1 /* GDB routines for manipulating objfiles. 2 3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 4 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 5 6 Contributed by Cygnus Support, using pieces from other GDB modules. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place - Suite 330, 23 Boston, MA 02111-1307, USA. */ 24 25 /* This file contains support routines for creating, manipulating, and 26 destroying objfile structures. */ 27 28 #include "defs.h" 29 #include "bfd.h" /* Binary File Description */ 30 #include "symtab.h" 31 #include "symfile.h" 32 #include "objfiles.h" 33 #include "gdb-stabs.h" 34 #include "target.h" 35 #include "bcache.h" 36 37 #include "gdb_assert.h" 38 #include <sys/types.h> 39 #include "gdb_stat.h" 40 #include <fcntl.h> 41 #include "gdb_obstack.h" 42 #include "gdb_string.h" 43 #include "hashtab.h" 44 45 #include "breakpoint.h" 46 #include "block.h" 47 #include "dictionary.h" 48 #include "auxv.h" 49 50 #include "elf/common.h" 51 52 /* Prototypes for local functions */ 53 54 static void objfile_alloc_data (struct objfile *objfile); 55 static void objfile_free_data (struct objfile *objfile); 56 57 /* Externally visible variables that are owned by this module. 58 See declarations in objfile.h for more info. */ 59 60 struct objfile *object_files; /* Linked list of all objfiles */ 61 struct objfile *current_objfile; /* For symbol file being read in */ 62 struct objfile *symfile_objfile; /* Main symbol table loaded from */ 63 struct objfile *rt_common_objfile; /* For runtime common symbols */ 64 65 /* Locate all mappable sections of a BFD file. 66 objfile_p_char is a char * to get it through 67 bfd_map_over_sections; we cast it back to its proper type. */ 68 69 #ifndef TARGET_KEEP_SECTION 70 #define TARGET_KEEP_SECTION(ASECT) 0 71 #endif 72 73 /* Called via bfd_map_over_sections to build up the section table that 74 the objfile references. The objfile contains pointers to the start 75 of the table (objfile->sections) and to the first location after 76 the end of the table (objfile->sections_end). */ 77 78 static void 79 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 80 void *objfile_p_char) 81 { 82 struct objfile *objfile = (struct objfile *) objfile_p_char; 83 struct obj_section section; 84 flagword aflag; 85 86 aflag = bfd_get_section_flags (abfd, asect); 87 88 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect))) 89 return; 90 91 if (0 == bfd_section_size (abfd, asect)) 92 return; 93 section.offset = 0; 94 section.objfile = objfile; 95 section.the_bfd_section = asect; 96 section.ovly_mapped = 0; 97 section.addr = bfd_section_vma (abfd, asect); 98 section.endaddr = section.addr + bfd_section_size (abfd, asect); 99 obstack_grow (&objfile->objfile_obstack, (char *) §ion, sizeof (section)); 100 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); 101 } 102 103 /* Builds a section table for OBJFILE. 104 Returns 0 if OK, 1 on error (in which case bfd_error contains the 105 error). 106 107 Note that while we are building the table, which goes into the 108 psymbol obstack, we hijack the sections_end pointer to instead hold 109 a count of the number of sections. When bfd_map_over_sections 110 returns, this count is used to compute the pointer to the end of 111 the sections table, which then overwrites the count. 112 113 Also note that the OFFSET and OVLY_MAPPED in each table entry 114 are initialized to zero. 115 116 Also note that if anything else writes to the psymbol obstack while 117 we are building the table, we're pretty much hosed. */ 118 119 int 120 build_objfile_section_table (struct objfile *objfile) 121 { 122 /* objfile->sections can be already set when reading a mapped symbol 123 file. I believe that we do need to rebuild the section table in 124 this case (we rebuild other things derived from the bfd), but we 125 can't free the old one (it's in the objfile_obstack). So we just 126 waste some memory. */ 127 128 objfile->sections_end = 0; 129 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile); 130 objfile->sections = (struct obj_section *) 131 obstack_finish (&objfile->objfile_obstack); 132 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; 133 return (0); 134 } 135 136 /* Given a pointer to an initialized bfd (ABFD) and some flag bits 137 allocate a new objfile struct, fill it in as best we can, link it 138 into the list of all known objfiles, and return a pointer to the 139 new objfile struct. 