1 /* Generic symbol file reading for the GNU debugger, GDB. 2 3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 5 6 Contributed by Cygnus Support, using pieces from other GDB modules. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place - Suite 330, 23 Boston, MA 02111-1307, USA. */ 24 25 #include "defs.h" 26 #include "bfdlink.h" 27 #include "symtab.h" 28 #include "gdbtypes.h" 29 #include "gdbcore.h" 30 #include "frame.h" 31 #include "target.h" 32 #include "value.h" 33 #include "symfile.h" 34 #include "objfiles.h" 35 #include "source.h" 36 #include "gdbcmd.h" 37 #include "breakpoint.h" 38 #include "language.h" 39 #include "complaints.h" 40 #include "demangle.h" 41 #include "inferior.h" /* for write_pc */ 42 #include "filenames.h" /* for DOSish file names */ 43 #include "gdb-stabs.h" 44 #include "gdb_obstack.h" 45 #include "completer.h" 46 #include "bcache.h" 47 #include "hashtab.h" 48 #include "readline/readline.h" 49 #include "gdb_assert.h" 50 #include "block.h" 51 #include "varobj.h" 52 53 #include <sys/types.h> 54 #include <fcntl.h> 55 #include "gdb_string.h" 56 #include "gdb_stat.h" 57 #include <ctype.h> 58 #include <time.h> 59 60 #ifndef O_BINARY 61 #define O_BINARY 0 62 #endif 63 64 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num); 65 void (*deprecated_show_load_progress) (const char *section, 66 unsigned long section_sent, 67 unsigned long section_size, 68 unsigned long total_sent, 69 unsigned long total_size); 70 void (*deprecated_pre_add_symbol_hook) (const char *); 71 void (*deprecated_post_add_symbol_hook) (void); 72 void (*deprecated_target_new_objfile_hook) (struct objfile *); 73 74 static void clear_symtab_users_cleanup (void *ignore); 75 76 /* Global variables owned by this file */ 77 int readnow_symbol_files; /* Read full symbols immediately */ 78 79 /* External variables and functions referenced. */ 80 81 extern void report_transfer_performance (unsigned long, time_t, time_t); 82 83 /* Functions this file defines */ 84 85 #if 0 86 static int simple_read_overlay_region_table (void); 87 static void simple_free_overlay_region_table (void); 88 #endif 89 90 static void set_initial_language (void); 91 92 static void load_command (char *, int); 93 94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags); 95 96 static void add_symbol_file_command (char *, int); 97 98 static void add_shared_symbol_files_command (char *, int); 99 100 static void reread_separate_symbols (struct objfile *objfile); 101 102 static void cashier_psymtab (struct partial_symtab *); 103 104 bfd *symfile_bfd_open (char *); 105 106 int get_section_index (struct objfile *, char *); 107 108 static void find_sym_fns (struct objfile *); 109 110 static void decrement_reading_symtab (void *); 111 112 static void overlay_invalidate_all (void); 113 114 static int overlay_is_mapped (struct obj_section *); 115 116 void list_overlays_command (char *, int); 117 118 void map_overlay_command (char *, int); 119 120 void unmap_overlay_command (char *, int); 121 122 static void overlay_auto_command (char *, int); 123 124 static void overlay_manual_command (char *, int); 125 126 static void overlay_off_command (char *, int); 127 128 static void overlay_load_command (char *, int); 129 130 static void overlay_command (char *, int); 131 132 static void simple_free_overlay_table (void); 133 134 static void read_target_long_array (CORE_ADDR, unsigned int *, int); 135 136 static int simple_read_overlay_table (void); 137 138 static int simple_overlay_update_1 (struct obj_section *); 139 140 static void add_filename_language (char *ext, enum language lang); 141 142 static void set_ext_lang_command (char *args, int from_tty); 143 144 static void info_ext_lang_command (char *args, int from_tty); 145 146 static char *find_separate_debug_file (struct objfile *objfile); 147 148 static void init_filename_language_table (void); 149 150 void _initialize_symfile (void); 151 152 /* List of all available sym_fns. On gdb startup, each object file reader 153 calls add_symtab_fns() to register information on each format it is 154 prepared to read. */ 155 156 static struct sym_fns *symtab_fns = NULL; 157 158 /* Flag for whether user will be reloading symbols multiple times. 159 Defaults to ON for VxWorks, otherwise OFF. */ 160 161 #ifdef SYMBOL_RELOADING_DEFAULT 162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT; 163 #else 164 int symbol_reloading = 0; 165 #endif 166 167 /* If non-zero, shared library symbols will be added automatically 168 when the inferior is created, new libraries are loaded, or when 169 attaching to the inferior. This is almost always what users will 170 want to have happen; but for very large programs, the startup time 171 will be excessive, and so if this is a problem, the user can clear 172 this flag and then add the shared library symbols as needed. Note 173 that there is a potential for confusion, since if the shared 174 library symbols are not loaded, commands like "info fun" will *not* 175 report all the functions that are actually present. */ 176 177 int auto_solib_add = 1; 178 179 /* For systems that support it, a threshold size in megabytes. If 180 automatically adding a new library's symbol table to those already 181 known to the debugger would cause the total shared library symbol 182 size to exceed this threshhold, then the shlib's symbols are not 183 added. The threshold is ignored if the user explicitly asks for a 184 shlib to be added, such as when using the "sharedlibrary" 185 command. */ 186 187 int auto_solib_limit; 188 189 190 /* This compares two partial symbols by names, using strcmp_iw_ordered 191 for the comparison. */ 192 193 static int 194 compare_psymbols (const void *s1p, const void *s2p) 195 { 196 struct partial_symbol *const *s1 = s1p; 197 struct partial_symbol *const *s2 = s2p; 198 199 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1), 200 SYMBOL_SEARCH_NAME (*s2)); 201 } 202 203 void 204 sort_pst_symbols (struct partial_symtab *pst) 205 { 206 /* Sort the global list; don't sort the static list */ 207 208 qsort (pst->objfile->global_psymbols.list + pst->globals_offset, 209 pst->n_global_syms, sizeof (struct partial_symbol *), 210 compare_psymbols); 211 } 212 213 /* Make a null terminated copy of the string at PTR with SIZE characters in 214 the obstack pointed to by OBSTACKP . Returns the address of the copy. 215 Note that the string at PTR does not have to be null terminated, I.E. it 216 may be part of a larger string and we are only saving a substring. */ 217 218 char * 219 obsavestring (const char *ptr, int size, struct obstack *obstackp) 220 { 221 char *p = (char *) obstack_alloc (obstackp, size + 1); 222 /* Open-coded memcpy--saves function call time. These strings are usually 223 short. FIXME: Is this really still true with a compiler that can 224 inline memcpy? */ 225 { 226 const char *p1 = ptr; 227 char *p2 = p; 228 const char *end = ptr + size; 229 while (p1 != end) 230 *p2++ = *p1++; 231 } 232 p[size] = 0; 233 return p; 234 } 235 236 /* Concatenate strings S1, S2 and S3; return the new string. Space is found 237 in the obstack pointed to by OBSTACKP. */ 238 239 char * 240 obconcat (struct obstack *obstackp, const char *s1, const char *s2, 241 const char *s3) 242 { 243 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1; 244 char *val = (char *) obstack_alloc (obstackp, len); 245 strcpy (val, s1); 246 strcat (val, s2); 247 strcat (val, s3); 248 return val; 249 } 250 251 /* True if we are nested inside psymtab_to_symtab. */ 252 253 int currently_reading_symtab = 0; 254 255 static void 256 decrement_reading_symtab (void *dummy) 257 { 258 currently_reading_symtab--; 259 } 260 261 /* Get the symbol table that corresponds to a partial_symtab. 262 This is fast after the first time you do it. In fact, there 263 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast 264 case inline. */ 265 266 struct symtab * 267 psymtab_to_symtab (struct partial_symtab *pst) 268 { 269 /* If it's been looked up before, return it. */ 270 if (pst->symtab) 271 return pst->symtab; 272 273 /* If it has not yet been read in, read it. */ 274 if (!pst->readin) 275 { 276 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL); 277 currently_reading_symtab++; 278 (*pst->read_symtab) (pst); 279 do_cleanups (back_to); 280 } 281 282 return pst->symtab; 283 } 284 285 /* Remember the lowest-addressed loadable section we've seen. 286 This function is called via bfd_map_over_sections. 287 288 In case of equal vmas, the section with the largest size becomes the 289 lowest-addressed loadable section. 290 291 If the vmas and sizes are equal, the last section is considered the 292 lowest-addressed loadable section. */ 293 294 void 295 find_lowest_section (bfd *abfd, asection *sect, void *obj) 296 { 297 asection **lowest = (asection **) obj; 298 299 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD)) 300 return; 301 if (!*lowest) 302 *lowest = sect; /* First loadable section */ 303 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect)) 304 *lowest = sect; /* A lower loadable section */ 305 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect) 306 && (bfd_section_size (abfd, (*lowest)) 307 <= bfd_section_size (abfd, sect))) 308 *lowest = sect; 309 } 310 311 /* Create a new section_addr_info, with room for NUM_SECTIONS. */ 312 313 struct section_addr_info * 314 alloc_section_addr_info (size_t num_sections) 315 { 316 struct section_addr_info *sap; 317 size_t size; 318 319 size = (sizeof (struct section_addr_info) 320 + sizeof (struct other_sections) * (num_sections - 1)); 321 sap = (struct section_addr_info *) xmalloc (size); 322 memset (sap, 0, size); 323 sap->num_sections = num_sections; 324 325 return sap; 326 } 327 328 329 /* Return a freshly allocated copy of ADDRS. The section names, if 330 any, are also freshly allocated copies of those in ADDRS. */ 331 struct section_addr_info * 332 copy_section_addr_info (struct section_addr_info *addrs) 333 { 334 struct section_addr_info *copy 335 = alloc_section_addr_info (addrs->num_sections); 336 int i; 337 338 copy->num_sections = addrs->num_sections; 339 for (i = 0; i < addrs->num_sections; i++) 340 { 341 copy->other[i].addr = addrs->other[i].addr; 342 if (addrs->other[i].name) 343 copy->other[i].name = xstrdup (addrs->other[i].name); 344 else 345 copy->other[i].name = NULL; 346 copy->other[i].sectindex = addrs->other[i].sectindex; 347 } 348 349 return copy; 350 } 351 352 353 354 /* Build (allocate and populate) a section_addr_info struct from 355 an existing section table. */ 356 357 extern struct section_addr_info * 358 build_section_addr_info_from_section_table (const struct section_table *start, 359 const struct section_table *end) 360 { 361 struct section_addr_info *sap; 362 const struct section_table *stp; 363 int oidx; 364 365 sap = alloc_section_addr_info (end - start); 366 367 for (stp = start, oidx = 0; stp != end; stp++) 368 { 369 if (bfd_get_section_flags (stp->bfd, 370 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD) 371 && oidx < end - start) 372 { 373 sap->other[oidx].addr = stp->addr; 374 sap->other[oidx].name 375 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section)); 376 sap->other[oidx].sectindex = stp->the_bfd_section->index; 377 oidx++; 378 } 379 } 380 381 return sap; 382 } 383 384 385 /* Free all memory allocated by build_section_addr_info_from_section_table. */ 386 387 extern void 388 free_section_addr_info (struct section_addr_info *sap) 389 { 390 int idx; 391 392 for (idx = 0; idx < sap->num_sections; idx++) 393 if (sap->other[idx].name) 394 xfree (sap->other[idx].name); 395 xfree (sap); 396 } 397 398 399 /* Initialize OBJFILE's sect_index_* members. */ 400 static void 401 init_objfile_sect_indices (struct objfile *objfile) 402 { 403 asection *sect; 404 int i; 405 406 sect = bfd_get_section_by_name (objfile->obfd, ".text"); 407 if (sect) 408 objfile->sect_index_text = sect->index; 409 410 sect = bfd_get_section_by_name (objfile->obfd, ".data"); 411 if (sect) 412 objfile->sect_index_data = sect->index; 413 414 sect = bfd_get_section_by_name (objfile->obfd, ".bss"); 415 if (sect) 416 objfile->sect_index_bss = sect->index; 417 418 sect = bfd_get_section_by_name (objfile->obfd, ".rodata"); 419 if (sect) 420 objfile->sect_index_rodata = sect->index; 421 422 /* This is where things get really weird... We MUST have valid 423 indices for the various sect_index_* members or gdb will abort. 424 So if for example, there is no ".text" section, we have to 425 accomodate that. Except when explicitly adding symbol files at 426 some address, section_offsets contains nothing but zeros, so it 427 doesn't matter which slot in section_offsets the individual 428 sect_index_* members index into. So if they are all zero, it is 429 safe to just point all the currently uninitialized indices to the 430 first slot. */ 431 432 for (i = 0; i < objfile->num_sections; i++) 433 { 434 if (ANOFFSET (objfile->section_offsets, i) != 0) 435 { 436 break; 437 } 438 } 439 if (i == objfile->num_sections) 440 { 441 if (objfile->sect_index_text == -1) 442 objfile->sect_index_text = 0; 443 if (objfile->sect_index_data == -1) 444 objfile->sect_index_data = 0; 445 if (objfile->sect_index_bss == -1) 446 objfile->sect_index_bss = 0; 447 if (objfile->sect_index_rodata == -1) 448 objfile->sect_index_rodata = 0; 449 } 450 } 451 452 453 /* Parse the user's idea of an offset for dynamic linking, into our idea 454 of how to represent it for fast symbol reading. This is the default 455 version of the sym_fns.sym_offsets function for symbol readers that 456 don't need to do anything special. It allocates a section_offsets table 457 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ 458 459 void 460 default_symfile_offsets (struct objfile *objfile, 461 struct section_addr_info *addrs) 462 { 463 int i; 464 465 objfile->num_sections = bfd_count_sections (objfile->obfd); 466 objfile->section_offsets = (struct section_offsets *) 467 obstack_alloc (&objfile->objfile_obstack, 468 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); 469 memset (objfile->section_offsets, 0, 470 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); 471 472 /* Now calculate offsets for section that were specified by the 473 caller. */ 474 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++) 475 { 476 struct other_sections *osp ; 477 478 osp = &addrs->other[i] ; 479 if (osp->addr == 0) 480 continue; 481 482 /* Record all sections in offsets */ 483 /* The section_offsets in the objfile are here filled in using 484 the BFD index. */ 485 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr; 486 } 487 488 /* Remember the bfd indexes for the .text, .data, .bss and 489 .rodata sections. */ 490 init_objfile_sect_indices (objfile); 491 } 492 493 494 /* Process a symbol file, as either the main file or as a dynamically 495 loaded file. 496 497 OBJFILE is where the symbols are to be read from. 498 499 ADDRS is the list of section load addresses. If the user has given 500 an 'add-symbol-file' command, then this is the list of offsets and 501 addresses he or she provided as arguments to the command; or, if 502 we're handling a shared library, these are the actual addresses the 503 sections are loaded at, according to the inferior's dynamic linker 504 (as gleaned by GDB's shared library code). We convert each address 505 into an offset from the section VMA's as it appears in the object 506 file, and then call the file's sym_offsets function to convert this 507 into a format-specific offset table --- a `struct section_offsets'. 