1 /* Low level packing and unpacking of values for GDB, the GNU Debugger. 2 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software 5 Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "gdb_string.h" 26 #include "symtab.h" 27 #include "gdbtypes.h" 28 #include "value.h" 29 #include "gdbcore.h" 30 #include "command.h" 31 #include "gdbcmd.h" 32 #include "target.h" 33 #include "language.h" 34 #include "scm-lang.h" 35 #include "demangle.h" 36 #include "doublest.h" 37 #include "gdb_assert.h" 38 #include "regcache.h" 39 #include "block.h" 40 41 /* Prototypes for exported functions. */ 42 43 void _initialize_values (void); 44 45 /* Prototypes for local functions. */ 46 47 static void show_values (char *, int); 48 49 static void show_convenience (char *, int); 50 51 52 /* The value-history records all the values printed 53 by print commands during this session. Each chunk 54 records 60 consecutive values. The first chunk on 55 the chain records the most recent values. 56 The total number of values is in value_history_count. */ 57 58 #define VALUE_HISTORY_CHUNK 60 59 60 struct value_history_chunk 61 { 62 struct value_history_chunk *next; 63 struct value *values[VALUE_HISTORY_CHUNK]; 64 }; 65 66 /* Chain of chunks now in use. */ 67 68 static struct value_history_chunk *value_history_chain; 69 70 static int value_history_count; /* Abs number of last entry stored */ 71 72 /* List of all value objects currently allocated 73 (except for those released by calls to release_value) 74 This is so they can be freed after each command. */ 75 76 static struct value *all_values; 77 78 /* Allocate a value that has the correct length for type TYPE. */ 79 80 struct value * 81 allocate_value (struct type *type) 82 { 83 struct value *val; 84 struct type *atype = check_typedef (type); 85 86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); 87 VALUE_NEXT (val) = all_values; 88 all_values = val; 89 VALUE_TYPE (val) = type; 90 VALUE_ENCLOSING_TYPE (val) = type; 91 VALUE_LVAL (val) = not_lval; 92 VALUE_ADDRESS (val) = 0; 93 VALUE_FRAME_ID (val) = null_frame_id; 94 VALUE_OFFSET (val) = 0; 95 VALUE_BITPOS (val) = 0; 96 VALUE_BITSIZE (val) = 0; 97 VALUE_REGNO (val) = -1; 98 VALUE_LAZY (val) = 0; 99 VALUE_OPTIMIZED_OUT (val) = 0; 100 VALUE_BFD_SECTION (val) = NULL; 101 VALUE_EMBEDDED_OFFSET (val) = 0; 102 VALUE_POINTED_TO_OFFSET (val) = 0; 103 val->modifiable = 1; 104 return val; 105 } 106 107 /* Allocate a value that has the correct length 108 for COUNT repetitions type TYPE. */ 109 110 struct value * 111 allocate_repeat_value (struct type *type, int count) 112 { 113 int low_bound = current_language->string_lower_bound; /* ??? */ 114 /* FIXME-type-allocation: need a way to free this type when we are 115 done with it. */ 116 struct type *range_type 117 = create_range_type ((struct type *) NULL, builtin_type_int, 118 low_bound, count + low_bound - 1); 119 /* FIXME-type-allocation: need a way to free this type when we are 120 done with it. */ 121 return allocate_value (create_array_type ((struct type *) NULL, 122 type, range_type)); 123 } 124 125 /* Return a mark in the value chain. All values allocated after the 126 mark is obtained (except for those released) are subject to being freed 127 if a subsequent value_free_to_mark is passed the mark. */ 128 struct value * 129 value_mark (void) 130 { 131 return all_values; 132 } 133 134 /* Free all values allocated since MARK was obtained by value_mark 135 (except for those released). */ 136 void 137 value_free_to_mark (struct value *mark) 138 { 139 struct value *val; 140 struct value *next; 141 142 for (val = all_values; val && val != mark; val = next) 143 { 144 next = VALUE_NEXT (val); 145 value_free (val); 146 } 147 all_values = val; 148 } 149 150 /* Free all the values that have been allocated (except for those released). 