1 /* Handle SunOS shared libraries for GDB, the GNU Debugger. 2 3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 4 2000, 2001, 2004 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 25 #include <sys/types.h> 26 #include <signal.h> 27 #include "gdb_string.h" 28 #include <sys/param.h> 29 #include <fcntl.h> 30 31 /* SunOS shared libs need the nlist structure. */ 32 #include <a.out.h> 33 #include <link.h> 34 35 #include "symtab.h" 36 #include "bfd.h" 37 #include "symfile.h" 38 #include "objfiles.h" 39 #include "gdbcore.h" 40 #include "inferior.h" 41 #include "solist.h" 42 #include "bcache.h" 43 #include "regcache.h" 44 45 /* The shared library implementation found on BSD a.out systems is 46 very similar to the SunOS implementation. However, the data 47 structures defined in <link.h> are named very differently. Make up 48 for those differences here. */ 49 50 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS 51 52 /* FIXME: Temporary until the equivalent defines have been removed 53 from all nm-*bsd*.h files. */ 54 #ifndef link_dynamic 55 56 /* Map `struct link_map' and its members. */ 57 #define link_map so_map 58 #define lm_addr som_addr 59 #define lm_name som_path 60 #define lm_next som_next 61 62 /* Map `struct link_dynamic_2' and its members. */ 63 #define link_dynamic_2 section_dispatch_table 64 #define ld_loaded sdt_loaded 65 66 /* Map `struct rtc_symb' and its members. */ 67 #define rtc_symb rt_symbol 68 #define rtc_sp rt_sp 69 #define rtc_next rt_next 70 71 /* Map `struct ld_debug' and its members. */ 72 #define ld_debug so_debug 73 #define ldd_in_debugger dd_in_debugger 74 #define ldd_bp_addr dd_bpt_addr 75 #define ldd_bp_inst dd_bpt_shadow 76 #define ldd_cp dd_cc 77 78 /* Map `struct link_dynamic' and its members. */ 79 #define link_dynamic _dynamic 80 #define ld_version d_version 81 #define ldd d_debug 82 #define ld_un d_un 83 #define ld_2 d_sdt 84 85 #endif 86 87 #endif 88 89 /* Link map info to include in an allocated so_list entry */ 90 91 struct lm_info 92 { 93 /* Pointer to copy of link map from inferior. The type is char * 94 rather than void *, so that we may use byte offsets to find the 95 various fields without the need for a cast. */ 96 char *lm; 97 }; 98 99 100 /* Symbols which are used to locate the base of the link map structures. */ 101 102 static char *debug_base_symbols[] = 103 { 104 "_DYNAMIC", 105 "_DYNAMIC__MGC", 106 NULL 107 }; 108 109 static char *main_name_list[] = 110 { 111 "main_$main", 112 NULL 113 }; 114 115 /* Macro to extract an address from a solib structure. When GDB is 116 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is 117 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We 118 have to extract only the significant bits of addresses to get the 119 right address when accessing the core file BFD. 120 121 Assume that the address is unsigned. */ 122 123 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \ 124 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER)) 125 126 /* local data declarations */ 127 128 static struct link_dynamic dynamic_copy; 129 static struct link_dynamic_2 ld_2_copy; 130 static struct ld_debug debug_copy; 131 static CORE_ADDR debug_addr; 132 static CORE_ADDR flag_addr; 133 134 #ifndef offsetof 135 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) 136 #endif 137 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER)) 138 139 /* link map access functions */ 140 141 static CORE_ADDR 142 LM_ADDR (struct so_list *so) 143 { 144 int lm_addr_offset = offsetof (struct link_map, lm_addr); 145 int lm_addr_size = fieldsize (struct link_map, lm_addr); 146 147 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset, 148 lm_addr_size); 149 } 150 151 static CORE_ADDR 152 LM_NEXT (struct so_list *so) 153 { 154 int lm_next_offset = offsetof (struct link_map, lm_next); 155 int lm_next_size = fieldsize (struct link_map, lm_next); 156 157 /* Assume that the address is unsigned. */ 158 return extract_unsigned_integer (so->lm_info->lm + lm_next_offset, 159 lm_next_size); 160 } 161 162 static CORE_ADDR 163 LM_NAME (struct so_list *so) 164 { 165 int lm_name_offset = offsetof (struct link_map, lm_name); 166 int lm_name_size = fieldsize (struct link_map, lm_name); 167 168 /* Assume that the address is unsigned. */ 169 return extract_unsigned_integer (so->lm_info->lm + lm_name_offset, 170 lm_name_size); 171 } 172 173 static CORE_ADDR debug_base; /* Base of dynamic linker structures */ 174 175 /* Local function prototypes */ 176 177 static int match_main (char *); 178 179 /* Allocate the runtime common object file. */ 180 181 static void 182 allocate_rt_common_objfile (void) 183 { 184 struct objfile *objfile; 185 struct objfile *last_one; 186 187 objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); 188 memset (objfile, 0, sizeof (struct objfile)); 189 objfile->md = NULL; 190 objfile->psymbol_cache = bcache_xmalloc (); 191 objfile->macro_cache = bcache_xmalloc (); 192 obstack_init (&objfile->objfile_obstack); 193 objfile->name = xstrdup ("rt_common"); 194 195 /* Add this file onto the tail of the linked list of other such files. */ 196 197 objfile->next = NULL; 198 if (object_files == NULL) 199 object_files = objfile; 200 else 201 { 202 for (last_one = object_files; 203 last_one->next; 204 last_one = last_one->next); 205 last_one->next = objfile; 206 } 207 208 rt_common_objfile = objfile; 209 } 210 211 /* Read all dynamically loaded common symbol definitions from the inferior 212 and put them into the minimal symbol table for the runtime common 213 objfile. */ 214 215 static void 216 solib_add_common_symbols (CORE_ADDR rtc_symp) 217 { 218 struct rtc_symb inferior_rtc_symb; 219 struct nlist inferior_rtc_nlist; 220 int len; 221 char *name; 222 223 /* Remove any runtime common symbols from previous runs. */ 224 225 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count) 226 { 227 obstack_free (&rt_common_objfile->objfile_obstack, 0); 228 obstack_init (&rt_common_objfile->objfile_obstack); 229 rt_common_objfile->minimal_symbol_count = 0; 230 rt_common_objfile->msymbols = NULL; 231 terminate_minimal_symbol_table (rt_common_objfile); 232 } 233 234 init_minimal_symbol_collection (); 235 make_cleanup_discard_minimal_symbols (); 236 237 while (rtc_symp) 238 { 239 read_memory (rtc_symp, 240 (char *) &inferior_rtc_symb, 241 sizeof (inferior_rtc_symb)); 242 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp), 243 (char *) &inferior_rtc_nlist, 244 sizeof (inferior_rtc_nlist)); 245 if (inferior_rtc_nlist.n_type == N_COMM) 246 { 247 /* FIXME: The length of the symbol name is not available, but in the 248 current implementation the common symbol is allocated immediately 249 behind the name of the symbol. */ 250 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx; 251 252 name = xmalloc (len); 253 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name), 254 name, len); 255 256 /* Allocate the runtime common objfile if necessary. */ 257 if (rt_common_objfile == NULL) 258 allocate_rt_common_objfile (); 259 260 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value, 261 mst_bss, rt_common_objfile); 262 xfree (name); 263 } 264 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next); 265 } 266 267 /* Install any minimal symbols that have been collected as the current 268 minimal symbols for the runtime common objfile. */ 269 270 install_minimal_symbols (rt_common_objfile); 271 } 272 273 274 /* 275 276 LOCAL FUNCTION 277 278 locate_base -- locate the base address of dynamic linker structs 279 280 SYNOPSIS 281 282 CORE_ADDR locate_base (void) 283 284 DESCRIPTION 285 286 For both the SunOS and SVR4 shared library implementations, if the 287 inferior executable has been linked dynamically, there is a single 288 address somewhere in the inferior's data space which is the key to 289 locating all of the dynamic linker's runtime structures. This 290 address is the value of the debug base symbol. The job of this 291 function is to find and return that address, or to return 0 if there 292 is no such address (the executable is statically linked for example). 