508 If ADDRS is non-zero, OFFSETS must be zero. 509 510 OFFSETS is a table of section offsets already in the right 511 format-specific representation. NUM_OFFSETS is the number of 512 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we 513 assume this is the proper table the call to sym_offsets described 514 above would produce. Instead of calling sym_offsets, we just dump 515 it right into objfile->section_offsets. (When we're re-reading 516 symbols from an objfile, we don't have the original load address 517 list any more; all we have is the section offset table.) If 518 OFFSETS is non-zero, ADDRS must be zero. 519 520 MAINLINE is nonzero if this is the main symbol file, or zero if 521 it's an extra symbol file such as dynamically loaded code. 522 523 VERBO is nonzero if the caller has printed a verbose message about 524 the symbol reading (and complaints can be more terse about it). */ 525 526 void 527 syms_from_objfile (struct objfile *objfile, 528 struct section_addr_info *addrs, 529 struct section_offsets *offsets, 530 int num_offsets, 531 int mainline, 532 int verbo) 533 { 534 struct section_addr_info *local_addr = NULL; 535 struct cleanup *old_chain; 536 537 gdb_assert (! (addrs && offsets)); 538 539 init_entry_point_info (objfile); 540 find_sym_fns (objfile); 541 542 if (objfile->sf == NULL) 543 return; /* No symbols. */ 544 545 /* Make sure that partially constructed symbol tables will be cleaned up 546 if an error occurs during symbol reading. */ 547 old_chain = make_cleanup_free_objfile (objfile); 548 549 /* If ADDRS and OFFSETS are both NULL, put together a dummy address 550 list. We now establish the convention that an addr of zero means 551 no load address was specified. */ 552 if (! addrs && ! offsets) 553 { 554 local_addr 555 = alloc_section_addr_info (bfd_count_sections (objfile->obfd)); 556 make_cleanup (xfree, local_addr); 557 addrs = local_addr; 558 } 559 560 /* Now either addrs or offsets is non-zero. */ 561 562 if (mainline) 563 { 564 /* We will modify the main symbol table, make sure that all its users 565 will be cleaned up if an error occurs during symbol reading. */ 566 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/); 567 568 /* Since no error yet, throw away the old symbol table. */ 569 570 if (symfile_objfile != NULL) 571 { 572 free_objfile (symfile_objfile); 573 symfile_objfile = NULL; 574 } 575 576 /* Currently we keep symbols from the add-symbol-file command. 577 If the user wants to get rid of them, they should do "symbol-file" 578 without arguments first. Not sure this is the best behavior 579 (PR 2207). */ 580 581 (*objfile->sf->sym_new_init) (objfile); 582 } 583 584 /* Convert addr into an offset rather than an absolute address. 585 We find the lowest address of a loaded segment in the objfile, 586 and assume that <addr> is where that got loaded. 587 588 We no longer warn if the lowest section is not a text segment (as 589 happens for the PA64 port. */ 590 if (addrs && addrs->other[0].name) 591 { 592 asection *lower_sect; 593 asection *sect; 594 CORE_ADDR lower_offset; 595 int i; 596 597 /* Find lowest loadable section to be used as starting point for 598 continguous sections. FIXME!! won't work without call to find 599 .text first, but this assumes text is lowest section. */ 600 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text"); 601 if (lower_sect == NULL) 602 bfd_map_over_sections (objfile->obfd, find_lowest_section, 603 &lower_sect); 604 if (lower_sect == NULL) 605 warning ("no loadable sections found in added symbol-file %s", 606 objfile->name); 607 else 608 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0) 609 warning ("Lowest section in %s is %s at %s", 610 objfile->name, 611 bfd_section_name (objfile->obfd, lower_sect), 612 paddr (bfd_section_vma (objfile->obfd, lower_sect))); 613 if (lower_sect != NULL) 614 lower_offset = bfd_section_vma (objfile->obfd, lower_sect); 615 else 616 lower_offset = 0; 617 618 /* Calculate offsets for the loadable sections. 619 FIXME! Sections must be in order of increasing loadable section 620 so that contiguous sections can use the lower-offset!!! 621 622 Adjust offsets if the segments are not contiguous. 623 If the section is contiguous, its offset should be set to 624 the offset of the highest loadable section lower than it 625 (the loadable section directly below it in memory). 626 this_offset = lower_offset = lower_addr - lower_orig_addr */ 627 628 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++) 629 { 630 if (addrs->other[i].addr != 0) 631 { 632 sect = bfd_get_section_by_name (objfile->obfd, 633 addrs->other[i].name); 634 if (sect) 635 { 636 addrs->other[i].addr 637 -= bfd_section_vma (objfile->obfd, sect); 638 lower_offset = addrs->other[i].addr; 639 /* This is the index used by BFD. */ 640 addrs->other[i].sectindex = sect->index ; 641 } 642 else 643 { 644 warning ("section %s not found in %s", 645 addrs->other[i].name, 646 objfile->name); 647 addrs->other[i].addr = 0; 648 } 649 } 650 else 651 addrs->other[i].addr = lower_offset; 652 } 653 } 654 655 /* Initialize symbol reading routines for this objfile, allow complaints to 656 appear for this new file, and record how verbose to be, then do the 657 initial symbol reading for this file. */ 658 659 (*objfile->sf->sym_init) (objfile); 660 clear_complaints (&symfile_complaints, 1, verbo); 661 662 if (addrs) 663 (*objfile->sf->sym_offsets) (objfile, addrs); 664 else 665 { 666 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets); 667 668 /* Just copy in the offset table directly as given to us. */ 669 objfile->num_sections = num_offsets; 670 objfile->section_offsets 671 = ((struct section_offsets *) 672 obstack_alloc (&objfile->objfile_obstack, size)); 673 memcpy (objfile->section_offsets, offsets, size); 674 675 init_objfile_sect_indices (objfile); 676 } 677 678 #ifndef DEPRECATED_IBM6000_TARGET 679 /* This is a SVR4/SunOS specific hack, I think. In any event, it 680 screws RS/6000. sym_offsets should be doing this sort of thing, 681 because it knows the mapping between bfd sections and 682 section_offsets. */ 683 /* This is a hack. As far as I can tell, section offsets are not 684 target dependent. They are all set to addr with a couple of 685 exceptions. The exceptions are sysvr4 shared libraries, whose 686 offsets are kept in solib structures anyway and rs6000 xcoff 687 which handles shared libraries in a completely unique way. 688 689 Section offsets are built similarly, except that they are built 690 by adding addr in all cases because there is no clear mapping 691 from section_offsets into actual sections. Note that solib.c 692 has a different algorithm for finding section offsets. 693 694 These should probably all be collapsed into some target 695 independent form of shared library support. FIXME. */ 696 697 if (addrs) 698 { 699 struct obj_section *s; 700 701 /* Map section offsets in "addr" back to the object's 702 sections by comparing the section names with bfd's 703 section names. Then adjust the section address by 704 the offset. */ /* for gdb/13815 */ 705 706 ALL_OBJFILE_OSECTIONS (objfile, s) 707 { 708 CORE_ADDR s_addr = 0; 709 int i; 710 711 for (i = 0; 712 !s_addr && i < addrs->num_sections && addrs->other[i].name; 713 i++) 714 if (strcmp (bfd_section_name (s->objfile->obfd, 715 s->the_bfd_section), 716 addrs->other[i].name) == 0) 717 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */ 718 719 s->addr -= s->offset; 720 s->addr += s_addr; 721 s->endaddr -= s->offset; 722 s->endaddr += s_addr; 723 s->offset += s_addr; 724 } 725 } 726 #endif /* not DEPRECATED_IBM6000_TARGET */ 727 728 (*objfile->sf->sym_read) (objfile, mainline); 729 730 /* Don't allow char * to have a typename (else would get caddr_t). 731 Ditto void *. FIXME: Check whether this is now done by all the 732 symbol readers themselves (many of them now do), and if so remove 733 it from here. */ 734 735 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0; 736 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0; 737 738 /* Mark the objfile has having had initial symbol read attempted. Note 739 that this does not mean we found any symbols... */ 740 741 objfile->flags |= OBJF_SYMS; 742 743 /* Discard cleanups as symbol reading was successful. */ 744 745 discard_cleanups (old_chain); 746 } 747 748 /* Perform required actions after either reading in the initial 749 symbols for a new objfile, or mapping in the symbols from a reusable 750 objfile. */ 751 752 void 753 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo) 754 { 755 756 /* If this is the main symbol file we have to clean up all users of the 757 old main symbol file. Otherwise it is sufficient to fixup all the 758 breakpoints that may have been redefined by this symbol file. */ 759 if (mainline) 760 { 761 /* OK, make it the "real" symbol file. */ 762 symfile_objfile = objfile; 763 764 clear_symtab_users (); 765 } 766 else 767 { 768 breakpoint_re_set (); 769 } 770 771 /* We're done reading the symbol file; finish off complaints. */ 772 clear_complaints (&symfile_complaints, 0, verbo); 773 } 774 775 /* Process a symbol file, as either the main file or as a dynamically 776 loaded file. 777 778 ABFD is a BFD already open on the file, as from symfile_bfd_open. 779 This BFD will be closed on error, and is always consumed by this function. 780 781 FROM_TTY says how verbose to be. 782 783 MAINLINE specifies whether this is the main symbol file, or whether 784 it's an extra symbol file such as dynamically loaded code. 785 786 ADDRS, OFFSETS, and NUM_OFFSETS are as described for 787 syms_from_objfile, above. ADDRS is ignored when MAINLINE is 788 non-zero. 789 790 Upon success, returns a pointer to the objfile that was added. 791 Upon failure, jumps back to command level (never returns). */ 792 static struct objfile * 793 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty, 794 struct section_addr_info *addrs, 795 struct section_offsets *offsets, 796 int num_offsets, 797 int mainline, int flags) 798 { 799 struct objfile *objfile; 800 struct partial_symtab *psymtab; 801 char *debugfile; 802 struct section_addr_info *orig_addrs = NULL; 803 struct cleanup *my_cleanups; 804 const char *name = bfd_get_filename (abfd); 805 806 my_cleanups = make_cleanup_bfd_close (abfd); 807 808 /* Give user a chance to burp if we'd be 809 interactively wiping out any existing symbols. */ 810 811 if ((have_full_symbols () || have_partial_symbols ()) 812 && mainline 813 && from_tty 814 && !query ("Load new symbol table from \"%s\"? ", name)) 815 error ("Not confirmed."); 816 817 objfile = allocate_objfile (abfd, flags); 818 discard_cleanups (my_cleanups); 819 820 if (addrs) 821 { 822 orig_addrs = copy_section_addr_info (addrs); 823 make_cleanup_free_section_addr_info (orig_addrs); 824 } 825 826 /* We either created a new mapped symbol table, mapped an existing 827 symbol table file which has not had initial symbol reading 828 performed, or need to read an unmapped symbol table. */ 829 if (from_tty || info_verbose) 830 { 831 if (deprecated_pre_add_symbol_hook) 832 deprecated_pre_add_symbol_hook (name); 833 else 834 { 835 printf_unfiltered ("Reading symbols from %s...", name); 836 wrap_here (""); 837 gdb_flush (gdb_stdout); 838 } 839 } 840 syms_from_objfile (objfile, addrs, offsets, num_offsets, 841 mainline, from_tty); 842 843 /* We now have at least a partial symbol table. Check to see if the 844 user requested that all symbols be read on initial access via either 845 the gdb startup command line or on a per symbol file basis. Expand 846 all partial symbol tables for this objfile if so. */ 847 848 if ((flags & OBJF_READNOW) || readnow_symbol_files) 849 { 850 if (from_tty || info_verbose) 851 { 852 printf_unfiltered ("expanding to full symbols..."); 853 wrap_here (""); 854 gdb_flush (gdb_stdout); 855 } 856 857 for (psymtab = objfile->psymtabs; 858 psymtab != NULL; 859 psymtab = psymtab->next) 860 { 861 psymtab_to_symtab (psymtab); 862 } 863 } 864 865 debugfile = find_separate_debug_file (objfile); 866 if (debugfile) 867 { 868 if (addrs != NULL) 869 { 870 objfile->separate_debug_objfile 871 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags); 872 } 873 else 874 { 875 objfile->separate_debug_objfile 876 = symbol_file_add (debugfile, from_tty, NULL, 0, flags); 877 } 878 objfile->separate_debug_objfile->separate_debug_objfile_backlink 879 = objfile; 880 881 /* Put the separate debug object before the normal one, this is so that 882 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 883 put_objfile_before (objfile->separate_debug_objfile, objfile); 884 885 xfree (debugfile); 886 } 887 888 if (!have_partial_symbols () && !have_full_symbols ()) 889 { 890 wrap_here (""); 891 printf_filtered ("(no debugging symbols found)"); 892 if (from_tty || info_verbose) 893 printf_filtered ("..."); 894 else 895 printf_filtered ("\n"); 896 wrap_here (""); 897 } 898 899 if (from_tty || info_verbose) 900 { 901 if (deprecated_post_add_symbol_hook) 902 deprecated_post_add_symbol_hook (); 903 else 904 { 905 printf_unfiltered ("done.\n"); 906 } 907 } 908 909 /* We print some messages regardless of whether 'from_tty || 910 info_verbose' is true, so make sure they go out at the right 911 time. */ 912 gdb_flush (gdb_stdout); 913 914 do_cleanups (my_cleanups); 915 916 if (objfile->sf == NULL) 917 return objfile; /* No symbols. */ 918 919 new_symfile_objfile (objfile, mainline, from_tty); 920 921 if (deprecated_target_new_objfile_hook) 922 deprecated_target_new_objfile_hook (objfile); 923 924 bfd_cache_close_all (); 925 return (objfile); 926 } 927 928 929 /* Process the symbol file ABFD, as either the main file or as a 930 dynamically loaded file. 931 932 See symbol_file_add_with_addrs_or_offsets's comments for 933 details. */ 934 struct objfile * 935 symbol_file_add_from_bfd (bfd *abfd, int from_tty, 936 struct section_addr_info *addrs, 937 int mainline, int flags) 938 { 939 return symbol_file_add_with_addrs_or_offsets (abfd, 940 from_tty, addrs, 0, 0, 941 mainline, flags); 942 } 943 944 945 /* Process a symbol file, as either the main file or as a dynamically 946 loaded file. See symbol_file_add_with_addrs_or_offsets's comments 947 for details. */ 948 struct objfile * 949 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs, 950 int mainline, int flags) 951 { 952 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty, 953 addrs, mainline, flags); 954 } 955 956 957 /* Call symbol_file_add() with default values and update whatever is 958 affected by the loading of a new main(). 