151 Called after each command, successful or not. */ 152 153 void 154 free_all_values (void) 155 { 156 struct value *val; 157 struct value *next; 158 159 for (val = all_values; val; val = next) 160 { 161 next = VALUE_NEXT (val); 162 value_free (val); 163 } 164 165 all_values = 0; 166 } 167 168 /* Remove VAL from the chain all_values 169 so it will not be freed automatically. */ 170 171 void 172 release_value (struct value *val) 173 { 174 struct value *v; 175 176 if (all_values == val) 177 { 178 all_values = val->next; 179 return; 180 } 181 182 for (v = all_values; v; v = v->next) 183 { 184 if (v->next == val) 185 { 186 v->next = val->next; 187 break; 188 } 189 } 190 } 191 192 /* Release all values up to mark */ 193 struct value * 194 value_release_to_mark (struct value *mark) 195 { 196 struct value *val; 197 struct value *next; 198 199 for (val = next = all_values; next; next = VALUE_NEXT (next)) 200 if (VALUE_NEXT (next) == mark) 201 { 202 all_values = VALUE_NEXT (next); 203 VALUE_NEXT (next) = 0; 204 return val; 205 } 206 all_values = 0; 207 return val; 208 } 209 210 /* Return a copy of the value ARG. 211 It contains the same contents, for same memory address, 212 but it's a different block of storage. */ 213 214 struct value * 215 value_copy (struct value *arg) 216 { 217 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg); 218 struct value *val = allocate_value (encl_type); 219 VALUE_TYPE (val) = VALUE_TYPE (arg); 220 VALUE_LVAL (val) = VALUE_LVAL (arg); 221 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); 222 VALUE_OFFSET (val) = VALUE_OFFSET (arg); 223 VALUE_BITPOS (val) = VALUE_BITPOS (arg); 224 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); 225 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); 226 VALUE_REGNO (val) = VALUE_REGNO (arg); 227 VALUE_LAZY (val) = VALUE_LAZY (arg); 228 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); 229 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg); 230 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg); 231 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg); 232 val->modifiable = arg->modifiable; 233 if (!VALUE_LAZY (val)) 234 { 235 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg), 236 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg))); 237 238 } 239 return val; 240 } 241 242 /* Access to the value history. */ 243 244 /* Record a new value in the value history. 245 Returns the absolute history index of the entry. 246 Result of -1 indicates the value was not saved; otherwise it is the 247 value history index of this new item. */ 248 249 int 250 record_latest_value (struct value *val) 251 { 252 int i; 253 254 /* We don't want this value to have anything to do with the inferior anymore. 255 In particular, "set $1 = 50" should not affect the variable from which 256 the value was taken, and fast watchpoints should be able to assume that 257 a value on the value history never changes. */ 258 if (VALUE_LAZY (val)) 259 value_fetch_lazy (val); 260 /* We preserve VALUE_LVAL so that the user can find out where it was fetched 261 from. This is a bit dubious, because then *&$1 does not just return $1 262 but the current contents of that location. c'est la vie... */ 263 val->modifiable = 0; 264 release_value (val); 265 266 /* Here we treat value_history_count as origin-zero 267 and applying to the value being stored now. */ 268 269 i = value_history_count % VALUE_HISTORY_CHUNK; 270 if (i == 0) 271 { 272 struct value_history_chunk *new 273 = (struct value_history_chunk *) 274 xmalloc (sizeof (struct value_history_chunk)); 275 memset (new->values, 0, sizeof new->values); 276 new->next = value_history_chain; 277 value_history_chain = new; 278 } 279 280 value_history_chain->values[i] = val; 281 282 /* Now we regard value_history_count as origin-one 283 and applying to the value just stored. */ 284 285 return ++value_history_count; 286 } 287 288 /* Return a copy of the value in the history with sequence number NUM. */ 289 290 struct value * 291 access_value_history (int num) 292 { 293 struct value_history_chunk *chunk; 294 int i; 295 int absnum = num; 296 297 if (absnum <= 0) 298 absnum += value_history_count; 299 300 if (absnum <= 0) 301 { 302 if (num == 0) 303 error ("The history is empty."); 304 else if (num == 1) 305 error ("There is only one value in the history."); 306 else 307 error ("History does not go back to $$%d.", -num); 308 } 309 if (absnum > value_history_count) 310 error ("History has not yet reached $%d.", absnum); 311 312 absnum--; 313 314 /* Now absnum is always absolute and origin zero. */ 315 316 chunk = value_history_chain; 317 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; 318 i > 0; i--) 319 chunk = chunk->next; 320 321 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); 322 } 323 324 /* Clear the value history entirely. 