293 294 For SunOS, the job is almost trivial, since the dynamic linker and 295 all of it's structures are statically linked to the executable at 296 link time. Thus the symbol for the address we are looking for has 297 already been added to the minimal symbol table for the executable's 298 objfile at the time the symbol file's symbols were read, and all we 299 have to do is look it up there. Note that we explicitly do NOT want 300 to find the copies in the shared library. 301 302 The SVR4 version is a bit more complicated because the address 303 is contained somewhere in the dynamic info section. We have to go 304 to a lot more work to discover the address of the debug base symbol. 305 Because of this complexity, we cache the value we find and return that 306 value on subsequent invocations. Note there is no copy in the 307 executable symbol tables. 308 309 */ 310 311 static CORE_ADDR 312 locate_base (void) 313 { 314 struct minimal_symbol *msymbol; 315 CORE_ADDR address = 0; 316 char **symbolp; 317 318 /* For SunOS, we want to limit the search for the debug base symbol to the 319 executable being debugged, since there is a duplicate named symbol in the 320 shared library. We don't want the shared library versions. */ 321 322 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++) 323 { 324 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile); 325 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) 326 { 327 address = SYMBOL_VALUE_ADDRESS (msymbol); 328 return (address); 329 } 330 } 331 return (0); 332 } 333 334 /* 335 336 LOCAL FUNCTION 337 338 first_link_map_member -- locate first member in dynamic linker's map 339 340 SYNOPSIS 341 342 static CORE_ADDR first_link_map_member (void) 343 344 DESCRIPTION 345 346 Find the first element in the inferior's dynamic link map, and 347 return its address in the inferior. This function doesn't copy the 348 link map entry itself into our address space; current_sos actually 349 does the reading. */ 350 351 static CORE_ADDR 352 first_link_map_member (void) 353 { 354 CORE_ADDR lm = 0; 355 356 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy)); 357 if (dynamic_copy.ld_version >= 2) 358 { 359 /* It is a version that we can deal with, so read in the secondary 360 structure and find the address of the link map list from it. */ 361 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2), 362 (char *) &ld_2_copy, sizeof (struct link_dynamic_2)); 363 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded); 364 } 365 return (lm); 366 } 367 368 static int 369 open_symbol_file_object (void *from_ttyp) 370 { 371 return 1; 372 } 373 374 375 /* LOCAL FUNCTION 376 377 current_sos -- build a list of currently loaded shared objects 378 379 SYNOPSIS 380 381 struct so_list *current_sos () 382 383 DESCRIPTION 384 385 Build a list of `struct so_list' objects describing the shared 386 objects currently loaded in the inferior. This list does not 387 include an entry for the main executable file. 388 389 Note that we only gather information directly available from the 390 inferior --- we don't examine any of the shared library files 391 themselves. The declaration of `struct so_list' says which fields 392 we provide values for. */ 393 394 static struct so_list * 395 sunos_current_sos (void) 396 { 397 CORE_ADDR lm; 398 struct so_list *head = 0; 399 struct so_list **link_ptr = &head; 400 int errcode; 401 char *buffer; 402 403 /* Make sure we've looked up the inferior's dynamic linker's base 404 structure. */ 405 if (! debug_base) 406 { 407 debug_base = locate_base (); 408 409 /* If we can't find the dynamic linker's base structure, this 410 must not be a dynamically linked executable. Hmm. */ 411 if (! debug_base) 412 return 0; 413 } 414 415 /* Walk the inferior's link map list, and build our list of 416 `struct so_list' nodes. */ 417 lm = first_link_map_member (); 418 while (lm) 419 { 420 struct so_list *new 421 = (struct so_list *) xmalloc (sizeof (struct so_list)); 422 struct cleanup *old_chain = make_cleanup (xfree, new); 423 424 memset (new, 0, sizeof (*new)); 425 426 new->lm_info = xmalloc (sizeof (struct