959 Used when the file is supplied in the gdb command line 960 and by some targets with special loading requirements. 961 The auxiliary function, symbol_file_add_main_1(), has the flags 962 argument for the switches that can only be specified in the symbol_file 963 command itself. */ 964 965 void 966 symbol_file_add_main (char *args, int from_tty) 967 { 968 symbol_file_add_main_1 (args, from_tty, 0); 969 } 970 971 static void 972 symbol_file_add_main_1 (char *args, int from_tty, int flags) 973 { 974 symbol_file_add (args, from_tty, NULL, 1, flags); 975 976 /* Getting new symbols may change our opinion about 977 what is frameless. */ 978 reinit_frame_cache (); 979 980 set_initial_language (); 981 } 982 983 void 984 symbol_file_clear (int from_tty) 985 { 986 if ((have_full_symbols () || have_partial_symbols ()) 987 && from_tty 988 && !query ("Discard symbol table from `%s'? ", 989 symfile_objfile->name)) 990 error ("Not confirmed."); 991 #ifdef CLEAR_SOLIB 992 CLEAR_SOLIB (); 993 #endif 994 995 free_all_objfiles (); 996 997 /* solib descriptors may have handles to objfiles. Since their 998 storage has just been released, we'd better wipe the solib 999 descriptors as well. 1000 */ 1001 #if defined(SOLIB_RESTART) 1002 SOLIB_RESTART (); 1003 #endif 1004 1005 symfile_objfile = NULL; 1006 if (from_tty) 1007 printf_unfiltered ("No symbol file now.\n"); 1008 } 1009 1010 static char * 1011 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out) 1012 { 1013 asection *sect; 1014 bfd_size_type debuglink_size; 1015 unsigned long crc32; 1016 char *contents; 1017 int crc_offset; 1018 unsigned char *p; 1019 1020 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink"); 1021 1022 if (sect == NULL) 1023 return NULL; 1024 1025 debuglink_size = bfd_section_size (objfile->obfd, sect); 1026 1027 contents = xmalloc (debuglink_size); 1028 bfd_get_section_contents (objfile->obfd, sect, contents, 1029 (file_ptr)0, (bfd_size_type)debuglink_size); 1030 1031 /* Crc value is stored after the filename, aligned up to 4 bytes. */ 1032 crc_offset = strlen (contents) + 1; 1033 crc_offset = (crc_offset + 3) & ~3; 1034 1035 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset)); 1036 1037 *crc32_out = crc32; 1038 return contents; 1039 } 1040 1041 static int 1042 separate_debug_file_exists (const char *name, unsigned long crc) 1043 { 1044 unsigned long file_crc = 0; 1045 int fd; 1046 char buffer[8*1024]; 1047 int count; 1048 1049 fd = open (name, O_RDONLY | O_BINARY); 1050 if (fd < 0) 1051 return 0; 1052 1053 while ((count = read (fd, buffer, sizeof (buffer))) > 0) 1054 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count); 1055 1056 close (fd); 1057 1058 return crc == file_crc; 1059 } 1060 1061 static char *debug_file_directory = NULL; 1062 1063 #if ! defined (DEBUG_SUBDIRECTORY) 1064 #define DEBUG_SUBDIRECTORY ".debug" 1065 #endif 1066 1067 static char * 1068 find_separate_debug_file (struct objfile *objfile) 1069 { 1070 asection *sect; 1071 char *basename; 1072 char *dir; 1073 char *debugfile; 1074 char *name_copy; 1075 bfd_size_type debuglink_size; 1076 unsigned long crc32; 1077 int i; 1078 1079 basename = get_debug_link_info (objfile, &crc32); 1080 1081 if (basename == NULL) 1082 return NULL; 1083 1084 dir = xstrdup (objfile->name); 1085 1086 /* Strip off the final filename part, leaving the directory name, 1087 followed by a slash. Objfile names should always be absolute and 1088 tilde-expanded, so there should always be a slash in there 1089 somewhere. */ 1090 for (i = strlen(dir) - 1; i >= 0; i--) 1091 { 1092 if (IS_DIR_SEPARATOR (dir[i])) 1093 break; 1094 } 1095 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i])); 1096 dir[i+1] = '\0'; 1097 1098 debugfile = alloca (strlen (debug_file_directory) + 1 1099 + strlen (dir) 1100 + strlen (DEBUG_SUBDIRECTORY) 1101 + strlen ("/") 1102 + strlen (basename) 1103 + 1); 1104 1105 /* First try in the same directory as the original file. */ 1106 strcpy (debugfile, dir); 1107 strcat (debugfile, basename); 1108 1109 if (separate_debug_file_exists (debugfile, crc32)) 1110 { 1111 xfree (basename); 1112 xfree (dir); 1113 return xstrdup (debugfile); 1114 } 1115 1116 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */ 1117 strcpy (debugfile, dir); 1118 strcat (debugfile, DEBUG_SUBDIRECTORY); 1119 strcat (debugfile, "/"); 1120 strcat (debugfile, basename); 1121 1122 if (separate_debug_file_exists (debugfile, crc32)) 1123 { 1124 xfree (basename); 1125 xfree (dir); 1126 return xstrdup (debugfile); 1127 } 1128 1129 /* Then try in the global debugfile directory. */ 1130 strcpy (debugfile, debug_file_directory); 1131 strcat (debugfile, "/"); 1132 strcat (debugfile, dir); 1133 strcat (debugfile, basename); 1134 1135 if (separate_debug_file_exists (debugfile, crc32)) 1136 { 1137 xfree (basename); 1138 xfree (dir); 1139 return xstrdup (debugfile); 1140 } 1141 1142 xfree (basename); 1143 xfree (dir); 1144 return NULL; 1145 } 1146 1147 1148 /* This is the symbol-file command. Read the file, analyze its 1149 symbols, and add a struct symtab to a symtab list. The syntax of 1150 the command is rather bizarre--(1) buildargv implements various 1151 quoting conventions which are undocumented and have little or 1152 nothing in common with the way things are quoted (or not quoted) 1153 elsewhere in GDB, (2) options are used, which are not generally 1154 used in GDB (perhaps "set mapped on", "set readnow on" would be 1155 better), (3) the order of options matters, which is contrary to GNU 1156 conventions (because it is confusing and inconvenient). */ 1157 /* Note: ezannoni 2000-04-17. This function used to have support for 1158 rombug (see remote-os9k.c). It consisted of a call to target_link() 1159 (target.c) to get the address of the text segment from the target, 1160 and pass that to symbol_file_add(). This is no longer supported. */ 1161 1162 void 1163 symbol_file_command (char *args, int from_tty) 1164 { 1165 char **argv; 1166 char *name = NULL; 1167 struct cleanup *cleanups; 1168 int flags = OBJF_USERLOADED; 1169 1170 dont_repeat (); 1171 1172 if (args == NULL) 1173 { 1174 symbol_file_clear (from_tty); 1175 } 1176 else 1177 { 1178 if ((argv = buildargv (args)) == NULL) 1179 { 1180 nomem (0); 1181 } 1182 cleanups = make_cleanup_freeargv (argv); 1183 while (*argv != NULL) 1184 { 1185 if (strcmp (*argv, "-readnow") == 0) 1186 flags |= OBJF_READNOW; 1187 else if (**argv == '-') 1188 error ("unknown option `%s'", *argv); 1189 else 1190 { 1191 name = *argv; 1192 1193 symbol_file_add_main_1 (name, from_tty, flags); 1194 } 1195 argv++; 1196 } 1197 1198 if (name == NULL) 1199 { 1200 error ("no symbol file name was specified"); 1201 } 1202 do_cleanups (cleanups); 1203 } 1204 } 1205 1206 /* Set the initial language. 1207 1208 A better solution would be to record the language in the psymtab when reading 1209 partial symbols, and then use it (if known) to set the language. This would 1210 be a win for formats that encode the language in an easily discoverable place, 1211 such as DWARF. For stabs, we can jump through hoops looking for specially 1212 named symbols or try to intuit the language from the specific type of stabs 1213 we find, but we can't do that until later when we read in full symbols. 1214 FIXME. */ 1215 1216 static void 1217 set_initial_language (void) 1218 { 1219 struct partial_symtab *pst; 1220 enum language lang = language_unknown; 1221 1222 pst = find_main_psymtab (); 1223 if (pst != NULL) 1224 { 1225 if (pst->filename != NULL) 1226 { 1227 lang = deduce_language_from_filename (pst->filename); 1228 } 1229 if (lang == language_unknown) 1230 { 1231 /* Make C the default language */ 1232 lang = language_c; 1233 } 1234 set_language (lang); 1235 expected_language = current_language; /* Don't warn the user */ 1236 } 1237 } 1238 1239 /* Open file specified by NAME and hand it off to BFD for preliminary 1240 analysis. Result is a newly initialized bfd *, which includes a newly 1241 malloc'd` copy of NAME (tilde-expanded and made absolute). 1242 In case of trouble, error() is called. */ 1243 1244 bfd * 1245 symfile_bfd_open (char *name) 1246 { 1247 bfd *sym_bfd; 1248 int desc; 1249 char *absolute_name; 1250 1251 1252 1253 name = tilde_expand (name); /* Returns 1st new malloc'd copy */ 1254 1255 /* Look down path for it, allocate 2nd new malloc'd copy. */ 1256 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY, 1257 0, &absolute_name); 1258 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__) 1259 if (desc < 0) 1260 { 1261 char *exename = alloca (strlen (name) + 5); 1262 strcat (strcpy (exename, name), ".exe"); 1263 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename, 1264 O_RDONLY | O_BINARY, 0, &absolute_name); 1265 } 1266 #endif 1267 if (desc < 0) 1268 { 1269 make_cleanup (xfree, name); 1270 perror_with_name (name); 1271 } 1272 xfree (name); /* Free 1st new malloc'd copy */ 1273 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */ 1274 /* It'll be freed in free_objfile(). */ 1275 1276 sym_bfd = bfd_fdopenr (name, gnutarget, desc); 1277 if (!sym_bfd) 1278 { 1279 close (desc); 1280 make_cleanup (xfree, name); 1281 error ("\"%s\": can't open to read symbols: %s.", name, 1282 bfd_errmsg (bfd_get_error ())); 1283 } 1284 bfd_set_cacheable (sym_bfd, 1); 1285 1286 if (!bfd_check_format (sym_bfd, bfd_object)) 1287 { 1288 /* FIXME: should be checking for errors from bfd_close (for one thing, 1289 on error it does not free all the storage associated with the 1290 bfd). */ 1291 bfd_close (sym_bfd); /* This also closes desc */ 1292 make_cleanup (xfree, name); 1293 error ("\"%s\": can't read symbols: %s.", name, 1294 bfd_errmsg (bfd_get_error ())); 1295 } 1296 return (sym_bfd); 1297 } 1298 1299 /* Return the section index for the given section name. Return -1 if 1300 the section was not found. */ 1301 int 1302 get_section_index (struct objfile *objfile, char *section_name) 1303 { 1304 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name); 1305 if (sect) 1306 return sect->index; 1307 else 1308 return -1; 1309 } 1310 1311 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb 1312 startup by the _initialize routine in each object file format reader, 1313 to register information about each format the the reader is prepared 1314 to handle. */ 1315 1316 void 1317 add_symtab_fns (struct sym_fns *sf) 1318 { 1319 sf->next = symtab_fns; 1320 symtab_fns = sf; 1321 } 1322 1323 1324 /* Initialize to read symbols from the symbol file sym_bfd. It either 1325 returns or calls error(). The result is an initialized struct sym_fns 1326 in the objfile structure, that contains cached information about the 1327 symbol file. */ 1328 1329 static void 1330 find_sym_fns (struct objfile *objfile) 1331 { 1332 struct sym_fns *sf; 1333 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd); 1334 char *our_target = bfd_get_target (objfile->obfd); 1335 1336 if (our_flavour == bfd_target_srec_flavour 1337 || our_flavour == bfd_target_ihex_flavour 1338 || our_flavour == bfd_target_tekhex_flavour) 1339 return; /* No symbols. */ 1340 1341 for (sf = symtab_fns; sf != NULL; sf = sf->next) 1342 { 1343 if (our_flavour == sf->sym_flavour) 1344 { 1345 objfile->sf = sf; 1346 return; 1347 } 1348 } 1349 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.", 1350 bfd_get_target (objfile->obfd)); 1351 } 1352 1353 /* This function runs the load command of our current target. */ 1354 1355 static void 1356 load_command (char *arg, int from_tty) 1357 { 1358 if (arg == NULL) 1359 arg = get_exec_file (1); 1360 target_load (arg, from_tty); 1361 1362 /* After re-loading the executable, we don't really know which 1363 overlays are mapped any more. */ 1364 overlay_cache_invalid = 1; 1365 } 1366 1367 /* This version of "load" should be usable for any target. Currently 1368 it is just used for remote targets, not inftarg.c or core files, 1369 on the theory that only in that case is it useful. 1370 1371 Avoiding xmodem and the like seems like a win (a) because we don't have 1372 to worry about finding it, and (b) On VMS, fork() is very slow and so 1373 we don't want to run a subprocess. On the other hand, I'm not sure how 1374 performance compares. */ 1375 1376 static int download_write_size = 512; 1377 static int validate_download = 0; 1378 1379 /* Callback service function for generic_load (bfd_map_over_sections). */ 1380 1381 static void 1382 add_section_size_callback (bfd *abfd, asection *asec, void *data) 1383 { 1384 bfd_size_type *sum = data; 1385 1386 *sum += bfd_get_section_size (asec); 1387 } 1388 1389 /* Opaque data for load_section_callback. */ 1390 struct load_section_data { 1391 unsigned long load_offset; 1392 unsigned long write_count; 1393 unsigned long data_count; 1394 bfd_size_type total_size; 1395 }; 1396 1397 /* Callback service function for generic_load (bfd_map_over_sections). */ 1398 1399 static void 1400 load_section_callback (bfd *abfd, asection *asec, void *data) 1401 { 1402 struct load_section_data *args = data; 1403 1404 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD) 1405 { 1406 bfd_size_type size = bfd_get_section_size (asec); 1407 if (size > 0) 1408 { 1409 char *buffer; 1410 struct cleanup *old_chain; 1411 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset; 1412 bfd_size_type block_size; 1413 int err; 1414 const char *sect_name = bfd_get_section_name (abfd, asec); 1415 bfd_size_type sent; 1416 1417 if (download_write_size > 0 && size > download_write_size) 1418 block_size = download_write_size; 1419 else 1420 block_size = size; 1421 1422 buffer = xmalloc (size); 1423 old_chain = make_cleanup (xfree, buffer); 1424 1425 /* Is this really necessary? I guess it gives the user something 1426 to look at during a long download. */ 1427 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n", 1428 sect_name, paddr_nz (size), paddr_nz (lma)); 1429 1430 bfd_get_section_contents (abfd, asec, buffer, 0, size); 1431 1432 sent = 0; 1433 do 1434 { 1435 int len; 1436 bfd_size_type this_transfer = size - sent; 1437 1438 if (this_transfer >= block_size) 1439 this_transfer = block_size; 1440 len = target_write_memory_partial (lma, buffer, 1441 this_transfer, &err); 1442 if (err) 1443 break; 1444 if (validate_download) 1445 { 1446 /* Broken memories and broken monitors manifest 1447 themselves here when bring new computers to 1448 life. This doubles already slow downloads. */ 1449 /* NOTE: cagney/1999-10-18: A more efficient 1450 implementation might add a verify_memory() 1451 method to the target vector and then use 1452 that. remote.c could implement that method 1453 using the ``qCRC'' packet. */ 