140 141 The FLAGS word contains various bits (OBJF_*) that can be taken as 142 requests for specific operations. Other bits like OBJF_SHARED are 143 simply copied through to the new objfile flags member. */ 144 145 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0 146 by jv-lang.c, to create an artificial objfile used to hold 147 information about dynamically-loaded Java classes. Unfortunately, 148 that branch of this function doesn't get tested very frequently, so 149 it's prone to breakage. (E.g. at one time the name was set to NULL 150 in that situation, which broke a loop over all names in the dynamic 151 library loader.) If you change this function, please try to leave 152 things in a consistent state even if abfd is NULL. */ 153 154 struct objfile * 155 allocate_objfile (bfd *abfd, int flags) 156 { 157 struct objfile *objfile = NULL; 158 struct objfile *last_one = NULL; 159 160 /* If we don't support mapped symbol files, didn't ask for the file to be 161 mapped, or failed to open the mapped file for some reason, then revert 162 back to an unmapped objfile. */ 163 164 if (objfile == NULL) 165 { 166 objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); 167 memset (objfile, 0, sizeof (struct objfile)); 168 objfile->md = NULL; 169 objfile->psymbol_cache = bcache_xmalloc (); 170 objfile->macro_cache = bcache_xmalloc (); 171 /* We could use obstack_specify_allocation here instead, but 172 gdb_obstack.h specifies the alloc/dealloc functions. */ 173 obstack_init (&objfile->objfile_obstack); 174 terminate_minimal_symbol_table (objfile); 175 } 176 177 objfile_alloc_data (objfile); 178 179 /* Update the per-objfile information that comes from the bfd, ensuring 180 that any data that is reference is saved in the per-objfile data 181 region. */ 182 183 objfile->obfd = abfd; 184 if (objfile->name != NULL) 185 { 186 xfree (objfile->name); 187 } 188 if (abfd != NULL) 189 { 190 objfile->name = xstrdup (bfd_get_filename (abfd)); 191 objfile->mtime = bfd_get_mtime (abfd); 192 193 /* Build section table. */ 194 195 if (build_objfile_section_table (objfile)) 196 { 197 error ("Can't find the file sections in `%s': %s", 198 objfile->name, bfd_errmsg (bfd_get_error ())); 199 } 200 } 201 else 202 { 203 objfile->name = xstrdup ("<<anonymous objfile>>"); 204 } 205 206 /* Initialize the section indexes for this objfile, so that we can 207 later detect if they are used w/o being properly assigned to. */ 208 209 objfile->sect_index_text = -1; 210 objfile->sect_index_data = -1; 211 objfile->sect_index_bss = -1; 212 objfile->sect_index_rodata = -1; 213 214 /* We don't yet have a C++-specific namespace symtab. */ 215 216 objfile->cp_namespace_symtab = NULL; 217 218 /* Add this file onto the tail of the linked list of other such files. */ 219 220 objfile->next = NULL; 221 if (object_files == NULL) 222 object_files = objfile; 223 else 224 { 225 for (last_one = object_files; 226 last_one->next; 227 last_one = last_one->next); 228 last_one->next = objfile; 229 } 230 231 /* Save passed in flag bits. */ 232 objfile->flags |= flags; 233 234 return (objfile); 235 } 236 237 /* Initialize entry point information for this objfile. */ 238 239 void 240 init_entry_point_info (struct objfile *objfile) 241 { 242 /* Save startup file's range of PC addresses to help blockframe.c 243 decide where the bottom of the stack is. */ 244 245 if (bfd_get_file_flags (objfile->obfd) & EXEC_P) 246 { 247 /* Executable file -- record its entry point so we'll recognize 248 the startup file because it contains the entry point. */ 249 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); 250 } 251 else 252 { 253 /* Examination of non-executable.o files. Short-circuit this stuff. */ 254 objfile->ei.entry_point = INVALID_ENTRY_POINT; 255 } 256 } 257 258 /* Get current entry point address. */ 259 260 CORE_ADDR 261 entry_point_address (void) 262 { 263 CORE_ADDR entry_addr = symfile_objfile ? symfile_objfile->ei.entry_point : 0; 264 265 /* Find the address of the entry point of the program from the 266 auxv vector. */ 267 target_auxv_search (¤t_target, AT_ENTRY, &entry_addr); 268 return entry_addr; 269 } 270 271 /* Create the terminating entry of OBJFILE's minimal symbol table. 