lm_info)); 427 make_cleanup (xfree, new->lm_info); 428 429 new->lm_info->lm = xmalloc (sizeof (struct link_map)); 430 make_cleanup (xfree, new->lm_info->lm); 431 memset (new->lm_info->lm, 0, sizeof (struct link_map)); 432 433 read_memory (lm, new->lm_info->lm, sizeof (struct link_map)); 434 435 lm = LM_NEXT (new); 436 437 /* Extract this shared object's name. */ 438 target_read_string (LM_NAME (new), &buffer, 439 SO_NAME_MAX_PATH_SIZE - 1, &errcode); 440 if (errcode != 0) 441 { 442 warning ("current_sos: Can't read pathname for load map: %s\n", 443 safe_strerror (errcode)); 444 } 445 else 446 { 447 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); 448 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 449 xfree (buffer); 450 strcpy (new->so_original_name, new->so_name); 451 } 452 453 /* If this entry has no name, or its name matches the name 454 for the main executable, don't include it in the list. */ 455 if (! new->so_name[0] 456 || match_main (new->so_name)) 457 free_so (new); 458 else 459 { 460 new->next = 0; 461 *link_ptr = new; 462 link_ptr = &new->next; 463 } 464 465 discard_cleanups (old_chain); 466 } 467 468 return head; 469 } 470 471 472 /* On some systems, the only way to recognize the link map entry for 473 the main executable file is by looking at its name. Return 474 non-zero iff SONAME matches one of the known main executable names. */ 475 476 static int 477 match_main (char *soname) 478 { 479 char **mainp; 480 481 for (mainp = main_name_list; *mainp != NULL; mainp++) 482 { 483 if (strcmp (soname, *mainp) == 0) 484 return (1); 485 } 486 487 return (0); 488 } 489 490 491 static int 492 sunos_in_dynsym_resolve_code (CORE_ADDR pc) 493 { 494 return 0; 495 } 496 497 /* 498 499 LOCAL FUNCTION 500 501 disable_break -- remove the "mapping changed" breakpoint 502 503 SYNOPSIS 504 505 static int disable_break () 506 507 DESCRIPTION 508 509 Removes the breakpoint that gets hit when the dynamic linker 510 completes a mapping change. 511 512 */ 513 514 static int 515 disable_break (void) 516 { 517 CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ 518 519 int in_debugger = 0; 520 521 /* Read the debugger structure from the inferior to retrieve the 522 address of the breakpoint and the original contents of the 523 breakpoint address. Remove the breakpoint by writing the original 524 contents back. */ 525 526 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy)); 527 528 /* Set `in_debugger' to zero now. */ 529 530 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger)); 531 532 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr); 533 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst, 534 sizeof (debug_copy.ldd_bp_inst)); 535 536 /* For the SVR4 version, we always know the breakpoint address. For the 537 SunOS version we don't know it until the above code is executed. 538 Grumble if we are stopped anywhere besides the breakpoint address. */ 539 540 if (stop_pc != breakpoint_addr) 541 { 542 warning ("stopped at unknown breakpoint while handling shared libraries"); 543 } 544 545 return 1; 546 } 547 548 549 /* 550 551 LOCAL FUNCTION 552 553 enable_break -- arrange for dynamic linker to hit breakpoint 554 555 SYNOPSIS 556 557 int enable_break (void) 558 559 DESCRIPTION 560 561 Both the SunOS and the SVR4 dynamic linkers have, as part of their 562 debugger interface, support for arranging for the inferior to hit 563 a breakpoint after mapping in the shared libraries. This function 564 enables that breakpoint. 565 566 For SunOS, there is a special flag location (in_debugger) which we 567 set to 1. When the dynamic linker sees this flag set, it will set 568 a breakpoint at a location known only to itself, after saving the 569 original contents of that place and the breakpoint address itself, 570 in it's own internal structures. When we resume the inferior, it 571 will eventually take a SIGTRAP when it runs into the breakpoint. 572 We handle this (in a different place) by restoring the contents of 573 the breakpointed location (which is only known after it stops), 574 chasing around to locate the shared libraries that have been 575 loaded, then resuming. 