1454 char *check = xmalloc (len); 1455 struct cleanup *verify_cleanups = 1456 make_cleanup (xfree, check); 1457 1458 if (target_read_memory (lma, check, len) != 0) 1459 error ("Download verify read failed at 0x%s", 1460 paddr (lma)); 1461 if (memcmp (buffer, check, len) != 0) 1462 error ("Download verify compare failed at 0x%s", 1463 paddr (lma)); 1464 do_cleanups (verify_cleanups); 1465 } 1466 args->data_count += len; 1467 lma += len; 1468 buffer += len; 1469 args->write_count += 1; 1470 sent += len; 1471 if (quit_flag 1472 || (deprecated_ui_load_progress_hook != NULL 1473 && deprecated_ui_load_progress_hook (sect_name, sent))) 1474 error ("Canceled the download"); 1475 1476 if (deprecated_show_load_progress != NULL) 1477 deprecated_show_load_progress (sect_name, sent, size, 1478 args->data_count, 1479 args->total_size); 1480 } 1481 while (sent < size); 1482 1483 if (err != 0) 1484 error ("Memory access error while loading section %s.", sect_name); 1485 1486 do_cleanups (old_chain); 1487 } 1488 } 1489 } 1490 1491 void 1492 generic_load (char *args, int from_tty) 1493 { 1494 asection *s; 1495 bfd *loadfile_bfd; 1496 time_t start_time, end_time; /* Start and end times of download */ 1497 char *filename; 1498 struct cleanup *old_cleanups; 1499 char *offptr; 1500 struct load_section_data cbdata; 1501 CORE_ADDR entry; 1502 1503 cbdata.load_offset = 0; /* Offset to add to vma for each section. */ 1504 cbdata.write_count = 0; /* Number of writes needed. */ 1505 cbdata.data_count = 0; /* Number of bytes written to target memory. */ 1506 cbdata.total_size = 0; /* Total size of all bfd sectors. */ 1507 1508 /* Parse the input argument - the user can specify a load offset as 1509 a second argument. */ 1510 filename = xmalloc (strlen (args) + 1); 1511 old_cleanups = make_cleanup (xfree, filename); 1512 strcpy (filename, args); 1513 offptr = strchr (filename, ' '); 1514 if (offptr != NULL) 1515 { 1516 char *endptr; 1517 1518 cbdata.load_offset = strtoul (offptr, &endptr, 0); 1519 if (offptr == endptr) 1520 error ("Invalid download offset:%s\n", offptr); 1521 *offptr = '\0'; 1522 } 1523 else 1524 cbdata.load_offset = 0; 1525 1526 /* Open the file for loading. */ 1527 loadfile_bfd = bfd_openr (filename, gnutarget); 1528 if (loadfile_bfd == NULL) 1529 { 1530 perror_with_name (filename); 1531 return; 1532 } 1533 1534 /* FIXME: should be checking for errors from bfd_close (for one thing, 1535 on error it does not free all the storage associated with the 1536 bfd). */ 1537 make_cleanup_bfd_close (loadfile_bfd); 1538 1539 if (!bfd_check_format (loadfile_bfd, bfd_object)) 1540 { 1541 error ("\"%s\" is not an object file: %s", filename, 1542 bfd_errmsg (bfd_get_error ())); 1543 } 1544 1545 bfd_map_over_sections (loadfile_bfd, add_section_size_callback, 1546 (void *) &cbdata.total_size); 1547 1548 start_time = time (NULL); 1549 1550 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata); 1551 1552 end_time = time (NULL); 1553 1554 entry = bfd_get_start_address (loadfile_bfd); 1555 ui_out_text (uiout, "Start address "); 1556 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry)); 1557 ui_out_text (uiout, ", load size "); 1558 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count); 1559 ui_out_text (uiout, "\n"); 1560 /* We were doing this in remote-mips.c, I suspect it is right 1561 for other targets too. */ 1562 write_pc (entry); 1563 1564 /* FIXME: are we supposed to call symbol_file_add or not? According 1565 to a comment from remote-mips.c (where a call to symbol_file_add 1566 was commented out), making the call confuses GDB if more than one 1567 file is loaded in. Some targets do (e.g., remote-vx.c) but 1568 others don't (or didn't - perhaps they have all been deleted). */ 1569 1570 print_transfer_performance (gdb_stdout, cbdata.data_count, 1571 cbdata.write_count, end_time - start_time); 1572 1573 do_cleanups (old_cleanups); 1574 } 1575 1576 /* Report how fast the transfer went. */ 1577 1578 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being 1579 replaced by print_transfer_performance (with a very different 1580 function signature). */ 1581 1582 void 1583 report_transfer_performance (unsigned long data_count, time_t start_time, 1584 time_t end_time) 1585 { 1586 print_transfer_performance (gdb_stdout, data_count, 1587 end_time - start_time, 0); 1588 } 1589 1590 void 1591 print_transfer_performance (struct ui_file *stream, 1592 unsigned long data_count, 1593 unsigned long write_count, 1594 unsigned long time_count) 1595 { 1596 ui_out_text (uiout, "Transfer rate: "); 1597 if (time_count > 0) 1598 { 1599 ui_out_field_fmt (uiout, "transfer-rate", "%lu", 1600 (data_count * 8) / time_count); 1601 ui_out_text (uiout, " bits/sec"); 1602 } 1603 else 1604 { 1605 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8)); 1606 ui_out_text (uiout, " bits in <1 sec"); 1607 } 1608 if (write_count > 0) 1609 { 1610 ui_out_text (uiout, ", "); 1611 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count); 1612 ui_out_text (uiout, " bytes/write"); 1613 } 1614 ui_out_text (uiout, ".\n"); 1615 } 1616 1617 /* This function allows the addition of incrementally linked object files. 1618 It does not modify any state in the target, only in the debugger. */ 1619 /* Note: ezannoni 2000-04-13 This function/command used to have a 1620 special case syntax for the rombug target (Rombug is the boot 1621 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the 1622 rombug case, the user doesn't need to supply a text address, 1623 instead a call to target_link() (in target.c) would supply the 1624 value to use. We are now discontinuing this type of ad hoc syntax. */ 1625 1626 static void 1627 add_symbol_file_command (char *args, int from_tty) 1628 { 1629 char *filename = NULL; 1630 int flags = OBJF_USERLOADED; 1631 char *arg; 1632 int expecting_option = 0; 1633 int section_index = 0; 1634 int argcnt = 0; 1635 int sec_num = 0; 1636 int i; 1637 int expecting_sec_name = 0; 1638 int expecting_sec_addr = 0; 1639 1640 struct sect_opt 1641 { 1642 char *name; 1643 char *value; 1644 }; 1645 1646 struct section_addr_info *section_addrs; 1647 struct sect_opt *sect_opts = NULL; 1648 size_t num_sect_opts = 0; 1649 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL); 1650 1651 num_sect_opts = 16; 1652 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts 1653 * sizeof (struct sect_opt)); 1654 1655 dont_repeat (); 1656 1657 if (args == NULL) 1658 error ("add-symbol-file takes a file name and an address"); 1659 1660 /* Make a copy of the string that we can safely write into. */ 1661 args = xstrdup (args); 1662 1663 while (*args != '\000') 1664 { 1665 /* Any leading spaces? */ 1666 while (isspace (*args)) 1667 args++; 1668 1669 /* Point arg to the beginning of the argument. */ 1670 arg = args; 1671 1672 /* Move args pointer over the argument. */ 1673 while ((*args != '\000') && !isspace (*args)) 1674 args++; 1675 1676 /* If there are more arguments, terminate arg and 1677 proceed past it. */ 1678 if (*args != '\000') 1679 *args++ = '\000'; 1680 1681 /* Now process the argument. */ 1682 if (argcnt == 0) 1683 { 1684 /* The first argument is the file name. */ 1685 filename = tilde_expand (arg); 1686 make_cleanup (xfree, filename); 1687 } 1688 else 1689 if (argcnt == 1) 1690 { 1691 /* The second argument is always the text address at which 1692 to load the program. */ 1693 sect_opts[section_index].name = ".text"; 1694 sect_opts[section_index].value = arg; 1695 if (++section_index > num_sect_opts) 1696 { 1697 num_sect_opts *= 2; 1698 sect_opts = ((struct sect_opt *) 1699 xrealloc (sect_opts, 1700 num_sect_opts 1701 * sizeof (struct sect_opt))); 1702 } 1703 } 1704 else 1705 { 1706 /* It's an option (starting with '-') or it's an argument 1707 to an option */ 1708 1709 if (*arg == '-') 1710 { 1711 if (strcmp (arg, "-readnow") == 0) 1712 flags |= OBJF_READNOW; 1713 else if (strcmp (arg, "-s") == 0) 1714 { 1715 expecting_sec_name = 1; 1716 expecting_sec_addr = 1; 1717 } 1718 } 1719 else 1720 { 1721 if (expecting_sec_name) 1722 { 1723 sect_opts[section_index].name = arg; 1724 expecting_sec_name = 0; 1725 } 1726 else 1727 if (expecting_sec_addr) 1728 { 1729 sect_opts[section_index].value = arg; 1730 expecting_sec_addr = 0; 1731 if (++section_index > num_sect_opts) 1732 { 1733 num_sect_opts *= 2; 1734 sect_opts = ((struct sect_opt *) 1735 xrealloc (sect_opts, 1736 num_sect_opts 1737 * sizeof (struct sect_opt))); 1738 } 1739 } 1740 else 1741 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"); 1742 } 1743 } 1744 argcnt++; 1745 } 1746 1747 /* Print the prompt for the query below. And save the arguments into 1748 a sect_addr_info structure to be passed around to other 1749 functions. We have to split this up into separate print 1750 statements because hex_string returns a local static 1751 string. */ 1752 1753 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename); 1754 section_addrs = alloc_section_addr_info (section_index); 1755 make_cleanup (xfree, section_addrs); 1756 for (i = 0; i < section_index; i++) 1757 { 1758 CORE_ADDR addr; 1759 char *val = sect_opts[i].value; 1760 char *sec = sect_opts[i].name; 1761 1762 addr = parse_and_eval_address (val); 1763 1764 /* Here we store the section offsets in the order they were 1765 entered on the command line. */ 1766 section_addrs->other[sec_num].name = sec; 1767 section_addrs->other[sec_num].addr = addr; 1768 printf_unfiltered ("\t%s_addr = %s\n", 1769 sec, hex_string ((unsigned long)addr)); 1770 sec_num++; 1771 1772 /* The object's sections are initialized when a 1773 call is made to build_objfile_section_table (objfile). 1774 This happens in reread_symbols. 1775 At this point, we don't know what file type this is, 1776 so we can't determine what section names are valid. */ 1777 } 1778 1779 if (from_tty && (!query ("%s", ""))) 1780 error ("Not confirmed."); 1781 1782 symbol_file_add (filename, from_tty, section_addrs, 0, flags); 1783 1784 /* Getting new symbols may change our opinion about what is 1785 frameless. */ 1786 reinit_frame_cache (); 1787 do_cleanups (my_cleanups); 1788 } 1789 1790 static void 1791 add_shared_symbol_files_command (char *args, int from_tty) 1792 { 1793 #ifdef ADD_SHARED_SYMBOL_FILES 1794 ADD_SHARED_SYMBOL_FILES (args, from_tty); 1795 #else 1796 error ("This command is not available in this configuration of GDB."); 1797 #endif 1798 } 1799 1800 /* Re-read symbols if a symbol-file has changed. */ 1801 void 1802 reread_symbols (void) 1803 { 1804 struct objfile *objfile; 1805 time_t new_modtime; 1806 int reread_one = 0; 1807 struct stat new_statbuf; 1808 int res; 1809 1810 /* With the addition of shared libraries, this should be modified, 1811 the load time should be saved in the partial symbol tables, since 1812 different tables may come from different source files. FIXME. 1813 This routine should then walk down each partial symbol table 1814 and see if the symbol table that it originates from has been changed */ 1815 1816 for (objfile = object_files; objfile; objfile = objfile->next) 1817 { 1818 if (objfile->obfd) 1819 { 1820 #ifdef DEPRECATED_IBM6000_TARGET 1821 /* If this object is from a shared library, then you should 1822 stat on the library name, not member name. */ 1823 1824 if (objfile->obfd->my_archive) 1825 res = stat (objfile->obfd->my_archive->filename, &new_statbuf); 1826 else 1827 #endif 1828 res = stat (objfile->name, &new_statbuf); 1829 if (res != 0) 1830 { 1831 /* FIXME, should use print_sys_errmsg but it's not filtered. */ 1832 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n", 1833 objfile->name); 1834 continue; 1835 } 1836 new_modtime = new_statbuf.st_mtime; 1837 if (new_modtime != objfile->mtime) 1838 { 1839 struct cleanup *old_cleanups; 1840 struct section_offsets *offsets; 1841 int num_offsets; 1842 char *obfd_filename; 1843 1844 printf_unfiltered ("`%s' has changed; re-reading symbols.\n", 1845 objfile->name); 1846 1847 /* There are various functions like symbol_file_add, 1848 symfile_bfd_open, syms_from_objfile, etc., which might 1849 appear to do what we want. But they have various other 1850 effects which we *don't* want. So we just do stuff 1851 ourselves. We don't worry about mapped files (for one thing, 1852 any mapped file will be out of date). */ 1853 1854 /* If we get an error, blow away this objfile (not sure if 1855 that is the correct response for things like shared 1856 libraries). */ 1857 old_cleanups = make_cleanup_free_objfile (objfile); 1858 /* We need to do this whenever any symbols go away. */ 1859 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/); 1860 1861 /* Clean up any state BFD has sitting around. We don't need 1862 to close the descriptor but BFD lacks a way of closing the 1863 BFD without closing the descriptor. */ 1864 obfd_filename = bfd_get_filename (objfile->obfd); 1865 if (!bfd_close (objfile->obfd)) 1866 error ("Can't close BFD for %s: %s", objfile->name, 1867 bfd_errmsg (bfd_get_error ())); 1868 objfile->obfd = bfd_openr (obfd_filename, gnutarget); 1869 if (objfile->obfd == NULL) 1870 error ("Can't open %s to read symbols.", objfile->name); 1871 /* bfd_openr sets cacheable to true, which is what we want. */ 1872 if (!bfd_check_format (objfile->obfd, bfd_object)) 1873 error ("Can't read symbols from %s: %s.", objfile->name, 1874 bfd_errmsg (bfd_get_error ())); 1875 1876 /* Save the offsets, we will nuke them with the rest of the 1877 objfile_obstack. */ 1878 num_offsets = objfile->num_sections; 1879 offsets = ((struct section_offsets *) 1880 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets))); 1881 memcpy (offsets, objfile->section_offsets, 1882 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 1883 1884 /* Nuke all the state that we will re-read. Much of the following 1885 code which sets things to NULL really is necessary to tell 1886 other parts of GDB that there is nothing currently there. */ 1887 1888 /* FIXME: Do we have to free a whole linked list, or is this 1889 enough? */ 1890 if (objfile->global_psymbols.list) 1891 xfree (objfile->global_psymbols.list); 1892 memset (&objfile->global_psymbols, 0, 1893 sizeof (objfile->global_psymbols)); 1894 if (objfile->static_psymbols.list) 1895 xfree (objfile->static_psymbols.list); 1896 memset (&objfile->static_psymbols, 0, 1897 sizeof (objfile->static_psymbols)); 1898 1899 /* Free the obstacks for non-reusable objfiles */ 1900 bcache_xfree (objfile->psymbol_cache); 1901 objfile->psymbol_cache = bcache_xmalloc (); 1902 bcache_xfree (objfile->macro_cache); 1903 objfile->macro_cache = bcache_xmalloc (); 1904 if (objfile->demangled_names_hash != NULL) 1905 { 1906 htab_delete (objfile->demangled_names_hash); 1907 objfile->demangled_names_hash = NULL; 1908 } 1909 obstack_free (&objfile->objfile_obstack, 0); 1910 objfile->sections = NULL; 1911 objfile->symtabs = NULL; 1912 objfile->psymtabs = NULL; 1913 objfile->free_psymtabs = NULL; 