325 Must be done when new symbol tables are loaded, 326 because the type pointers become invalid. */ 327 328 void 329 clear_value_history (void) 330 { 331 struct value_history_chunk *next; 332 int i; 333 struct value *val; 334 335 while (value_history_chain) 336 { 337 for (i = 0; i < VALUE_HISTORY_CHUNK; i++) 338 if ((val = value_history_chain->values[i]) != NULL) 339 xfree (val); 340 next = value_history_chain->next; 341 xfree (value_history_chain); 342 value_history_chain = next; 343 } 344 value_history_count = 0; 345 } 346 347 static void 348 show_values (char *num_exp, int from_tty) 349 { 350 int i; 351 struct value *val; 352 static int num = 1; 353 354 if (num_exp) 355 { 356 /* "info history +" should print from the stored position. 357 "info history <exp>" should print around value number <exp>. */ 358 if (num_exp[0] != '+' || num_exp[1] != '\0') 359 num = parse_and_eval_long (num_exp) - 5; 360 } 361 else 362 { 363 /* "info history" means print the last 10 values. */ 364 num = value_history_count - 9; 365 } 366 367 if (num <= 0) 368 num = 1; 369 370 for (i = num; i < num + 10 && i <= value_history_count; i++) 371 { 372 val = access_value_history (i); 373 printf_filtered ("$%d = ", i); 374 value_print (val, gdb_stdout, 0, Val_pretty_default); 375 printf_filtered ("\n"); 376 } 377 378 /* The next "info history +" should start after what we just printed. */ 379 num += 10; 380 381 /* Hitting just return after this command should do the same thing as 382 "info history +". If num_exp is null, this is unnecessary, since 383 "info history +" is not useful after "info history". */ 384 if (from_tty && num_exp) 385 { 386 num_exp[0] = '+'; 387 num_exp[1] = '\0'; 388 } 389 } 390 391 /* Internal variables. These are variables within the debugger 392 that hold values assigned by debugger commands. 393 The user refers to them with a '$' prefix 394 that does not appear in the variable names stored internally. */ 395 396 static struct internalvar *internalvars; 397 398 /* Look up an internal variable with name NAME. NAME should not 399 normally include a dollar sign. 400 401 If the specified internal variable does not exist, 402 one is created, with a void value. */ 403 404 struct internalvar * 405 lookup_internalvar (char *name) 406 { 407 struct internalvar *var; 408 409 for (var = internalvars; var; var = var->next) 410 if (strcmp (var->name, name) == 0) 411 return var; 412 413 var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); 414 var->name = concat (name, NULL); 415 var->value = allocate_value (builtin_type_void); 416 release_value (var->value); 417 var->next = internalvars; 418 internalvars = var; 419 return var; 420 } 421 422 struct value * 423 value_of_internalvar (struct internalvar *var) 424 { 425 struct value *val; 426 427 val = value_copy (var->value); 428 if (VALUE_LAZY (val)) 429 value_fetch_lazy (val); 430 VALUE_LVAL (val) = lval_internalvar; 431 VALUE_INTERNALVAR (val) = var; 432 return val; 433 } 434 435 void 436 set_internalvar_component (struct internalvar *var, int offset, int bitpos, 437 int bitsize, struct value *newval) 438 { 439 char *addr = VALUE_CONTENTS (var->value) + offset; 440 441 if (bitsize) 442 modify_field (addr, value_as_long (newval), 443 bitpos, bitsize); 444 else 445 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); 446 } 447 448 void 449 set_internalvar (struct internalvar *var, struct value *val) 450 { 451 struct value *newval; 452 453 newval = value_copy (val); 454 newval->modifiable = 1; 455 456 /* Force the value to be fetched from the target now, to avoid problems 457 later when this internalvar is referenced and the target is gone or 458 has changed. */ 459 if (VALUE_LAZY (newval)) 460 value_fetch_lazy (newval); 461 462 /* Begin code which must not call error(). If var->value points to 463 something free'd, an error() obviously leaves a dangling pointer. 