576 577 For SVR4, the debugger interface structure contains a member (r_brk) 578 which is statically initialized at the time the shared library is 579 built, to the offset of a function (_r_debug_state) which is guaran- 580 teed to be called once before mapping in a library, and again when 581 the mapping is complete. At the time we are examining this member, 582 it contains only the unrelocated offset of the function, so we have 583 to do our own relocation. Later, when the dynamic linker actually 584 runs, it relocates r_brk to be the actual address of _r_debug_state(). 585 586 The debugger interface structure also contains an enumeration which 587 is set to either RT_ADD or RT_DELETE prior to changing the mapping, 588 depending upon whether or not the library is being mapped or unmapped, 589 and then set to RT_CONSISTENT after the library is mapped/unmapped. 590 */ 591 592 static int 593 enable_break (void) 594 { 595 int success = 0; 596 int j; 597 int in_debugger; 598 599 /* Get link_dynamic structure */ 600 601 j = target_read_memory (debug_base, (char *) &dynamic_copy, 602 sizeof (dynamic_copy)); 603 if (j) 604 { 605 /* unreadable */ 606 return (0); 607 } 608 609 /* Calc address of debugger interface structure */ 610 611 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd); 612 613 /* Calc address of `in_debugger' member of debugger interface structure */ 614 615 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger - 616 (char *) &debug_copy); 617 618 /* Write a value of 1 to this member. */ 619 620 in_debugger = 1; 621 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger)); 622 success = 1; 623 624 return (success); 625 } 626 627 /* 628 629 LOCAL FUNCTION 630 631 special_symbol_handling -- additional shared library symbol handling 632 633 SYNOPSIS 634 635 void special_symbol_handling () 636 637 DESCRIPTION 638 639 Once the symbols from a shared object have been loaded in the usual 640 way, we are called to do any system specific symbol handling that 641 is needed. 642 643 For SunOS4, this consists of grunging around in the dynamic 644 linkers structures to find symbol definitions for "common" symbols 645 and adding them to the minimal symbol table for the runtime common 646 objfile. 647 648 */ 649 650 static void 651 sunos_special_symbol_handling (void) 652 { 653 int j; 654 655 if (debug_addr == 0) 656 { 657 /* Get link_dynamic structure */ 658 659 j = target_read_memory (debug_base, (char *) &dynamic_copy, 660 sizeof (dynamic_copy)); 661 if (j) 662 { 663 /* unreadable */ 664 return; 665 } 666 667 /* Calc address of debugger interface structure */ 668 /* FIXME, this needs work for cross-debugging of core files 669 (byteorder, size, alignment, etc). */ 670 671 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd); 672 } 673 674 /* Read the debugger structure from the inferior, just to make sure 675 we have a current copy. */ 676 677 j = target_read_memory (debug_addr, (char *) &debug_copy, 678 sizeof (debug_copy)); 679 if (j) 680 return; /* unreadable */ 681 682 /* Get common symbol definitions for the loaded object. */ 683 684 if (debug_copy.ldd_cp) 685 { 686 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp)); 687 } 688 } 689 690 /* 691 692 GLOBAL FUNCTION 693 694 sunos_solib_create_inferior_hook -- shared library startup support 695 696 SYNOPSIS 697 698 void sunos_solib_create_inferior_hook() 699 700 DESCRIPTION 701 702 When gdb starts up the inferior, it nurses it along (through the 703 shell) until it is ready to execute it's first instruction. At this 704 point, this function gets called via expansion of the macro 705 SOLIB_CREATE_INFERIOR_HOOK. 706 707 For SunOS executables, this first instruction is typically the 708 one at "_start", or a similar text label, regardless of whether 709 the executable is statically or dynamically linked. The runtime 710 startup code takes care of dynamically linking in any shared 711 libraries, once gdb allows the inferior to continue. 