1914 objfile->cp_namespace_symtab = NULL; 1915 objfile->msymbols = NULL; 1916 objfile->sym_private = NULL; 1917 objfile->minimal_symbol_count = 0; 1918 memset (&objfile->msymbol_hash, 0, 1919 sizeof (objfile->msymbol_hash)); 1920 memset (&objfile->msymbol_demangled_hash, 0, 1921 sizeof (objfile->msymbol_demangled_hash)); 1922 objfile->fundamental_types = NULL; 1923 clear_objfile_data (objfile); 1924 if (objfile->sf != NULL) 1925 { 1926 (*objfile->sf->sym_finish) (objfile); 1927 } 1928 1929 /* We never make this a mapped file. */ 1930 objfile->md = NULL; 1931 objfile->psymbol_cache = bcache_xmalloc (); 1932 objfile->macro_cache = bcache_xmalloc (); 1933 /* obstack_init also initializes the obstack so it is 1934 empty. We could use obstack_specify_allocation but 1935 gdb_obstack.h specifies the alloc/dealloc 1936 functions. */ 1937 obstack_init (&objfile->objfile_obstack); 1938 if (build_objfile_section_table (objfile)) 1939 { 1940 error ("Can't find the file sections in `%s': %s", 1941 objfile->name, bfd_errmsg (bfd_get_error ())); 1942 } 1943 terminate_minimal_symbol_table (objfile); 1944 1945 /* We use the same section offsets as from last time. I'm not 1946 sure whether that is always correct for shared libraries. */ 1947 objfile->section_offsets = (struct section_offsets *) 1948 obstack_alloc (&objfile->objfile_obstack, 1949 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 1950 memcpy (objfile->section_offsets, offsets, 1951 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 1952 objfile->num_sections = num_offsets; 1953 1954 /* What the hell is sym_new_init for, anyway? The concept of 1955 distinguishing between the main file and additional files 1956 in this way seems rather dubious. */ 1957 if (objfile == symfile_objfile) 1958 { 1959 (*objfile->sf->sym_new_init) (objfile); 1960 } 1961 1962 (*objfile->sf->sym_init) (objfile); 1963 clear_complaints (&symfile_complaints, 1, 1); 1964 /* The "mainline" parameter is a hideous hack; I think leaving it 1965 zero is OK since dbxread.c also does what it needs to do if 1966 objfile->global_psymbols.size is 0. */ 1967 (*objfile->sf->sym_read) (objfile, 0); 1968 if (!have_partial_symbols () && !have_full_symbols ()) 1969 { 1970 wrap_here (""); 1971 printf_unfiltered ("(no debugging symbols found)\n"); 1972 wrap_here (""); 1973 } 1974 objfile->flags |= OBJF_SYMS; 1975 1976 /* We're done reading the symbol file; finish off complaints. */ 1977 clear_complaints (&symfile_complaints, 0, 1); 1978 1979 /* Getting new symbols may change our opinion about what is 1980 frameless. */ 1981 1982 reinit_frame_cache (); 1983 1984 /* Discard cleanups as symbol reading was successful. */ 1985 discard_cleanups (old_cleanups); 1986 1987 init_entry_point_info (objfile); 1988 1989 /* If the mtime has changed between the time we set new_modtime 1990 and now, we *want* this to be out of date, so don't call stat 1991 again now. */ 1992 objfile->mtime = new_modtime; 1993 reread_one = 1; 1994 reread_separate_symbols (objfile); 1995 } 1996 } 1997 } 1998 1999 if (reread_one) 2000 clear_symtab_users (); 2001 } 2002 2003 2004 /* Handle separate debug info for OBJFILE, which has just been 2005 re-read: 2006 - If we had separate debug info before, but now we don't, get rid 2007 of the separated objfile. 2008 - If we didn't have separated debug info before, but now we do, 2009 read in the new separated debug info file. 2010 - If the debug link points to a different file, toss the old one 2011 and read the new one. 2012 This function does *not* handle the case where objfile is still 2013 using the same separate debug info file, but that file's timestamp 2014 has changed. That case should be handled by the loop in 2015 reread_symbols already. */ 2016 static void 2017 reread_separate_symbols (struct objfile *objfile) 2018 { 2019 char *debug_file; 2020 unsigned long crc32; 2021 2022 /* Does the updated objfile's debug info live in a 2023 separate file? */ 2024 debug_file = find_separate_debug_file (objfile); 2025 2026 if (objfile->separate_debug_objfile) 2027 { 2028 /* There are two cases where we need to get rid of 2029 the old separated debug info objfile: 2030 - if the new primary objfile doesn't have 2031 separated debug info, or 2032 - if the new primary objfile has separate debug 2033 info, but it's under a different filename. 2034 2035 If the old and new objfiles both have separate 2036 debug info, under the same filename, then we're 2037 okay --- if the separated file's contents have 2038 changed, we will have caught that when we 2039 visited it in this function's outermost 2040 loop. */ 2041 if (! debug_file 2042 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0) 2043 free_objfile (objfile->separate_debug_objfile); 2044 } 2045 2046 /* If the new objfile has separate debug info, and we 2047 haven't loaded it already, do so now. */ 2048 if (debug_file 2049 && ! objfile->separate_debug_objfile) 2050 { 2051 /* Use the same section offset table as objfile itself. 2052 Preserve the flags from objfile that make sense. */ 2053 objfile->separate_debug_objfile 2054 = (symbol_file_add_with_addrs_or_offsets 2055 (symfile_bfd_open (debug_file), 2056 info_verbose, /* from_tty: Don't override the default. */ 2057 0, /* No addr table. */ 2058 objfile->section_offsets, objfile->num_sections, 2059 0, /* Not mainline. See comments about this above. */ 2060 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW 2061 | OBJF_USERLOADED))); 2062 objfile->separate_debug_objfile->separate_debug_objfile_backlink 2063 = objfile; 2064 } 2065 } 2066 2067 2068 2069 2070 2071 typedef struct 2072 { 2073 char *ext; 2074 enum language lang; 2075 } 2076 filename_language; 2077 2078 static filename_language *filename_language_table; 2079 static int fl_table_size, fl_table_next; 2080 2081 static void 2082 add_filename_language (char *ext, enum language lang) 2083 { 2084 if (fl_table_next >= fl_table_size) 2085 { 2086 fl_table_size += 10; 2087 filename_language_table = 2088 xrealloc (filename_language_table, 2089 fl_table_size * sizeof (*filename_language_table)); 2090 } 2091 2092 filename_language_table[fl_table_next].ext = xstrdup (ext); 2093 filename_language_table[fl_table_next].lang = lang; 2094 fl_table_next++; 2095 } 2096 2097 static char *ext_args; 2098 2099 static void 2100 set_ext_lang_command (char *args, int from_tty) 2101 { 2102 int i; 2103 char *cp = ext_args; 2104 enum language lang; 2105 2106 /* First arg is filename extension, starting with '.' */ 2107 if (*cp != '.') 2108 error ("'%s': Filename extension must begin with '.'", ext_args); 2109 2110 /* Find end of first arg. */ 2111 while (*cp && !isspace (*cp)) 2112 cp++; 2113 2114 if (*cp == '\0') 2115 error ("'%s': two arguments required -- filename extension and language", 2116 ext_args); 2117 2118 /* Null-terminate first arg */ 2119 *cp++ = '\0'; 2120 2121 /* Find beginning of second arg, which should be a source language. */ 2122 while (*cp && isspace (*cp)) 2123 cp++; 2124 2125 if (*cp == '\0') 2126 error ("'%s': two arguments required -- filename extension and language", 2127 ext_args); 2128 2129 /* Lookup the language from among those we know. */ 2130 lang = language_enum (cp); 2131 2132 /* Now lookup the filename extension: do we already know it? */ 2133 for (i = 0; i < fl_table_next; i++) 2134 if (0 == strcmp (ext_args, filename_language_table[i].ext)) 2135 break; 2136 2137 if (i >= fl_table_next) 2138 { 2139 /* new file extension */ 2140 add_filename_language (ext_args, lang); 2141 } 2142 else 2143 { 2144 /* redefining a previously known filename extension */ 2145 2146 /* if (from_tty) */ 2147 /* query ("Really make files of type %s '%s'?", */ 2148 /* ext_args, language_str (lang)); */ 2149 2150 xfree (filename_language_table[i].ext); 2151 filename_language_table[i].ext = xstrdup (ext_args); 2152 filename_language_table[i].lang = lang; 2153 } 2154 } 2155 2156 static void 2157 info_ext_lang_command (char *args, int from_tty) 2158 { 2159 int i; 2160 2161 printf_filtered ("Filename extensions and the languages they represent:"); 2162 printf_filtered ("\n\n"); 2163 for (i = 0; i < fl_table_next; i++) 2164 printf_filtered ("\t%s\t- %s\n", 2165 filename_language_table[i].ext, 2166 language_str (filename_language_table[i].lang)); 2167 } 2168 2169 static void 2170 init_filename_language_table (void) 2171 { 2172 if (fl_table_size == 0) /* protect against repetition */ 2173 { 2174 fl_table_size = 20; 2175 fl_table_next = 0; 2176 filename_language_table = 2177 xmalloc (fl_table_size * sizeof (*filename_language_table)); 2178 add_filename_language (".c", language_c); 2179 add_filename_language (".C", language_cplus); 2180 add_filename_language (".cc", language_cplus); 2181 add_filename_language (".cp", language_cplus); 2182 add_filename_language (".cpp", language_cplus); 2183 add_filename_language (".cxx", language_cplus); 2184 add_filename_language (".c++", language_cplus); 2185 add_filename_language (".java", language_java); 2186 add_filename_language (".class", language_java); 2187 add_filename_language (".m", language_objc); 2188 add_filename_language (".f", language_fortran); 2189 add_filename_language (".F", language_fortran); 2190 add_filename_language (".s", language_asm); 2191 add_filename_language (".S", language_asm); 2192 add_filename_language (".pas", language_pascal); 2193 add_filename_language (".p", language_pascal); 2194 add_filename_language (".pp", language_pascal); 2195 add_filename_language (".adb", language_ada); 2196 add_filename_language (".ads", language_ada); 2197 add_filename_language (".a", language_ada); 2198 add_filename_language (".ada", language_ada); 2199 } 2200 } 2201 2202 enum language 2203 deduce_language_from_filename (char *filename) 2204 { 2205 int i; 2206 char *cp; 2207 2208 if (filename != NULL) 2209 if ((cp = strrchr (filename, '.')) != NULL) 2210 for (i = 0; i < fl_table_next; i++) 2211 if (strcmp (cp, filename_language_table[i].ext) == 0) 2212 return filename_language_table[i].lang; 2213 2214 return language_unknown; 2215 } 2216 2217 /* allocate_symtab: 2218 2219 Allocate and partly initialize a new symbol table. Return a pointer 2220 to it. error() if no space. 2221 2222 Caller must set these fields: 2223 LINETABLE(symtab) 2224 symtab->blockvector 2225 symtab->dirname 2226 symtab->free_code 2227 symtab->free_ptr 2228 possibly free_named_symtabs (symtab->filename); 2229 */ 2230 2231 struct symtab * 2232 allocate_symtab (char *filename, struct objfile *objfile) 2233 { 2234 struct symtab *symtab; 2235 2236 symtab = (struct symtab *) 2237 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab)); 2238 memset (symtab, 0, sizeof (*symtab)); 2239 symtab->filename = obsavestring (filename, strlen (filename), 2240 &objfile->objfile_obstack); 2241 symtab->fullname = NULL; 2242 symtab->language = deduce_language_from_filename (filename); 2243 symtab->debugformat = obsavestring ("unknown", 7, 2244 &objfile->objfile_obstack); 2245 2246 /* Hook it to the objfile it comes from */ 2247 2248 symtab->objfile = objfile; 2249 symtab->next = objfile->symtabs; 2250 objfile->symtabs = symtab; 2251 2252 /* FIXME: This should go away. It is only defined for the Z8000, 2253 and the Z8000 definition of this macro doesn't have anything to 2254 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just 2255 here for convenience. */ 2256 #ifdef INIT_EXTRA_SYMTAB_INFO 2257 INIT_EXTRA_SYMTAB_INFO (symtab); 2258 #endif 2259 2260 return (symtab); 2261 } 2262 2263 struct partial_symtab * 2264 allocate_psymtab (char *filename, struct objfile *objfile) 2265 { 2266 struct partial_symtab *psymtab; 2267 2268 if (objfile->free_psymtabs) 2269 { 2270 psymtab = objfile->free_psymtabs; 2271 objfile->free_psymtabs = psymtab->next; 2272 } 2273 else 2274 psymtab = (struct partial_symtab *) 2275 obstack_alloc (&objfile->objfile_obstack, 2276 sizeof (struct partial_symtab)); 2277 2278 memset (psymtab, 0, sizeof (struct partial_symtab)); 2279 psymtab->filename = obsavestring (filename, strlen (filename), 2280 &objfile->objfile_obstack); 2281 psymtab->symtab = NULL; 2282 2283 /* Prepend it to the psymtab list for the objfile it belongs to. 2284 Psymtabs are searched in most recent inserted -> least recent 2285 inserted order. */ 2286 2287 psymtab->objfile = objfile; 2288 psymtab->next = objfile->psymtabs; 2289 objfile->psymtabs = psymtab; 2290 #if 0 2291 { 2292 struct partial_symtab **prev_pst; 2293 psymtab->objfile = objfile; 2294 psymtab->next = NULL; 2295 prev_pst = &(objfile->psymtabs); 2296 while ((*prev_pst) != NULL) 2297 prev_pst = &((*prev_pst)->next); 2298 (*prev_pst) = psymtab; 2299 } 2300 #endif 2301 2302 return (psymtab); 2303 } 2304 2305 void 2306 discard_psymtab (struct partial_symtab *pst) 2307 { 2308 struct partial_symtab **prev_pst; 2309 2310 /* From dbxread.c: 2311 Empty psymtabs happen as a result of header files which don't 2312 have any symbols in them. There can be a lot of them. But this 2313 check is wrong, in that a psymtab with N_SLINE entries but 2314 nothing else is not empty, but we don't realize that. Fixing 2315 that without slowing things down might be tricky. */ 2316 2317 /* First, snip it out of the psymtab chain */ 2318 2319 prev_pst = &(pst->objfile->psymtabs); 2320 while ((*prev_pst) != pst) 2321 prev_pst = &((*prev_pst)->next); 2322 (*prev_pst) = pst->next; 2323 2324 /* Next, put it on a free list for recycling */ 2325 2326 pst->next = pst->objfile->free_psymtabs; 2327 pst->objfile->free_psymtabs = pst; 2328 } 2329 2330 2331 /* Reset all data structures in gdb which may contain references to symbol 2332 table data. */ 2333 2334 void 2335 clear_symtab_users (void) 2336 { 2337 /* Someday, we should do better than this, by only blowing away 2338 the things that really need to be blown. */ 2339 clear_value_history (); 2340 clear_displays (); 2341 clear_internalvars (); 2342 breakpoint_re_set (); 2343 set_default_breakpoint (0, 0, 0, 0); 2344 clear_current_source_symtab_and_line (); 2345 clear_pc_function_cache (); 2346 if (deprecated_target_new_objfile_hook) 2347 deprecated_target_new_objfile_hook (NULL); 2348 varobj_refresh (); 2349 } 2350 2351 static void 2352 clear_symtab_users_cleanup (void *ignore) 2353 { 2354 clear_symtab_users (); 2355 } 2356 2357 /* clear_symtab_users_once: 2358 2359 This function is run after symbol reading, or from a cleanup. 2360 If an old symbol table was obsoleted, the old symbol table 2361 has been blown away, but the other GDB data structures that may 2362 reference it have not yet been cleared or re-directed. (The old 2363 symtab was zapped, and the cleanup queued, in free_named_symtab() 2364 below.) 