464 But we also get a danling pointer if var->value points to 465 something in the value chain (i.e., before release_value is 466 called), because after the error free_all_values will get called before 467 long. */ 468 xfree (var->value); 469 var->value = newval; 470 release_value (newval); 471 /* End code which must not call error(). */ 472 } 473 474 char * 475 internalvar_name (struct internalvar *var) 476 { 477 return var->name; 478 } 479 480 /* Free all internalvars. Done when new symtabs are loaded, 481 because that makes the values invalid. */ 482 483 void 484 clear_internalvars (void) 485 { 486 struct internalvar *var; 487 488 while (internalvars) 489 { 490 var = internalvars; 491 internalvars = var->next; 492 xfree (var->name); 493 xfree (var->value); 494 xfree (var); 495 } 496 } 497 498 static void 499 show_convenience (char *ignore, int from_tty) 500 { 501 struct internalvar *var; 502 int varseen = 0; 503 504 for (var = internalvars; var; var = var->next) 505 { 506 if (!varseen) 507 { 508 varseen = 1; 509 } 510 printf_filtered ("$%s = ", var->name); 511 value_print (var->value, gdb_stdout, 0, Val_pretty_default); 512 printf_filtered ("\n"); 513 } 514 if (!varseen) 515 printf_unfiltered ("No debugger convenience variables now defined.\n\ 516 Convenience variables have names starting with \"$\";\n\ 517 use \"set\" as in \"set $foo = 5\" to define them.\n"); 518 } 519 520 /* Extract a value as a C number (either long or double). 521 Knows how to convert fixed values to double, or 522 floating values to long. 523 Does not deallocate the value. */ 524 525 LONGEST 526 value_as_long (struct value *val) 527 { 528 /* This coerces arrays and functions, which is necessary (e.g. 529 in disassemble_command). It also dereferences references, which 530 I suspect is the most logical thing to do. */ 531 COERCE_ARRAY (val); 532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); 533 } 534 535 DOUBLEST 536 value_as_double (struct value *val) 537 { 538 DOUBLEST foo; 539 int inv; 540 541 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); 542 if (inv) 543 error ("Invalid floating value found in program."); 544 return foo; 545 } 546 /* Extract a value as a C pointer. Does not deallocate the value. 547 Note that val's type may not actually be a pointer; value_as_long 548 handles all the cases. */ 549 CORE_ADDR 550 value_as_address (struct value *val) 551 { 552 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 553 whether we want this to be true eventually. */ 554 #if 0 555 /* ADDR_BITS_REMOVE is wrong if we are being called for a 556 non-address (e.g. argument to "signal", "info break", etc.), or 557 for pointers to char, in which the low bits *are* significant. */ 558 return ADDR_BITS_REMOVE (value_as_long (val)); 559 #else 560 561 /* There are several targets (IA-64, PowerPC, and others) which 562 don't represent pointers to functions as simply the address of 563 the function's entry point. For example, on the IA-64, a 564 function pointer points to a two-word descriptor, generated by 565 the linker, which contains the function's entry point, and the 566 value the IA-64 "global pointer" register should have --- to 567 support position-independent code. The linker generates 568 descriptors only for those functions whose addresses are taken. 569 570 On such targets, it's difficult for GDB to convert an arbitrary 571 function address into a function pointer; it has to either find 572 an existing descriptor for that function, or call malloc and 573 build its own. On some targets, it is impossible for GDB to 574 build a descriptor at all: the descriptor must contain a jump 575 instruction; data memory cannot be executed; and code memory 576 cannot be modified. 577 578 Upon entry to this function, if VAL is a value of type `function' 579 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then 580 VALUE_ADDRESS (val) is the address of the function. This is what 581 you'll get if you evaluate an expression like `main'. The call 582 to COERCE_ARRAY below actually does all the usual unary 583 conversions, which includes converting values of type `function' 584 to `pointer to function'. This is the challenging conversion 585 discussed above. Then, `unpack_long' will convert that pointer 586 back into an address. 587 588 So, suppose the user types `disassemble foo' on an architecture 589 with a strange function pointer representation, on which GDB 590 cannot build its own descriptors, and suppose further that `foo' 591 has no linker-built descriptor. The address->pointer conversion 592 will signal an error and prevent the command from running, even 593 though the next step would have been to convert the pointer 594 directly back into the same address. 