712 713 For SVR4 executables, this first instruction is either the first 714 instruction in the dynamic linker (for dynamically linked 715 executables) or the instruction at "start" for statically linked 716 executables. For dynamically linked executables, the system 717 first exec's /lib/libc.so.N, which contains the dynamic linker, 718 and starts it running. The dynamic linker maps in any needed 719 shared libraries, maps in the actual user executable, and then 720 jumps to "start" in the user executable. 721 722 For both SunOS shared libraries, and SVR4 shared libraries, we 723 can arrange to cooperate with the dynamic linker to discover the 724 names of shared libraries that are dynamically linked, and the 725 base addresses to which they are linked. 726 727 This function is responsible for discovering those names and 728 addresses, and saving sufficient information about them to allow 729 their symbols to be read at a later time. 730 731 FIXME 732 733 Between enable_break() and disable_break(), this code does not 734 properly handle hitting breakpoints which the user might have 735 set in the startup code or in the dynamic linker itself. Proper 736 handling will probably have to wait until the implementation is 737 changed to use the "breakpoint handler function" method. 738 739 Also, what if child has exit()ed? Must exit loop somehow. 740 */ 741 742 static void 743 sunos_solib_create_inferior_hook (void) 744 { 745 if ((debug_base = locate_base ()) == 0) 746 { 747 /* Can't find the symbol or the executable is statically linked. */ 748 return; 749 } 750 751 if (!enable_break ()) 752 { 753 warning ("shared library handler failed to enable breakpoint"); 754 return; 755 } 756 757 /* SCO and SunOS need the loop below, other systems should be using the 758 special shared library breakpoints and the shared library breakpoint 759 service routine. 760 761 Now run the target. It will eventually hit the breakpoint, at 762 which point all of the libraries will have been mapped in and we 763 can go groveling around in the dynamic linker structures to find 764 out what we need to know about them. */ 765 766 clear_proceed_status (); 767 stop_soon = STOP_QUIETLY; 768 stop_signal = TARGET_SIGNAL_0; 769 do 770 { 771 target_resume (pid_to_ptid (-1), 0, stop_signal); 772 wait_for_inferior (); 773 } 774 while (stop_signal != TARGET_SIGNAL_TRAP); 775 stop_soon = NO_STOP_QUIETLY; 776 777 /* We are now either at the "mapping complete" breakpoint (or somewhere 778 else, a condition we aren't prepared to deal with anyway), so adjust 779 the PC as necessary after a breakpoint, disable the breakpoint, and 780 add any shared libraries that were mapped in. */ 781 782 if (DECR_PC_AFTER_BREAK) 783 { 784 stop_pc -= DECR_PC_AFTER_BREAK; 785 write_register (PC_REGNUM, stop_pc); 786 } 787 788 if (!disable_break ()) 789 { 790 warning ("shared library handler failed to disable breakpoint"); 791 } 792 793 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add); 794 } 795 796 static void 797 sunos_clear_solib (void) 798 { 799 debug_base = 0; 800 } 801 802 static void 803 sunos_free_so (struct so_list *so) 804 { 805 xfree (so->lm_info->lm); 806 xfree (so->lm_info); 807 } 808 809 static void 810 sunos_relocate_section_addresses (struct so_list *so, 811 struct section_table *sec) 812 { 813 sec->addr += LM_ADDR (so); 814 sec->endaddr += LM_ADDR (so); 815 } 816 817 static struct target_so_ops sunos_so_ops; 818 819 void 820 _initialize_sunos_solib (void) 821 { 822 sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses; 823 sunos_so_ops.free_so = sunos_free_so; 824 sunos_so_ops.clear_solib = sunos_clear_solib; 825 sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook; 826 sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling; 827 sunos_so_ops.current_sos = sunos_current_sos; 828 sunos_so_ops.open_symbol_file_object = open_symbol_file_object; 829 sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code; 830 831 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ 832 current_target_so_ops = &sunos_so_ops; 833 } 834