2365 2366 This function can be queued N times as a cleanup, or called 2367 directly; it will do all the work the first time, and then will be a 2368 no-op until the next time it is queued. This works by bumping a 2369 counter at queueing time. Much later when the cleanup is run, or at 2370 the end of symbol processing (in case the cleanup is discarded), if 2371 the queued count is greater than the "done-count", we do the work 2372 and set the done-count to the queued count. If the queued count is 2373 less than or equal to the done-count, we just ignore the call. This 2374 is needed because reading a single .o file will often replace many 2375 symtabs (one per .h file, for example), and we don't want to reset 2376 the breakpoints N times in the user's face. 2377 2378 The reason we both queue a cleanup, and call it directly after symbol 2379 reading, is because the cleanup protects us in case of errors, but is 2380 discarded if symbol reading is successful. */ 2381 2382 #if 0 2383 /* FIXME: As free_named_symtabs is currently a big noop this function 2384 is no longer needed. */ 2385 static void clear_symtab_users_once (void); 2386 2387 static int clear_symtab_users_queued; 2388 static int clear_symtab_users_done; 2389 2390 static void 2391 clear_symtab_users_once (void) 2392 { 2393 /* Enforce once-per-`do_cleanups'-semantics */ 2394 if (clear_symtab_users_queued <= clear_symtab_users_done) 2395 return; 2396 clear_symtab_users_done = clear_symtab_users_queued; 2397 2398 clear_symtab_users (); 2399 } 2400 #endif 2401 2402 /* Delete the specified psymtab, and any others that reference it. */ 2403 2404 static void 2405 cashier_psymtab (struct partial_symtab *pst) 2406 { 2407 struct partial_symtab *ps, *pprev = NULL; 2408 int i; 2409 2410 /* Find its previous psymtab in the chain */ 2411 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) 2412 { 2413 if (ps == pst) 2414 break; 2415 pprev = ps; 2416 } 2417 2418 if (ps) 2419 { 2420 /* Unhook it from the chain. */ 2421 if (ps == pst->objfile->psymtabs) 2422 pst->objfile->psymtabs = ps->next; 2423 else 2424 pprev->next = ps->next; 2425 2426 /* FIXME, we can't conveniently deallocate the entries in the 2427 partial_symbol lists (global_psymbols/static_psymbols) that 2428 this psymtab points to. These just take up space until all 2429 the psymtabs are reclaimed. Ditto the dependencies list and 2430 filename, which are all in the objfile_obstack. */ 2431 2432 /* We need to cashier any psymtab that has this one as a dependency... */ 2433 again: 2434 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) 2435 { 2436 for (i = 0; i < ps->number_of_dependencies; i++) 2437 { 2438 if (ps->dependencies[i] == pst) 2439 { 2440 cashier_psymtab (ps); 2441 goto again; /* Must restart, chain has been munged. */ 2442 } 2443 } 2444 } 2445 } 2446 } 2447 2448 /* If a symtab or psymtab for filename NAME is found, free it along 2449 with any dependent breakpoints, displays, etc. 2450 Used when loading new versions of object modules with the "add-file" 2451 command. This is only called on the top-level symtab or psymtab's name; 2452 it is not called for subsidiary files such as .h files. 2453 2454 Return value is 1 if we blew away the environment, 0 if not. 2455 FIXME. The return value appears to never be used. 2456 2457 FIXME. I think this is not the best way to do this. We should 2458 work on being gentler to the environment while still cleaning up 2459 all stray pointers into the freed symtab. */ 2460 2461 int 2462 free_named_symtabs (char *name) 2463 { 2464 #if 0 2465 /* FIXME: With the new method of each objfile having it's own 2466 psymtab list, this function needs serious rethinking. In particular, 2467 why was it ever necessary to toss psymtabs with specific compilation 2468 unit filenames, as opposed to all psymtabs from a particular symbol 2469 file? -- fnf 2470 Well, the answer is that some systems permit reloading of particular 2471 compilation units. We want to blow away any old info about these 2472 compilation units, regardless of which objfiles they arrived in. --gnu. */ 2473 2474 struct symtab *s; 2475 struct symtab *prev; 2476 struct partial_symtab *ps; 2477 struct blockvector *bv; 2478 int blewit = 0; 2479 2480 /* We only wack things if the symbol-reload switch is set. */ 2481 if (!symbol_reloading) 2482 return 0; 2483 2484 /* Some symbol formats have trouble providing file names... */ 2485 if (name == 0 || *name == '\0') 2486 return 0; 2487 2488 /* Look for a psymtab with the specified name. */ 2489 2490 again2: 2491 for (ps = partial_symtab_list; ps; ps = ps->next) 2492 { 2493 if (strcmp (name, ps->filename) == 0) 2494 { 2495 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ 2496 goto again2; /* Must restart, chain has been munged */ 2497 } 2498 } 2499 2500 /* Look for a symtab with the specified name. */ 2501 2502 for (s = symtab_list; s; s = s->next) 2503 { 2504 if (strcmp (name, s->filename) == 0) 2505 break; 2506 prev = s; 2507 } 2508 2509 if (s) 2510 { 2511 if (s == symtab_list) 2512 symtab_list = s->next; 2513 else 2514 prev->next = s->next; 2515 2516 /* For now, queue a delete for all breakpoints, displays, etc., whether 2517 or not they depend on the symtab being freed. This should be 2518 changed so that only those data structures affected are deleted. */ 2519 2520 /* But don't delete anything if the symtab is empty. 2521 This test is necessary due to a bug in "dbxread.c" that 2522 causes empty symtabs to be created for N_SO symbols that 2523 contain the pathname of the object file. (This problem 2524 has been fixed in GDB 3.9x). */ 2525 2526 bv = BLOCKVECTOR (s); 2527 if (BLOCKVECTOR_NBLOCKS (bv) > 2 2528 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) 2529 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) 2530 { 2531 complaint (&symfile_complaints, "Replacing old symbols for `%s'", 2532 name); 2533 clear_symtab_users_queued++; 2534 make_cleanup (clear_symtab_users_once, 0); 2535 blewit = 1; 2536 } 2537 else 2538 { 2539 complaint (&symfile_complaints, "Empty symbol table found for `%s'", 2540 name); 2541 } 2542 2543 free_symtab (s); 2544 } 2545 else 2546 { 2547 /* It is still possible that some breakpoints will be affected 2548 even though no symtab was found, since the file might have 2549 been compiled without debugging, and hence not be associated 2550 with a symtab. In order to handle this correctly, we would need 2551 to keep a list of text address ranges for undebuggable files. 2552 For now, we do nothing, since this is a fairly obscure case. */ 2553 ; 2554 } 2555 2556 /* FIXME, what about the minimal symbol table? */ 2557 return blewit; 2558 #else 2559 return (0); 2560 #endif 2561 } 2562 2563 /* Allocate and partially fill a partial symtab. It will be 2564 completely filled at the end of the symbol list. 2565 2566 FILENAME is the name of the symbol-file we are reading from. */ 2567 2568 struct partial_symtab * 2569 start_psymtab_common (struct objfile *objfile, 2570 struct section_offsets *section_offsets, char *filename, 2571 CORE_ADDR textlow, struct partial_symbol **global_syms, 2572 struct partial_symbol **static_syms) 2573 { 2574 struct partial_symtab *psymtab; 2575 2576 psymtab = allocate_psymtab (filename, objfile); 2577 psymtab->section_offsets = section_offsets; 2578 psymtab->textlow = textlow; 2579 psymtab->texthigh = psymtab->textlow; /* default */ 2580 psymtab->globals_offset = global_syms - objfile->global_psymbols.list; 2581 psymtab->statics_offset = static_syms - objfile->static_psymbols.list; 2582 return (psymtab); 2583 } 2584 2585 /* Add a symbol with a long value to a psymtab. 2586 Since one arg is a struct, we pass in a ptr and deref it (sigh). 2587 Return the partial symbol that has been added. */ 2588 2589 /* NOTE: carlton/2003-09-11: The reason why we return the partial 2590 symbol is so that callers can get access to the symbol's demangled 2591 name, which they don't have any cheap way to determine otherwise. 2592 (Currenly, dwarf2read.c is the only file who uses that information, 2593 though it's possible that other readers might in the future.) 2594 Elena wasn't thrilled about that, and I don't blame her, but we 2595 couldn't come up with a better way to get that information. If 2596 it's needed in other situations, we could consider breaking up 2597 SYMBOL_SET_NAMES to provide access to the demangled name lookup 2598 cache. */ 2599 2600 const struct partial_symbol * 2601 add_psymbol_to_list (char *name, int namelength, domain_enum domain, 2602 enum address_class class, 2603 struct psymbol_allocation_list *list, long val, /* Value as a long */ 2604 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */ 2605 enum language language, struct objfile *objfile) 2606 { 2607 struct partial_symbol *psym; 2608 char *buf = alloca (namelength + 1); 2609 /* psymbol is static so that there will be no uninitialized gaps in the 2610 structure which might contain random data, causing cache misses in 2611 bcache. */ 2612 static struct partial_symbol psymbol; 2613 2614 /* Create local copy of the partial symbol */ 2615 memcpy (buf, name, namelength); 2616 buf[namelength] = '\0'; 2617 /* val and coreaddr are mutually exclusive, one of them *will* be zero */ 2618 if (val != 0) 2619 { 2620 SYMBOL_VALUE (&psymbol) = val; 2621 } 2622 else 2623 { 2624 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; 2625 } 2626 SYMBOL_SECTION (&psymbol) = 0; 2627 SYMBOL_LANGUAGE (&psymbol) = language; 2628 PSYMBOL_DOMAIN (&psymbol) = domain; 2629 PSYMBOL_CLASS (&psymbol) = class; 2630 2631 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile); 2632 2633 /* Stash the partial symbol away in the cache */ 2634 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol), 2635 objfile->psymbol_cache); 2636 2637 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ 2638 if (list->next >= list->list + list->size) 2639 { 2640 extend_psymbol_list (list, objfile); 2641 } 2642 *list->next++ = psym; 2643 OBJSTAT (objfile, n_psyms++); 2644 2645 return psym; 2646 } 2647 2648 /* Add a symbol with a long value to a psymtab. This differs from 2649 * add_psymbol_to_list above in taking both a mangled and a demangled 2650 * name. */ 2651 2652 void 2653 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name, 2654 int dem_namelength, domain_enum domain, 2655 enum address_class class, 2656 struct psymbol_allocation_list *list, long val, /* Value as a long */ 2657 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */ 2658 enum language language, 2659 struct objfile *objfile) 2660 { 2661 struct partial_symbol *psym; 2662 char *buf = alloca (namelength + 1); 2663 /* psymbol is static so that there will be no uninitialized gaps in the 2664 structure which might contain random data, causing cache misses in 2665 bcache. */ 2666 static struct partial_symbol psymbol; 2667 2668 /* Create local copy of the partial symbol */ 2669 2670 memcpy (buf, name, namelength); 2671 buf[namelength] = '\0'; 2672 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1, 2673 objfile->psymbol_cache); 2674 2675 buf = alloca (dem_namelength + 1); 2676 memcpy (buf, dem_name, dem_namelength); 2677 buf[dem_namelength] = '\0'; 2678 2679 switch (language) 2680 { 2681 case language_c: 2682 case language_cplus: 2683 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) = 2684 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache); 2685 break; 2686 /* FIXME What should be done for the default case? Ignoring for now. */ 2687 } 2688 2689 /* val and coreaddr are mutually exclusive, one of them *will* be zero */ 2690 if (val != 0) 2691 { 2692 SYMBOL_VALUE (&psymbol) = val; 2693 } 2694 else 2695 { 2696 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; 2697 } 2698 SYMBOL_SECTION (&psymbol) = 0; 2699 SYMBOL_LANGUAGE (&psymbol) = language; 2700 PSYMBOL_DOMAIN (&psymbol) = domain; 2701 PSYMBOL_CLASS (&psymbol) = class; 2702 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); 2703 2704 /* Stash the partial symbol away in the cache */ 2705 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol), 2706 objfile->psymbol_cache); 2707 2708 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ 2709 if (list->next >= list->list + list->size) 2710 { 2711 extend_psymbol_list (list, objfile); 2712 } 2713 *list->next++ = psym; 2714 OBJSTAT (objfile, n_psyms++); 2715 } 2716 2717 /* Initialize storage for partial symbols. */ 2718 2719 void 2720 init_psymbol_list (struct objfile *objfile, int total_symbols) 2721 { 2722 /* Free any previously allocated psymbol lists. */ 2723 2724 if (objfile->global_psymbols.list) 2725 { 2726 xfree (objfile->global_psymbols.list); 2727 } 2728 if (objfile->static_psymbols.list) 2729 { 2730 xfree (objfile->static_psymbols.list); 2731 } 2732 2733 /* Current best guess is that approximately a twentieth 2734 of the total symbols (in a debugging file) are global or static 2735 oriented symbols */ 2736 2737 objfile->global_psymbols.size = total_symbols / 10; 2738 objfile->static_psymbols.size = total_symbols / 10; 2739 2740 if (objfile->global_psymbols.size > 0) 2741 { 2742 objfile->global_psymbols.next = 2743 objfile->global_psymbols.list = (struct partial_symbol **) 2744 xmalloc ((objfile->global_psymbols.size 2745 * sizeof (struct partial_symbol *))); 2746 } 2747 if (objfile->static_psymbols.size > 0) 2748 { 2749 objfile->static_psymbols.next = 2750 objfile->static_psymbols.list = (struct partial_symbol **) 2751 xmalloc ((objfile->static_psymbols.size 2752 * sizeof (struct partial_symbol *))); 2753 } 2754 } 2755 2756 /* OVERLAYS: 2757 The following code implements an abstraction for debugging overlay sections. 2758 2759 The target model is as follows: 2760 1) The gnu linker will permit multiple sections to be mapped into the 2761 same VMA, each with its own unique LMA (or load address). 2762 2) It is assumed that some runtime mechanism exists for mapping the 2763 sections, one by one, from the load address into the VMA address. 2764 3) This code provides a mechanism for gdb to keep track of which 2765 sections should be considered to be mapped from the VMA to the LMA. 2766 This information is used for symbol lookup, and memory read/write. 2767 For instance, if a section has been mapped then its contents 2768 should be read from the VMA, otherwise from the LMA. 2769 2770 Two levels of debugger support for overlays are available. One is 2771 "manual", in which the debugger relies on the user to tell it which 2772 overlays are currently mapped. This level of support is 2773 implemented entirely in the core debugger, and the information about 2774 whether a section is mapped is kept in the objfile->obj_section table. 2775 2776 The second level of support is "automatic", and is only available if 2777 the target-specific code provides functionality to read the target's 2778 overlay mapping table, and translate its contents for the debugger 2779 (by updating the mapped state information in the obj_section tables). 