base = info->prev_sp;
843   if (base == 0)
844     return;
845 
846   id = frame_id_build (base, func);
847   (*this_id) = id;
848 }
849 
850 static void
851 m32r_frame_prev_register (struct frame_info *next_frame,
852 			  void **this_prologue_cache,
853 			  int regnum, int *optimizedp,
854 			  enum lval_type *lvalp, CORE_ADDR *addrp,
855 			  int *realnump, void *bufferp)
856 {
857   struct m32r_unwind_cache *info
858     = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
859   trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
860 				optimizedp, lvalp, addrp, realnump, bufferp);
861 }
862 
863 static const struct frame_unwind m32r_frame_unwind = {
864   NORMAL_FRAME,
865   m32r_frame_this_id,
866   m32r_frame_prev_register
867 };
868 
869 static const struct frame_unwind *
870 m32r_frame_sniffer (struct frame_info *next_frame)
871 {
872   return &m32r_frame_unwind;
873 }
874 
875 static CORE_ADDR
876 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
877 {
878   struct m32r_unwind_cache *info
879     = m32r_frame_unwind_cache (next_frame, this_cache);
880   return info->base;
881 }
882 
883 static const struct frame_base m32r_frame_base = {
884   &m32r_frame_unwind,
885   m32r_frame_base_address,
886   m32r_frame_base_address,
887   m32r_frame_base_address
888 };
889 
890 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
891    dummy frame.  The frame ID's base needs to match the TOS value
892    saved by save_dummy_frame_tos(), and the PC match the dummy frame's
893    breakpoint.  */
894 
895 static struct frame_id
896 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
897 {
898   return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
899 			 frame_pc_unwind (next_frame));
900 }
901 
902 
903 static gdbarch_init_ftype m32r_gdbarch_init;
904 
905 static struct gdbarch *
906 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
907 {
908   struct gdbarch *gdbarch;
909   struct gdbarch_tdep *tdep;
910 
911   /* If there is already a candidate, use it.  */
912   arches = gdbarch_list_lookup_by_info (arches, &info);
913   if (arches != NULL)
914     return arches->gdbarch;
915 
916   /* Allocate space for the new architecture.  */
917   tdep = XMALLOC (struct gdbarch_tdep);
918   gdbarch = gdbarch_alloc (&info, tdep);
919 
920   set_gdbarch_read_pc (gdbarch, m32r_read_pc);
921   set_gdbarch_write_pc (gdbarch, m32r_write_pc);
922   set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
923 
924   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
925   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
926   set_gdbarch_register_name (gdbarch, m32r_register_name);
927   set_gdbarch_register_type (gdbarch, m32r_register_type);
928 
929   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
930   set_gdbarch_return_value (gdbarch, m32r_return_value);
931 
932   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
933   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
934   set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
935   set_gdbarch_memory_insert_breakpoint (gdbarch,
936 					m32r_memory_insert_breakpoint);
937   set_gdbarch_memory_remove_breakpoint (gdbarch,
938 					m32r_memory_remove_breakpoint);
939 
940   set_gdbarch_frame_align (gdbarch, m32r_frame_align);
941 
942   frame_base_set_default (gdbarch, &m32r_frame_base);
943 
944   /* Methods for saving / extracting a dummy frame's ID.  The ID's
945      stack address must match the SP value returned by
946      PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
947   set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
948 
949   /* Return the unwound PC value.  */
950   set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
951 
952   set_gdbarch_print_insn (gdbarch, print_insn_m32r);
953 
954   /* Hook in ABI-specific overrides, if they have been registered.  */
955   gdbarch_init_osabi (info, gdbarch);
956 
957   /* Hook in the default unwinders.  */
958   frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
959 
960   return gdbarch;
961 }
962 
963 void
964 _initialize_m32r_tdep (void)
965 {
966   register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
967 }
968