272 If OBJFILE->msymbols is zero, allocate a single entry from 273 OBJFILE->objfile_obstack; otherwise, just initialize 274 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */ 275 void 276 terminate_minimal_symbol_table (struct objfile *objfile) 277 { 278 if (! objfile->msymbols) 279 objfile->msymbols = ((struct minimal_symbol *) 280 obstack_alloc (&objfile->objfile_obstack, 281 sizeof (objfile->msymbols[0]))); 282 283 { 284 struct minimal_symbol *m 285 = &objfile->msymbols[objfile->minimal_symbol_count]; 286 287 memset (m, 0, sizeof (*m)); 288 /* Don't rely on these enumeration values being 0's. */ 289 MSYMBOL_TYPE (m) = mst_unknown; 290 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown); 291 } 292 } 293 294 295 /* Put one object file before a specified on in the global list. 296 This can be used to make sure an object file is destroyed before 297 another when using ALL_OBJFILES_SAFE to free all objfiles. */ 298 void 299 put_objfile_before (struct objfile *objfile, struct objfile *before_this) 300 { 301 struct objfile **objp; 302 303 unlink_objfile (objfile); 304 305 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 306 { 307 if (*objp == before_this) 308 { 309 objfile->next = *objp; 310 *objp = objfile; 311 return; 312 } 313 } 314 315 internal_error (__FILE__, __LINE__, 316 "put_objfile_before: before objfile not in list"); 317 } 318 319 /* Put OBJFILE at the front of the list. */ 320 321 void 322 objfile_to_front (struct objfile *objfile) 323 { 324 struct objfile **objp; 325 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) 326 { 327 if (*objp == objfile) 328 { 329 /* Unhook it from where it is. */ 330 *objp = objfile->next; 331 /* Put it in the front. */ 332 objfile->next = object_files; 333 object_files = objfile; 334 break; 335 } 336 } 337 } 338 339 /* Unlink OBJFILE from the list of known objfiles, if it is found in the 340 list. 341 342 It is not a bug, or error, to call this function if OBJFILE is not known 343 to be in the current list. This is done in the case of mapped objfiles, 344 for example, just to ensure that the mapped objfile doesn't appear twice 345 in the list. Since the list is threaded, linking in a mapped objfile 346 twice would create a circular list. 347 348 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after 349 unlinking it, just to ensure that we have completely severed any linkages 350 between the OBJFILE and the list. */ 351 352 void 353 unlink_objfile (struct objfile *objfile) 354 { 355 struct objfile **objpp; 356 357 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) 358 { 359 if (*objpp == objfile) 360 { 361 *objpp = (*objpp)->next; 362 objfile->next = NULL; 363 return; 364 } 365 } 366 367 internal_error (__FILE__, __LINE__, 368 "unlink_objfile: objfile already unlinked"); 369 } 370 371 372 /* Destroy an objfile and all the symtabs and psymtabs under it. Note 373 that as much as possible is allocated on the objfile_obstack 374 so that the memory can be efficiently freed. 375 376 Things which we do NOT free because they are not in malloc'd memory 377 or not in memory specific to the objfile include: 378 379 objfile -> sf 380 381 FIXME: If the objfile is using reusable symbol information (via mmalloc), 382 then we need to take into account the fact that more than one process 383 may be using the symbol information at the same time (when mmalloc is 384 extended to support cooperative locking). When more than one process 385 is using the mapped symbol info, we need to be more careful about when 386 we free objects in the reusable area. */ 387 388 void 389 free_objfile (struct objfile *objfile) 390 { 391 if (objfile->separate_debug_objfile) 392 { 393 free_objfile (objfile->separate_debug_objfile); 394 } 395 396 if (objfile->separate_debug_objfile_backlink) 397 { 398 /* We freed the separate debug file, make sure the base objfile 399 doesn't reference it. */ 400 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL; 