2780 2781 The interface is as follows: 2782 User commands: 2783 overlay map <name> -- tell gdb to consider this section mapped 2784 overlay unmap <name> -- tell gdb to consider this section unmapped 2785 overlay list -- list the sections that GDB thinks are mapped 2786 overlay read-target -- get the target's state of what's mapped 2787 overlay off/manual/auto -- set overlay debugging state 2788 Functional interface: 2789 find_pc_mapped_section(pc): if the pc is in the range of a mapped 2790 section, return that section. 2791 find_pc_overlay(pc): find any overlay section that contains 2792 the pc, either in its VMA or its LMA 2793 overlay_is_mapped(sect): true if overlay is marked as mapped 2794 section_is_overlay(sect): true if section's VMA != LMA 2795 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA 2796 pc_in_unmapped_range(...): true if pc belongs to section's LMA 2797 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap 2798 overlay_mapped_address(...): map an address from section's LMA to VMA 2799 overlay_unmapped_address(...): map an address from section's VMA to LMA 2800 symbol_overlayed_address(...): Return a "current" address for symbol: 2801 either in VMA or LMA depending on whether 2802 the symbol's section is currently mapped 2803 */ 2804 2805 /* Overlay debugging state: */ 2806 2807 enum overlay_debugging_state overlay_debugging = ovly_off; 2808 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */ 2809 2810 /* Target vector for refreshing overlay mapped state */ 2811 static void simple_overlay_update (struct obj_section *); 2812 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update; 2813 2814 /* Function: section_is_overlay (SECTION) 2815 Returns true if SECTION has VMA not equal to LMA, ie. 2816 SECTION is loaded at an address different from where it will "run". */ 2817 2818 int 2819 section_is_overlay (asection *section) 2820 { 2821 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */ 2822 2823 if (overlay_debugging) 2824 if (section && section->lma != 0 && 2825 section->vma != section->lma) 2826 return 1; 2827 2828 return 0; 2829 } 2830 2831 /* Function: overlay_invalidate_all (void) 2832 Invalidate the mapped state of all overlay sections (mark it as stale). */ 2833 2834 static void 2835 overlay_invalidate_all (void) 2836 { 2837 struct objfile *objfile; 2838 struct obj_section *sect; 2839 2840 ALL_OBJSECTIONS (objfile, sect) 2841 if (section_is_overlay (sect->the_bfd_section)) 2842 sect->ovly_mapped = -1; 2843 } 2844 2845 /* Function: overlay_is_mapped (SECTION) 2846 Returns true if section is an overlay, and is currently mapped. 2847 Private: public access is thru function section_is_mapped. 2848 2849 Access to the ovly_mapped flag is restricted to this function, so 2850 that we can do automatic update. If the global flag 2851 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call 2852 overlay_invalidate_all. If the mapped state of the particular 2853 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ 2854 2855 static int 2856 overlay_is_mapped (struct obj_section *osect) 2857 { 2858 if (osect == 0 || !section_is_overlay (osect->the_bfd_section)) 2859 return 0; 2860 2861 switch (overlay_debugging) 2862 { 2863 default: 2864 case ovly_off: 2865 return 0; /* overlay debugging off */ 2866 case ovly_auto: /* overlay debugging automatic */ 2867 /* Unles there is a target_overlay_update function, 2868 there's really nothing useful to do here (can't really go auto) */ 2869 if (target_overlay_update) 2870 { 2871 if (overlay_cache_invalid) 2872 { 2873 overlay_invalidate_all (); 2874 overlay_cache_invalid = 0; 2875 } 2876 if (osect->ovly_mapped == -1) 2877 (*target_overlay_update) (osect); 2878 } 2879 /* fall thru to manual case */ 2880 case ovly_on: /* overlay debugging manual */ 2881 return osect->ovly_mapped == 1; 2882 } 2883 } 2884 2885 /* Function: section_is_mapped 2886 Returns true if section is an overlay, and is currently mapped. */ 2887 2888 int 2889 section_is_mapped (asection *section) 2890 { 2891 struct objfile *objfile; 2892 struct obj_section *osect; 2893 2894 if (overlay_debugging) 2895 if (section && section_is_overlay (section)) 2896 ALL_OBJSECTIONS (objfile, osect) 2897 if (osect->the_bfd_section == section) 2898 return overlay_is_mapped (osect); 2899 2900 return 0; 2901 } 2902 2903 /* Function: pc_in_unmapped_range 2904 If PC falls into the lma range of SECTION, return true, else false. */ 2905 2906 CORE_ADDR 2907 pc_in_unmapped_range (CORE_ADDR pc, asection *section) 2908 { 2909 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */ 2910 2911 int size; 2912 2913 if (overlay_debugging) 2914 if (section && section_is_overlay (section)) 2915 { 2916 size = bfd_get_section_size (section); 2917 if (section->lma <= pc && pc < section->lma + size) 2918 return 1; 2919 } 2920 return 0; 2921 } 2922 2923 /* Function: pc_in_mapped_range 2924 If PC falls into the vma range of SECTION, return true, else false. */ 2925 2926 CORE_ADDR 2927 pc_in_mapped_range (CORE_ADDR pc, asection *section) 2928 { 2929 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */ 2930 2931 int size; 2932 2933 if (overlay_debugging) 2934 if (section && section_is_overlay (section)) 2935 { 2936 size = bfd_get_section_size (section); 2937 if (section->vma <= pc && pc < section->vma + size) 2938 return 1; 2939 } 2940 return 0; 2941 } 2942 2943 2944 /* Return true if the mapped ranges of sections A and B overlap, false 2945 otherwise. */ 2946 static int 2947 sections_overlap (asection *a, asection *b) 2948 { 2949 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */ 2950 2951 CORE_ADDR a_start = a->vma; 2952 CORE_ADDR a_end = a->vma + bfd_get_section_size (a); 2953 CORE_ADDR b_start = b->vma; 2954 CORE_ADDR b_end = b->vma + bfd_get_section_size (b); 2955 2956 return (a_start < b_end && b_start < a_end); 2957 } 2958 2959 /* Function: overlay_unmapped_address (PC, SECTION) 2960 Returns the address corresponding to PC in the unmapped (load) range. 2961 May be the same as PC. */ 2962 2963 CORE_ADDR 2964 overlay_unmapped_address (CORE_ADDR pc, asection *section) 2965 { 2966 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */ 2967 2968 if (overlay_debugging) 2969 if (section && section_is_overlay (section) && 2970 pc_in_mapped_range (pc, section)) 2971 return pc + section->lma - section->vma; 2972 2973 return pc; 2974 } 2975 2976 /* Function: overlay_mapped_address (PC, SECTION) 2977 Returns the address corresponding to PC in the mapped (runtime) range. 2978 May be the same as PC. */ 2979 2980 CORE_ADDR 2981 overlay_mapped_address (CORE_ADDR pc, asection *section) 2982 { 2983 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */ 2984 2985 if (overlay_debugging) 2986 if (section && section_is_overlay (section) && 2987 pc_in_unmapped_range (pc, section)) 2988 return pc + section->vma - section->lma; 2989 2990 return pc; 2991 } 2992 2993 2994 /* Function: symbol_overlayed_address 2995 Return one of two addresses (relative to the VMA or to the LMA), 2996 depending on whether the section is mapped or not. */ 2997 2998 CORE_ADDR 2999 symbol_overlayed_address (CORE_ADDR address, asection *section) 3000 { 3001 if (overlay_debugging) 3002 { 3003 /* If the symbol has no section, just return its regular address. */ 3004 if (section == 0) 3005 return address; 3006 /* If the symbol's section is not an overlay, just return its address */ 3007 if (!section_is_overlay (section)) 3008 return address; 3009 /* If the symbol's section is mapped, just return its address */ 3010 if (section_is_mapped (section)) 3011 return address; 3012 /* 3013 * HOWEVER: if the symbol is in an overlay section which is NOT mapped, 3014 * then return its LOADED address rather than its vma address!! 3015 */ 3016 return overlay_unmapped_address (address, section); 3017 } 3018 return address; 3019 } 3020 3021 /* Function: find_pc_overlay (PC) 3022 Return the best-match overlay section for PC: 3023 If PC matches a mapped overlay section's VMA, return that section. 3024 Else if PC matches an unmapped section's VMA, return that section. 3025 Else if PC matches an unmapped section's LMA, return that section. */ 3026 3027 asection * 3028 find_pc_overlay (CORE_ADDR pc) 3029 { 3030 struct objfile *objfile; 3031 struct obj_section *osect, *best_match = NULL; 3032 3033 if (overlay_debugging) 3034 ALL_OBJSECTIONS (objfile, osect) 3035 if (section_is_overlay (osect->the_bfd_section)) 3036 { 3037 if (pc_in_mapped_range (pc, osect->the_bfd_section)) 3038 { 3039 if (overlay_is_mapped (osect)) 3040 return osect->the_bfd_section; 3041 else 3042 best_match = osect; 3043 } 3044 else if (pc_in_unmapped_range (pc, osect->the_bfd_section)) 3045 best_match = osect; 3046 } 3047 return best_match ? best_match->the_bfd_section : NULL; 3048 } 3049 3050 /* Function: find_pc_mapped_section (PC) 3051 If PC falls into the VMA address range of an overlay section that is 3052 currently marked as MAPPED, return that section. Else return NULL. */ 3053 3054 asection * 3055 find_pc_mapped_section (CORE_ADDR pc) 3056 { 3057 struct objfile *objfile; 3058 struct obj_section *osect; 3059 3060 if (overlay_debugging) 3061 ALL_OBJSECTIONS (objfile, osect) 3062 if (pc_in_mapped_range (pc, osect->the_bfd_section) && 3063 overlay_is_mapped (osect)) 3064 return osect->the_bfd_section; 3065 3066 return NULL; 3067 } 3068 3069 /* Function: list_overlays_command 3070 Print a list of mapped sections and their PC ranges */ 3071 3072 void 3073 list_overlays_command (char *args, int from_tty) 3074 { 3075 int nmapped = 0; 3076 struct objfile *objfile; 3077 struct obj_section *osect; 3078 3079 if (overlay_debugging) 3080 ALL_OBJSECTIONS (objfile, osect) 3081 if (overlay_is_mapped (osect)) 3082 { 3083 const char *name; 3084 bfd_vma lma, vma; 3085 int size; 3086 3087 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section); 3088 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section); 3089 size = bfd_get_section_size (osect->the_bfd_section); 3090 name = bfd_section_name (objfile->obfd, osect->the_bfd_section); 3091 3092 printf_filtered ("Section %s, loaded at ", name); 3093 print_address_numeric (lma, 1, gdb_stdout); 3094 puts_filtered (" - "); 3095 print_address_numeric (lma + size, 1, gdb_stdout); 3096 printf_filtered (", mapped at "); 3097 print_address_numeric (vma, 1, gdb_stdout); 3098 puts_filtered (" - "); 3099 print_address_numeric (vma + size, 1, gdb_stdout); 3100 puts_filtered ("\n"); 3101 3102 nmapped++; 3103 } 3104 if (nmapped == 0) 3105 printf_filtered ("No sections are mapped.\n"); 3106 } 3107 3108 /* Function: map_overlay_command 3109 Mark the named section as mapped (ie. residing at its VMA address). */ 3110 3111 void 3112 map_overlay_command (char *args, int from_tty) 3113 { 3114 struct objfile *objfile, *objfile2; 3115 struct obj_section *sec, *sec2; 3116 asection *bfdsec; 3117 3118 if (!overlay_debugging) 3119 error ("\ 3120 Overlay debugging not enabled. Use either the 'overlay auto' or\n\ 3121 the 'overlay manual' command."); 3122 3123 if (args == 0 || *args == 0) 3124 error ("Argument required: name of an overlay section"); 3125 3126 /* First, find a section matching the user supplied argument */ 3127 ALL_OBJSECTIONS (objfile, sec) 3128 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) 3129 { 3130 /* Now, check to see if the section is an overlay. */ 3131 bfdsec = sec->the_bfd_section; 3132 if (!section_is_overlay (bfdsec)) 3133 continue; /* not an overlay section */ 3134 3135 /* Mark the overlay as "mapped" */ 3136 sec->ovly_mapped = 1; 3137 3138 /* Next, make a pass and unmap any sections that are 3139 overlapped by this new section: */ 3140 ALL_OBJSECTIONS (objfile2, sec2) 3141 if (sec2->ovly_mapped 3142 && sec != sec2 3143 && sec->the_bfd_section != sec2->the_bfd_section 3144 && sections_overlap (sec->the_bfd_section, 3145 sec2->the_bfd_section)) 3146 { 3147 if (info_verbose) 3148 printf_unfiltered ("Note: section %s unmapped by overlap\n", 3149 bfd_section_name (objfile->obfd, 3150 sec2->the_bfd_section)); 3151 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */ 3152 } 3153 return; 3154 } 3155 error ("No overlay section called %s", args); 3156 } 3157 3158 /* Function: unmap_overlay_command 3159 Mark the overlay section as unmapped 3160 (ie. resident in its LMA address range, rather than the VMA range). */ 3161 3162 void 3163 unmap_overlay_command (char *args, int from_tty) 3164 { 3165 struct objfile *objfile; 3166 struct obj_section *sec; 3167 3168 if (!overlay_debugging) 3169 error ("\ 3170 Overlay debugging not enabled. Use either the 'overlay auto' or\n\ 3171 the 'overlay manual' command."); 3172 3173 if (args == 0 || *args == 0) 3174 error ("Argument required: name of an overlay section"); 3175 3176 /* First, find a section matching the user supplied argument */ 3177 ALL_OBJSECTIONS (objfile, sec) 3178 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) 3179 { 3180 if (!sec->ovly_mapped) 3181 error ("Section %s is not mapped", args); 3182 sec->ovly_mapped = 0; 3183 return; 3184 } 3185 error ("No overlay section called %s", args); 3186 } 3187 3188 /* Function: overlay_auto_command 3189 A utility command to turn on overlay debugging. 3190 Possibly this should be done via a set/show command. */ 3191 3192 static void 3193 overlay_auto_command (char *args, int from_tty) 3194 { 3195 overlay_debugging = ovly_auto; 3196 enable_overlay_breakpoints (); 3197 if (info_verbose) 3198 printf_unfiltered ("Automatic overlay debugging enabled."); 3199 } 3200 3201 /* Function: overlay_manual_command 3202 A utility command to turn on overlay debugging. 3203 Possibly this should be done via a set/show command. */ 3204 3205 static void 3206 overlay_manual_command (char *args, int from_tty) 3207 { 3208 overlay_debugging = ovly_on; 3209 disable_overlay_breakpoints (); 3210 if (info_verbose) 3211 printf_unfiltered ("Overlay debugging enabled."); 3212 } 3213 3214 /* Function: overlay_off_command 3215 A utility command to turn on overlay debugging. 3216 Possibly this should be done via a set/show command. */ 3217 3218 static void 3219 overlay_off_command (char *args, int from_tty) 3220 { 3221 overlay_debugging = ovly_off; 3222 disable_overlay_breakpoints (); 3223 if (info_verbose) 3224 printf_unfiltered ("Overlay debugging disabled."); 3225 } 3226 3227 static void 3228 overlay_load_command (char *args, int from_tty) 3229 { 3230 if (target_overlay_update) 3231 (*target_overlay_update) (NULL); 3232 else 3233 error ("This target does not know how to read its overlay state."); 3234 } 3235 3236 /* Function: overlay_command 3237 A place-holder for a mis-typed command */ 3238 3239 /* Command list chain containing all defined "overlay" subcommands. */ 3240 struct cmd_list_element *overlaylist; 3241 3242 static void 3243 overlay_command (char *args, int from_tty) 3244 { 3245 printf_unfiltered 3246 ("\"overlay\" must be followed by the name of an overlay command.