595 596 The following shortcut avoids this whole mess. If VAL is a 597 function, just return its address directly. */ 598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC 599 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD) 600 return VALUE_ADDRESS (val); 601 602 COERCE_ARRAY (val); 603 604 /* Some architectures (e.g. Harvard), map instruction and data 605 addresses onto a single large unified address space. For 606 instance: An architecture may consider a large integer in the 607 range 0x10000000 .. 0x1000ffff to already represent a data 608 addresses (hence not need a pointer to address conversion) while 609 a small integer would still need to be converted integer to 610 pointer to address. Just assume such architectures handle all 611 integer conversions in a single function. */ 612 613 /* JimB writes: 614 615 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we 616 must admonish GDB hackers to make sure its behavior matches the 617 compiler's, whenever possible. 618 619 In general, I think GDB should evaluate expressions the same way 620 the compiler does. When the user copies an expression out of 621 their source code and hands it to a `print' command, they should 622 get the same value the compiler would have computed. Any 623 deviation from this rule can cause major confusion and annoyance, 624 and needs to be justified carefully. In other words, GDB doesn't 625 really have the freedom to do these conversions in clever and 626 useful ways. 627 628 AndrewC pointed out that users aren't complaining about how GDB 629 casts integers to pointers; they are complaining that they can't 630 take an address from a disassembly listing and give it to `x/i'. 631 This is certainly important. 632 633 Adding an architecture method like INTEGER_TO_ADDRESS certainly 634 makes it possible for GDB to "get it right" in all circumstances 635 --- the target has complete control over how things get done, so 636 people can Do The Right Thing for their target without breaking 637 anyone else. The standard doesn't specify how integers get 638 converted to pointers; usually, the ABI doesn't either, but 639 ABI-specific code is a more reasonable place to handle it. */ 640 641 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR 642 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF 643 && INTEGER_TO_ADDRESS_P ()) 644 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val)); 645 646 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); 647 #endif 648 } 649 650 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 651 as a long, or as a double, assuming the raw data is described 652 by type TYPE. Knows how to convert different sizes of values 653 and can convert between fixed and floating point. We don't assume 654 any alignment for the raw data. Return value is in host byte order. 655 656 If you want functions and arrays to be coerced to pointers, and 657 references to be dereferenced, call value_as_long() instead. 658 659 C++: It is assumed that the front-end has taken care of 660 all matters concerning pointers to members. A pointer 661 to member which reaches here is considered to be equivalent 662 to an INT (or some size). After all, it is only an offset. */ 663 664 LONGEST 665 unpack_long (struct type *type, const char *valaddr) 666 { 667 enum type_code code = TYPE_CODE (type); 668 int len = TYPE_LENGTH (type); 669 int nosign = TYPE_UNSIGNED (type); 670 671 if (current_language->la_language == language_scm 672 && is_scmvalue_type (type)) 673 return scm_unpack (type, valaddr, TYPE_CODE_INT); 674 675 switch (code) 676 { 677 case TYPE_CODE_TYPEDEF: 678 return unpack_long (check_typedef (type), valaddr); 679 case TYPE_CODE_ENUM: 680 case TYPE_CODE_BOOL: 681 case TYPE_CODE_INT: 682 case TYPE_CODE_CHAR: 683 case TYPE_CODE_RANGE: 684 if (nosign) 685 return extract_unsigned_integer (valaddr, len); 686 else 687 return extract_signed_integer (valaddr, len); 688 689 case TYPE_CODE_FLT: 690 return extract_typed_floating (valaddr, type); 691 692 case TYPE_CODE_PTR: 693 case TYPE_CODE_REF: 694 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 695 whether we want this to be true eventually. */ 696 return extract_typed_address (valaddr, type); 697 698 case TYPE_CODE_MEMBER: 699 error ("not implemented: member types in unpack_long"); 700 701 default: 702 error ("Value can't be converted to integer."); 703 } 704 return 0; /* Placate lint. */ 705 } 706 707 /* Return a double value from the specified type and address. 