401 } 402 403 /* First do any symbol file specific actions required when we are 404 finished with a particular symbol file. Note that if the objfile 405 is using reusable symbol information (via mmalloc) then each of 406 these routines is responsible for doing the correct thing, either 407 freeing things which are valid only during this particular gdb 408 execution, or leaving them to be reused during the next one. */ 409 410 if (objfile->sf != NULL) 411 { 412 (*objfile->sf->sym_finish) (objfile); 413 } 414 415 /* We always close the bfd. */ 416 417 if (objfile->obfd != NULL) 418 { 419 char *name = bfd_get_filename (objfile->obfd); 420 if (!bfd_close (objfile->obfd)) 421 warning ("cannot close \"%s\": %s", 422 name, bfd_errmsg (bfd_get_error ())); 423 xfree (name); 424 } 425 426 /* Remove it from the chain of all objfiles. */ 427 428 unlink_objfile (objfile); 429 430 /* If we are going to free the runtime common objfile, mark it 431 as unallocated. */ 432 433 if (objfile == rt_common_objfile) 434 rt_common_objfile = NULL; 435 436 /* Before the symbol table code was redone to make it easier to 437 selectively load and remove information particular to a specific 438 linkage unit, gdb used to do these things whenever the monolithic 439 symbol table was blown away. How much still needs to be done 440 is unknown, but we play it safe for now and keep each action until 441 it is shown to be no longer needed. */ 442 443 /* I *think* all our callers call clear_symtab_users. If so, no need 444 to call this here. */ 445 clear_pc_function_cache (); 446 447 /* The last thing we do is free the objfile struct itself. */ 448 449 objfile_free_data (objfile); 450 if (objfile->name != NULL) 451 { 452 xfree (objfile->name); 453 } 454 if (objfile->global_psymbols.list) 455 xfree (objfile->global_psymbols.list); 456 if (objfile->static_psymbols.list) 457 xfree (objfile->static_psymbols.list); 458 /* Free the obstacks for non-reusable objfiles */ 459 bcache_xfree (objfile->psymbol_cache); 460 bcache_xfree (objfile->macro_cache); 461 if (objfile->demangled_names_hash) 462 htab_delete (objfile->demangled_names_hash); 463 obstack_free (&objfile->objfile_obstack, 0); 464 xfree (objfile); 465 objfile = NULL; 466 } 467 468 static void 469 do_free_objfile_cleanup (void *obj) 470 { 471 free_objfile (obj); 472 } 473 474 struct cleanup * 475 make_cleanup_free_objfile (struct objfile *obj) 476 { 477 return make_cleanup (do_free_objfile_cleanup, obj); 478 } 479 480 /* Free all the object files at once and clean up their users. */ 481 482 void 483 free_all_objfiles (void) 484 { 485 struct objfile *objfile, *temp; 486 487 ALL_OBJFILES_SAFE (objfile, temp) 488 { 489 free_objfile (objfile); 490 } 491 clear_symtab_users (); 492 } 493 494 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 495 entries in new_offsets. */ 496 void 497 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets) 498 { 499 struct section_offsets *delta = 500 ((struct section_offsets *) 501 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections))); 502 503 { 504 int i; 505 int something_changed = 0; 506 for (i = 0; i < objfile->num_sections; ++i) 507 { 508 delta->offsets[i] = 509 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); 510 if (ANOFFSET (delta, i) != 0) 511 something_changed = 1; 512 } 513 if (!something_changed) 514 return; 515 } 516 517 /* OK, get all the symtabs. */ 518 { 519 struct symtab *s; 520 521 ALL_OBJFILE_SYMTABS (objfile, s) 522 { 523 struct linetable *l; 524 struct blockvector *bv; 525 int i; 526 527 /* First the line table. */ 528 l = LINETABLE (s); 529 if (l) 530 { 531 for (i = 0; i < l->nitems; ++i) 532 l->item[i].pc += ANOFFSET (delta, s->block_line_section); 533 } 534 535 /* Don't relocate a shared blockvector more than once. */ 536 if (!s->primary) 537 continue; 538 539 bv = BLOCKVECTOR (s); 540 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 541 { 542 struct block *b; 543 struct symbol *sym; 544 struct dict_iterator iter; 545 546 b = BLOCKVECTOR_BLOCK (bv, i); 547 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); 548 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); 549 550 ALL_BLOCK_SYMBOLS (b, iter, sym) 551 { 552 fixup_symbol_section (sym, objfile); 553 554 /* The RS6000 code from which this was taken skipped 555 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 556 But I'm leaving out that test, on the theory that 557 they can't possibly pass the tests below. */ 558 if ((SYMBOL_CLASS (sym) == LOC_LABEL 559 || SYMBOL_CLASS (sym) == LOC_STATIC 560 || SYMBOL_CLASS (sym) == LOC_INDIRECT) 561 && SYMBOL_SECTION (sym) >= 0) 562 { 563 SYMBOL_VALUE_ADDRESS (sym) += 564 ANOFFSET (delta, SYMBOL_SECTION (sym)); 565 } 566 #ifdef MIPS_EFI_SYMBOL_NAME 567 /* Relocate Extra Function Info for ecoff. */ 568 569 else if (SYMBOL_CLASS (sym) == LOC_CONST 570 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN 571 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) 572 ecoff_relocate_efi (sym, ANOFFSET (delta, 573 s->block_line_section)); 574 #endif 575 } 576 } 577 } 578 } 579 580 { 581 struct partial_symtab *p; 582 583 ALL_OBJFILE_PSYMTABS (objfile, p) 584 { 585 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 586 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 587 } 588 } 589 590 { 591 struct partial_symbol **psym; 592 593 for (psym = objfile->global_psymbols.list; 594 psym < objfile->global_psymbols.next; 595 psym++) 596 { 597 fixup_psymbol_section (*psym, objfile); 598 if (SYMBOL_SECTION (*psym) >= 0) 599 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, 600 SYMBOL_SECTION (*psym)); 601 } 602 for (psym = objfile->static_psymbols.list; 603 psym < objfile->static_psymbols.next; 604 psym++) 605 { 606 fixup_psymbol_section (*psym, objfile); 607 if (SYMBOL_SECTION (*psym) >= 0) 608 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, 609 SYMBOL_SECTION (*psym)); 610 } 611 } 612 613 { 614 struct minimal_symbol *msym; 615 ALL_OBJFILE_MSYMBOLS (objfile, msym) 616 if (SYMBOL_SECTION (msym) >= 0) 617 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); 618 } 619 /* Relocating different sections by different amounts may cause the symbols 620 to be out of order. */ 621 msymbols_sort (objfile); 622 623 { 624 int i; 625 for (i = 0; i < objfile->num_sections; ++i) 626 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i); 627 } 628 629 if (objfile->ei.entry_point != ~(CORE_ADDR) 0) 630 { 631 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT 632 only as a fallback. */ 633 struct obj_section *s; 634 s = find_pc_section (objfile->ei.entry_point); 635 if (s) 636 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index); 637 else 638 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); 639 } 640 641 { 642 struct obj_section *s; 643 bfd *abfd; 644 645 abfd = objfile->obfd; 646 647 ALL_OBJFILE_OSECTIONS (objfile, s) 648 { 649 int idx = s->the_bfd_section->index; 650 651 s->addr += ANOFFSET (delta, idx); 652 s->endaddr += ANOFFSET (delta, idx); 653 } 654 } 655 656 /* Relocate breakpoints as necessary, after things are relocated. */ 657 breakpoint_re_set (); 658 } 659 660 /* Many places in gdb want to test just to see if we have any partial 661 symbols available. This function returns zero if none are currently 662 available, nonzero otherwise. */ 663 664 int 665 have_partial_symbols (void) 666 { 667 struct objfile *ofp; 668 669 ALL_OBJFILES (ofp) 670 { 671 if (ofp->psymtabs != NULL) 672 { 673 return 1; 674 } 675 } 676 return 0; 677 } 678 679 /* Many places in gdb want to test just to see if we have any full 680 symbols available. This function returns zero if none are currently 681 available, nonzero otherwise. */ 682 683 int 684 have_full_symbols (void) 685 { 686 struct objfile *ofp; 687 688 ALL_OBJFILES (ofp) 689 { 690 if (ofp->symtabs != NULL) 691 { 692 return 1; 693 } 694 } 695 return 0; 696 } 697 698 699 /* This operations deletes all objfile entries that represent solibs that 700 weren't explicitly loaded by the user, via e.g., the add-symbol-file 701 command. 