\n"); 3247 help_list (overlaylist, "overlay ", -1, gdb_stdout); 3248 } 3249 3250 3251 /* Target Overlays for the "Simplest" overlay manager: 3252 3253 This is GDB's default target overlay layer. It works with the 3254 minimal overlay manager supplied as an example by Cygnus. The 3255 entry point is via a function pointer "target_overlay_update", 3256 so targets that use a different runtime overlay manager can 3257 substitute their own overlay_update function and take over the 3258 function pointer. 3259 3260 The overlay_update function pokes around in the target's data structures 3261 to see what overlays are mapped, and updates GDB's overlay mapping with 3262 this information. 3263 3264 In this simple implementation, the target data structures are as follows: 3265 unsigned _novlys; /# number of overlay sections #/ 3266 unsigned _ovly_table[_novlys][4] = { 3267 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/ 3268 {..., ..., ..., ...}, 3269 } 3270 unsigned _novly_regions; /# number of overlay regions #/ 3271 unsigned _ovly_region_table[_novly_regions][3] = { 3272 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ 3273 {..., ..., ...}, 3274 } 3275 These functions will attempt to update GDB's mappedness state in the 3276 symbol section table, based on the target's mappedness state. 3277 3278 To do this, we keep a cached copy of the target's _ovly_table, and 3279 attempt to detect when the cached copy is invalidated. The main 3280 entry point is "simple_overlay_update(SECT), which looks up SECT in 3281 the cached table and re-reads only the entry for that section from 3282 the target (whenever possible). 3283 */ 3284 3285 /* Cached, dynamically allocated copies of the target data structures: */ 3286 static unsigned (*cache_ovly_table)[4] = 0; 3287 #if 0 3288 static unsigned (*cache_ovly_region_table)[3] = 0; 3289 #endif 3290 static unsigned cache_novlys = 0; 3291 #if 0 3292 static unsigned cache_novly_regions = 0; 3293 #endif 3294 static CORE_ADDR cache_ovly_table_base = 0; 3295 #if 0 3296 static CORE_ADDR cache_ovly_region_table_base = 0; 3297 #endif 3298 enum ovly_index 3299 { 3300 VMA, SIZE, LMA, MAPPED 3301 }; 3302 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT) 3303 3304 /* Throw away the cached copy of _ovly_table */ 3305 static void 3306 simple_free_overlay_table (void) 3307 { 3308 if (cache_ovly_table) 3309 xfree (cache_ovly_table); 3310 cache_novlys = 0; 3311 cache_ovly_table = NULL; 3312 cache_ovly_table_base = 0; 3313 } 3314 3315 #if 0 3316 /* Throw away the cached copy of _ovly_region_table */ 3317 static void 3318 simple_free_overlay_region_table (void) 3319 { 3320 if (cache_ovly_region_table) 3321 xfree (cache_ovly_region_table); 3322 cache_novly_regions = 0; 3323 cache_ovly_region_table = NULL; 3324 cache_ovly_region_table_base = 0; 3325 } 3326 #endif 3327 3328 /* Read an array of ints from the target into a local buffer. 3329 Convert to host order. int LEN is number of ints */ 3330 static void 3331 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len) 3332 { 3333 /* FIXME (alloca): Not safe if array is very large. */ 3334 char *buf = alloca (len * TARGET_LONG_BYTES); 3335 int i; 3336 3337 read_memory (memaddr, buf, len * TARGET_LONG_BYTES); 3338 for (i = 0; i < len; i++) 3339 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf, 3340 TARGET_LONG_BYTES); 3341 } 3342 3343 /* Find and grab a copy of the target _ovly_table 3344 (and _novlys, which is needed for the table's size) */ 3345 static int 3346 simple_read_overlay_table (void) 3347 { 3348 struct minimal_symbol *novlys_msym, *ovly_table_msym; 3349 3350 simple_free_overlay_table (); 3351 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL); 3352 if (! novlys_msym) 3353 { 3354 error ("Error reading inferior's overlay table: " 3355 "couldn't find `_novlys' variable\n" 3356 "in inferior. Use `overlay manual' mode."); 3357 return 0; 3358 } 3359 3360 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL); 3361 if (! ovly_table_msym) 3362 { 3363 error ("Error reading inferior's overlay table: couldn't find " 3364 "`_ovly_table' array\n" 3365 "in inferior. Use `overlay manual' mode."); 3366 return 0; 3367 } 3368 3369 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4); 3370 cache_ovly_table 3371 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table)); 3372 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym); 3373 read_target_long_array (cache_ovly_table_base, 3374 (int *) cache_ovly_table, 3375 cache_novlys * 4); 3376 3377 return 1; /* SUCCESS */ 3378 } 3379 3380 #if 0 3381 /* Find and grab a copy of the target _ovly_region_table 3382 (and _novly_regions, which is needed for the table's size) */ 3383 static int 3384 simple_read_overlay_region_table (void) 3385 { 3386 struct minimal_symbol *msym; 3387 3388 simple_free_overlay_region_table (); 3389 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL); 3390 if (msym != NULL) 3391 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); 3392 else 3393 return 0; /* failure */ 3394 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12); 3395 if (cache_ovly_region_table != NULL) 3396 { 3397 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL); 3398 if (msym != NULL) 3399 { 3400 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym); 3401 read_target_long_array (cache_ovly_region_table_base, 3402 (int *) cache_ovly_region_table, 3403 cache_novly_regions * 3); 3404 } 3405 else 3406 return 0; /* failure */ 3407 } 3408 else 3409 return 0; /* failure */ 3410 return 1; /* SUCCESS */ 3411 } 3412 #endif 3413 3414 /* Function: simple_overlay_update_1 3415 A helper function for simple_overlay_update. Assuming a cached copy 3416 of _ovly_table exists, look through it to find an entry whose vma, 3417 lma and size match those of OSECT. Re-read the entry and make sure 3418 it still matches OSECT (else the table may no longer be valid). 3419 Set OSECT's mapped state to match the entry. Return: 1 for 3420 success, 0 for failure. */ 3421 3422 static int 3423 simple_overlay_update_1 (struct obj_section *osect) 3424 { 3425 int i, size; 3426 bfd *obfd = osect->objfile->obfd; 3427 asection *bsect = osect->the_bfd_section; 3428 3429 size = bfd_get_section_size (osect->the_bfd_section); 3430 for (i = 0; i < cache_novlys; i++) 3431 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3432 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3433 /* && cache_ovly_table[i][SIZE] == size */ ) 3434 { 3435 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES, 3436 (int *) cache_ovly_table[i], 4); 3437 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3438 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3439 /* && cache_ovly_table[i][SIZE] == size */ ) 3440 { 3441 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3442 return 1; 3443 } 3444 else /* Warning! Warning! Target's ovly table has changed! */ 3445 return 0; 3446 } 3447 return 0; 3448 } 3449 3450 /* Function: simple_overlay_update 3451 If OSECT is NULL, then update all sections' mapped state 3452 (after re-reading the entire target _ovly_table). 3453 If OSECT is non-NULL, then try to find a matching entry in the 3454 cached ovly_table and update only OSECT's mapped state. 3455 If a cached entry can't be found or the cache isn't valid, then 3456 re-read the entire cache, and go ahead and update all sections. */ 3457 3458 static void 3459 simple_overlay_update (struct obj_section *osect) 3460 { 3461 struct objfile *objfile; 3462 3463 /* Were we given an osect to look up? NULL means do all of them. */ 3464 if (osect) 3465 /* Have we got a cached copy of the target's overlay table? */ 3466 if (cache_ovly_table != NULL) 3467 /* Does its cached location match what's currently in the symtab? */ 3468 if (cache_ovly_table_base == 3469 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL))) 3470 /* Then go ahead and try to look up this single section in the cache */ 3471 if (simple_overlay_update_1 (osect)) 3472 /* Found it! We're done. */ 3473 return; 3474 3475 /* Cached table no good: need to read the entire table anew. 3476 Or else we want all the sections, in which case it's actually 3477 more efficient to read the whole table in one block anyway. */ 3478 3479 if (! simple_read_overlay_table ()) 3480 return; 3481 3482 /* Now may as well update all sections, even if only one was requested. */ 3483 ALL_OBJSECTIONS (objfile, osect) 3484 if (section_is_overlay (osect->the_bfd_section)) 3485 { 3486 int i, size; 3487 bfd *obfd = osect->objfile->obfd; 3488 asection *bsect = osect->the_bfd_section; 3489 3490 size = bfd_get_section_size (bsect); 3491 for (i = 0; i < cache_novlys; i++) 3492 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3493 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3494 /* && cache_ovly_table[i][SIZE] == size */ ) 3495 { /* obj_section matches i'th entry in ovly_table */ 3496 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3497 break; /* finished with inner for loop: break out */ 3498 } 3499 } 3500 } 3501 3502 /* Set the output sections and output offsets for section SECTP in 3503 ABFD. The relocation code in BFD will read these offsets, so we 3504 need to be sure they're initialized. We map each section to itself, 3505 with no offset; this means that SECTP->vma will be honored. */ 3506 3507 static void 3508 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy) 3509 { 3510 sectp->output_section = sectp; 3511 sectp->output_offset = 0; 3512 } 3513 3514 /* Relocate the contents of a debug section SECTP in ABFD. The 3515 contents are stored in BUF if it is non-NULL, or returned in a 3516 malloc'd buffer otherwise. 3517 3518 For some platforms and debug info formats, shared libraries contain 3519 relocations against the debug sections (particularly for DWARF-2; 3520 one affected platform is PowerPC GNU/Linux, although it depends on 3521 the version of the linker in use). Also, ELF object files naturally 3522 have unresolved relocations for their debug sections. We need to apply 3523 the relocations in order to get the locations of symbols correct. */ 3524 3525 bfd_byte * 3526 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf) 3527 { 3528 /* We're only interested in debugging sections with relocation 3529 information. */ 3530 if ((sectp->flags & SEC_RELOC) == 0) 3531 return NULL; 3532 if ((sectp->flags & SEC_DEBUGGING) == 0) 3533 return NULL; 3534 3535 /* We will handle section offsets properly elsewhere, so relocate as if 3536 all sections begin at 0. */ 3537 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL); 3538 3539 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL); 3540 } 3541 3542 void 3543 _initialize_symfile (void) 3544 { 3545 struct cmd_list_element *c; 3546 3547 c = add_cmd ("symbol-file", class_files, symbol_file_command, 3548 "Load symbol table from executable file FILE.\n\ 3549 The `file' command can also load symbol tables, as well as setting the file\n\ 3550 to execute.", &cmdlist); 3551 set_cmd_completer (c, filename_completer); 3552 3553 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, 3554 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\ 3555 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\ 3556 ADDR is the starting address of the file's text.\n\ 3557 The optional arguments are section-name section-address pairs and\n\ 3558 should be specified if the data and bss segments are not contiguous\n\ 3559 with the text. SECT is a section name to be loaded at SECT_ADDR.", 3560 &cmdlist); 3561 set_cmd_completer (c, filename_completer); 3562 3563 c = add_cmd ("add-shared-symbol-files", class_files, 3564 add_shared_symbol_files_command, 3565 "Load the symbols from shared objects in the dynamic linker's link map.", 3566 &cmdlist); 3567 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1, 3568 &cmdlist); 3569 3570 c = add_cmd ("load", class_files, load_command, 3571 "Dynamically load FILE into the running program, and record its symbols\n\ 3572 for access from GDB.", &cmdlist); 3573 set_cmd_completer (c, filename_completer); 3574 3575 deprecated_add_show_from_set 3576 (add_set_cmd ("symbol-reloading", class_support, var_boolean, 3577 (char *) &symbol_reloading, 3578 "Set dynamic symbol table reloading multiple times in one run.", 3579 &setlist), 3580 &showlist); 3581 3582 add_prefix_cmd ("overlay", class_support, overlay_command, 3583 "Commands for debugging overlays.", &overlaylist, 3584 "overlay ", 0, &cmdlist); 3585 3586 add_com_alias ("ovly", "overlay", class_alias, 1); 3587 add_com_alias ("ov", "overlay", class_alias, 1); 3588 3589 add_cmd ("map-overlay", class_support, map_overlay_command, 3590 "Assert that an overlay section is mapped.", &overlaylist); 3591 3592 add_cmd ("unmap-overlay", class_support, unmap_overlay_command, 3593 "Assert that an overlay section is unmapped.", &overlaylist); 3594 3595 add_cmd ("list-overlays", class_support, list_overlays_command, 3596 "List mappings of overlay sections.", &overlaylist); 3597 3598 add_cmd ("manual", class_support, overlay_manual_command, 3599 "Enable overlay debugging.", &overlaylist); 3600 add_cmd ("off", class_support, overlay_off_command, 3601 "Disable overlay debugging.", &overlaylist); 3602 add_cmd ("auto", class_support, overlay_auto_command, 3603 "Enable automatic overlay debugging.", &overlaylist); 3604 add_cmd ("load-target", class_support, overlay_load_command, 3605 "Read the overlay mapping state from the target.", &overlaylist); 3606 3607 /* Filename extension to source language lookup table: */ 3608 init_filename_language_table (); 3609 c = add_set_cmd ("extension-language", class_files, var_string_noescape, 3610 (char *) &ext_args, 3611 "Set mapping between filename extension and source language.\n\ 3612 Usage: set extension-language .foo bar", 3613 &setlist); 3614 set_cmd_cfunc (c, set_ext_lang_command); 3615 3616 add_info ("extensions", info_ext_lang_command, 3617 "All filename extensions associated with a source language."); 3618 3619 deprecated_add_show_from_set 3620 (add_set_cmd ("download-write-size", class_obscure, 3621 var_integer, (char *) &download_write_size, 3622 "Set the write size used when downloading a program.\n" 3623 "Only used when downloading a program onto a remote\n" 3624 "target. Specify zero, or a negative value, to disable\n" 3625 "blocked writes. The actual size of each transfer is also\n" 3626 "limited by the size of the target packet and the memory\n" 3627 "cache.\n", 3628 &setlist), 3629 &showlist); 3630 3631 debug_file_directory = xstrdup (DEBUGDIR); 3632 c = (add_set_cmd 3633 ("debug-file-directory", class_support, var_string, 3634 (char *) &debug_file_directory, 3635 "Set the directory where separate debug symbols are searched for.\n" 3636 "Separate debug symbols are first searched for in the same\n" 3637 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY 3638 "' subdirectory,\n" 3639 "and lastly at the path of the directory of the binary with\n" 3640 "the global debug-file directory prepended\n", 3641 &setlist)); 3642 deprecated_add_show_from_set (c, &showlist); 3643 set_cmd_completer (c, filename_completer); 3644 } 3645