708 INVP points to an int which is set to 0 for valid value, 709 1 for invalid value (bad float format). In either case, 710 the returned double is OK to use. Argument is in target 711 format, result is in host format. */ 712 713 DOUBLEST 714 unpack_double (struct type *type, const char *valaddr, int *invp) 715 { 716 enum type_code code; 717 int len; 718 int nosign; 719 720 *invp = 0; /* Assume valid. */ 721 CHECK_TYPEDEF (type); 722 code = TYPE_CODE (type); 723 len = TYPE_LENGTH (type); 724 nosign = TYPE_UNSIGNED (type); 725 if (code == TYPE_CODE_FLT) 726 { 727 /* NOTE: cagney/2002-02-19: There was a test here to see if the 728 floating-point value was valid (using the macro 729 INVALID_FLOAT). That test/macro have been removed. 730 731 It turns out that only the VAX defined this macro and then 732 only in a non-portable way. Fixing the portability problem 733 wouldn't help since the VAX floating-point code is also badly 734 bit-rotten. The target needs to add definitions for the 735 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these 736 exactly describe the target floating-point format. The 737 problem here is that the corresponding floatformat_vax_f and 738 floatformat_vax_d values these methods should be set to are 739 also not defined either. Oops! 740 741 Hopefully someone will add both the missing floatformat 742 definitions and the new cases for floatformat_is_valid (). */ 743 744 if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) 745 { 746 *invp = 1; 747 return 0.0; 748 } 749 750 return extract_typed_floating (valaddr, type); 751 } 752 else if (nosign) 753 { 754 /* Unsigned -- be sure we compensate for signed LONGEST. */ 755 return (ULONGEST) unpack_long (type, valaddr); 756 } 757 else 758 { 759 /* Signed -- we are OK with unpack_long. */ 760 return unpack_long (type, valaddr); 761 } 762 } 763 764 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 765 as a CORE_ADDR, assuming the raw data is described by type TYPE. 766 We don't assume any alignment for the raw data. Return value is in 767 host byte order. 768 769 If you want functions and arrays to be coerced to pointers, and 770 references to be dereferenced, call value_as_address() instead. 771 772 C++: It is assumed that the front-end has taken care of 773 all matters concerning pointers to members. A pointer 774 to member which reaches here is considered to be equivalent 775 to an INT (or some size). After all, it is only an offset. */ 776 777 CORE_ADDR 778 unpack_pointer (struct type *type, const char *valaddr) 779 { 780 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 781 whether we want this to be true eventually. */ 782 return unpack_long (type, valaddr); 783 } 784 785 786 /* Get the value of the FIELDN'th field (which must be static) of 787 TYPE. Return NULL if the field doesn't exist or has been 788 optimized out. */ 789 790 struct value * 791 value_static_field (struct type *type, int fieldno) 792 { 793 struct value *retval; 794 795 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) 796 { 797 retval = value_at (TYPE_FIELD_TYPE (type, fieldno), 798 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno), 799 NULL); 800 } 801 else 802 { 803 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); 804 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL); 805 if (sym == NULL) 806 { 807 /* With some compilers, e.g. HP aCC, static data members are reported 808 as non-debuggable symbols */ 809 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); 810 if (!msym) 811 return NULL; 812 else 813 { 814 retval = value_at (TYPE_FIELD_TYPE (type, fieldno), 815 SYMBOL_VALUE_ADDRESS (msym), 816 SYMBOL_BFD_SECTION (msym)); 817 } 818 } 819 else 820 { 821 /* SYM should never have a SYMBOL_CLASS which will require 822 read_var_value to use the FRAME parameter. */ 823 if (symbol_read_needs_frame (sym)) 824 warning ("static field's value depends on the current " 825 "frame - bad debug info?"); 826 retval = read_var_value (sym, NULL); 827 } 828 if (retval && VALUE_LVAL (retval) == lval_memory) 829 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), 830 VALUE_ADDRESS (retval)); 831 } 832 return retval; 833 } 834 835 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. 