702 */ 703 void 704 objfile_purge_solibs (void) 705 { 706 struct objfile *objf; 707 struct objfile *temp; 708 709 ALL_OBJFILES_SAFE (objf, temp) 710 { 711 /* We assume that the solib package has been purged already, or will 712 be soon. 713 */ 714 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 715 free_objfile (objf); 716 } 717 } 718 719 720 /* Many places in gdb want to test just to see if we have any minimal 721 symbols available. This function returns zero if none are currently 722 available, nonzero otherwise. */ 723 724 int 725 have_minimal_symbols (void) 726 { 727 struct objfile *ofp; 728 729 ALL_OBJFILES (ofp) 730 { 731 if (ofp->minimal_symbol_count > 0) 732 { 733 return 1; 734 } 735 } 736 return 0; 737 } 738 739 /* Returns a section whose range includes PC and SECTION, or NULL if 740 none found. Note the distinction between the return type, struct 741 obj_section (which is defined in gdb), and the input type "struct 742 bfd_section" (which is a bfd-defined data type). The obj_section 743 contains a pointer to the "struct bfd_section". */ 744 745 struct obj_section * 746 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section) 747 { 748 struct obj_section *s; 749 struct objfile *objfile; 750 751 ALL_OBJSECTIONS (objfile, s) 752 if ((section == 0 || section == s->the_bfd_section) && 753 s->addr <= pc && pc < s->endaddr) 754 return (s); 755 756 return (NULL); 757 } 758 759 /* Returns a section whose range includes PC or NULL if none found. 760 Backward compatibility, no section. */ 761 762 struct obj_section * 763 find_pc_section (CORE_ADDR pc) 764 { 765 return find_pc_sect_section (pc, find_pc_mapped_section (pc)); 766 } 767 768 769 /* In SVR4, we recognize a trampoline by it's section name. 770 That is, if the pc is in a section named ".plt" then we are in 771 a trampoline. */ 772 773 int 774 in_plt_section (CORE_ADDR pc, char *name) 775 { 776 struct obj_section *s; 777 int retval = 0; 778 779 s = find_pc_section (pc); 780 781 retval = (s != NULL 782 && s->the_bfd_section->name != NULL 783 && strcmp (s->the_bfd_section->name, ".plt") == 0); 784 return (retval); 785 } 786 787 /* Return nonzero if NAME is in the import list of OBJFILE. Else 788 return zero. */ 789 790 int 791 is_in_import_list (char *name, struct objfile *objfile) 792 { 793 int i; 794 795 if (!objfile || !name || !*name) 796 return 0; 797 798 for (i = 0; i < objfile->import_list_size; i++) 799 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i])) 800 return 1; 801 return 0; 802 } 803 804 805 /* Keep a registry of per-objfile data-pointers required by other GDB 806 modules. */ 807 808 struct objfile_data 809 { 810 unsigned index; 811 }; 812 813 struct objfile_data_registration 814 { 815 struct objfile_data *data; 816 struct objfile_data_registration *next; 817 }; 818 819 struct objfile_data_registry 820 { 821 struct objfile_data_registration *registrations; 822 unsigned num_registrations; 823 }; 824 825 static struct objfile_data_registry objfile_data_registry = { NULL, 0 }; 826 827 const struct objfile_data * 828 register_objfile_data (void) 829 { 830 struct objfile_data_registration **curr; 831 832 /* Append new registration. */ 833 for (curr = &objfile_data_registry.registrations; 834 *curr != NULL; curr = &(*curr)->next); 835 836 *curr = XMALLOC (struct objfile_data_registration); 837 (*curr)->next = NULL; 838 (*curr)->data = XMALLOC (struct objfile_data); 839 (*curr)->data->index = objfile_data_registry.num_registrations++; 840 841 return (*curr)->data; 842 } 843 844 static void 845 objfile_alloc_data (struct objfile *objfile) 846 { 847 gdb_assert (objfile->data == NULL); 848 objfile->num_data = objfile_data_registry.num_registrations; 849 objfile->data = XCALLOC (objfile->num_data, void *); 850 } 851 852 static void 853 objfile_free_data (struct objfile *objfile) 854 { 855 gdb_assert (objfile->data != NULL); 856 xfree (objfile->data); 857 objfile->data = NULL; 858 } 859 860 void 861 clear_objfile_data (struct objfile *objfile) 862 { 863 gdb_assert (objfile->data != NULL); 864 memset (objfile->data, 0, objfile->num_data * sizeof (void *)); 865 } 866 867 void 868 set_objfile_data (struct objfile *objfile, const struct objfile_data *data, 869 void *value) 870 { 871 gdb_assert (data->index < objfile->num_data); 872 objfile->data[data->index] = value; 873 } 874 875 void * 876 objfile_data (struct objfile *objfile, const struct objfile_data *data) 877 { 878 gdb_assert (data->index < objfile->num_data); 879 return objfile->data[data->index]; 880 } 881