836 You have to be careful here, since the size of the data area for the value 837 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger 838 than the old enclosing type, you have to allocate more space for the data. 839 The return value is a pointer to the new version of this value structure. */ 840 841 struct value * 842 value_change_enclosing_type (struct value *val, struct type *new_encl_type) 843 { 844 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))) 845 { 846 VALUE_ENCLOSING_TYPE (val) = new_encl_type; 847 return val; 848 } 849 else 850 { 851 struct value *new_val; 852 struct value *prev; 853 854 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); 855 856 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type; 857 858 /* We have to make sure this ends up in the same place in the value 859 chain as the original copy, so it's clean-up behavior is the same. 860 If the value has been released, this is a waste of time, but there 861 is no way to tell that in advance, so... */ 862 863 if (val != all_values) 864 { 865 for (prev = all_values; prev != NULL; prev = prev->next) 866 { 867 if (prev->next == val) 868 { 869 prev->next = new_val; 870 break; 871 } 872 } 873 } 874 875 return new_val; 876 } 877 } 878 879 /* Given a value ARG1 (offset by OFFSET bytes) 880 of a struct or union type ARG_TYPE, 881 extract and return the value of one of its (non-static) fields. 882 FIELDNO says which field. */ 883 884 struct value * 885 value_primitive_field (struct value *arg1, int offset, 886 int fieldno, struct type *arg_type) 887 { 888 struct value *v; 889 struct type *type; 890 891 CHECK_TYPEDEF (arg_type); 892 type = TYPE_FIELD_TYPE (arg_type, fieldno); 893 894 /* Handle packed fields */ 895 896 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) 897 { 898 v = value_from_longest (type, 899 unpack_field_as_long (arg_type, 900 VALUE_CONTENTS (arg1) 901 + offset, 902 fieldno)); 903 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; 904 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); 905 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset 906 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 907 } 908 else if (fieldno < TYPE_N_BASECLASSES (arg_type)) 909 { 910 /* This field is actually a base subobject, so preserve the 911 entire object's contents for later references to virtual 912 bases, etc. */ 913 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1)); 914 VALUE_TYPE (v) = type; 915 if (VALUE_LAZY (arg1)) 916 VALUE_LAZY (v) = 1; 917 else 918 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1), 919 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1))); 920 VALUE_OFFSET (v) = VALUE_OFFSET (arg1); 921 VALUE_EMBEDDED_OFFSET (v) 922 = offset + 923 VALUE_EMBEDDED_OFFSET (arg1) + 924 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 925 } 926 else 927 { 928 /* Plain old data member */ 929 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 930 v = allocate_value (type); 931 if (VALUE_LAZY (arg1)) 932 VALUE_LAZY (v) = 1; 933 else 934 memcpy (VALUE_CONTENTS_RAW (v), 935 VALUE_CONTENTS_RAW (arg1) + offset, 936 TYPE_LENGTH (type)); 937 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset 938 + VALUE_EMBEDDED_OFFSET (arg1); 939 } 940 VALUE_LVAL (v) = VALUE_LVAL (arg1); 941 if (VALUE_LVAL (arg1) == lval_internalvar) 942 VALUE_LVAL (v) = lval_internalvar_component; 943 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); 944 VALUE_REGNO (v) = VALUE_REGNO (arg1); 945 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset 946 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */ 947 return v; 948 } 949 950 /* Given a value ARG1 of a struct or union type, 951 extract and return the value of one of its (non-static) fields. 952 FIELDNO says which field. */ 953 954 struct value * 955 value_field (struct value *arg1, int fieldno) 956 { 957 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); 958 } 959 960 /* Return a non-virtual function as a value. 961 F is the list of member functions which contains the desired method. 962 J is an index into F which provides the desired method. 963 964 We only use the symbol for its address, so be happy with either a 965 full symbol or a minimal symbol. 966 */ 967 968 struct value * 969 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, 970 int offset) 971 { 972 struct value *v; 973 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); 974 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); 975 struct symbol *sym; 976 struct minimal_symbol *msym; 977 978 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL); 979 if (sym != NULL) 980 { 981 msym = NULL; 982 } 983 else 984 { 985 gdb_assert (sym == NULL); 986 msym = lookup_minimal_symbol (physname, NULL, NULL); 987 if (msym == NULL) 988 return NULL; 989 } 990 991 v = allocate_value (ftype); 992 if (sym) 993 { 994 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 995 } 996 else 997 { 998 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym); 999 } 1000 1001 if (arg1p) 1002 { 1003 if (type != VALUE_TYPE (*arg1p)) 1004 *arg1p = value_ind (value_cast (lookup_pointer_type (type), 1005 value_addr (*arg1p))); 1006 1007 /* Move the `this' pointer according to the offset. 1008 VALUE_OFFSET (*arg1p) += offset; 1009 */ 1010 } 1011 1012 return v; 1013 } 1014 1015 1016 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at 1017 VALADDR. 1018 1019 Extracting bits depends on endianness of the machine. Compute the 1020 number of least significant bits to discard. For big endian machines, 1021 we compute the total number of bits in the anonymous object, subtract 1022 off the bit count from the MSB of the object to the MSB of the 1023 bitfield, then the size of the bitfield, which leaves the LSB discard 1024 count. For little endian machines, the discard count is simply the 1025 number of bits from the LSB of the anonymous object to the LSB of the 1026 bitfield. 1027 1028 If the field is signed, we also do sign extension. */ 1029 1030 LONGEST 1031 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno) 1032 { 1033 ULONGEST val; 1034 ULONGEST valmask; 1035 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 1036 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 1037 int lsbcount; 1038 struct type *field_type; 1039 1040 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); 1041 field_type = TYPE_FIELD_TYPE (type, fieldno); 1042 CHECK_TYPEDEF (field_type); 1043 1044 /* Extract bits. See comment above. */ 1045 1046 if (BITS_BIG_ENDIAN) 1047 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); 1048 else 1049 lsbcount = (bitpos % 8); 1050 val >>= lsbcount; 1051 1052 /* If the field does not entirely fill a LONGEST, then zero the sign bits. 1053 If the field is signed, and is negative, then sign extend. */ 1054 1055 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) 1056 { 1057 valmask = (((ULONGEST) 1) << bitsize) - 1; 1058 val &= valmask; 1059 if (!TYPE_UNSIGNED (field_type)) 1060 { 1061 if (val & (valmask ^ (valmask >> 1))) 1062 { 1063 val |= ~valmask; 1064 } 1065 } 1066 } 1067 return (val); 1068 } 1069 1070 /* Modify the value of a bitfield. ADDR points to a block of memory in 1071 target byte order; the bitfield starts in the byte pointed to. FIELDVAL 1072 is the desired value of the field, in host byte order. BITPOS and BITSIZE 1073 indicate which bits (in target bit order) comprise the bitfield. */ 1074 1075 void 1076 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) 1077 { 1078 LONGEST oword; 1079 1080 /* If a negative fieldval fits in the field in question, chop 1081 off the sign extension bits. */ 1082 if (bitsize < (8 * (int) sizeof (fieldval)) 1083 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) 1084 fieldval = fieldval & ((1 << bitsize) - 1); 1085 1086 /* Warn if value is too big to fit in the field in question. */ 1087 if (bitsize < (8 * (int) sizeof (fieldval)) 1088 && 0 != (fieldval & ~((1 << bitsize) - 1))) 1089 { 1090 /* FIXME: would like to include fieldval in the message, but 1091 we don't have a sprintf_longest. */ 1092 warning ("Value does not fit in %d bits.", bitsize); 1093 1094 /* Truncate it, otherwise adjoining fields may be corrupted. */ 1095 fieldval = fieldval & ((1 << bitsize) - 1); 1096 } 1097 1098 oword = extract_signed_integer (addr, sizeof oword); 1099 1100 /* Shifting for bit field depends on endianness of the target machine. */ 1101 if (BITS_BIG_ENDIAN) 1102 bitpos = sizeof (oword) * 8 - bitpos - bitsize; 1103 1104 /* Mask out old value, while avoiding shifts >= size of oword */ 1105 if (bitsize < 8 * (int) sizeof (oword)) 1106 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos); 1107 else 1108 oword &= ~((~(ULONGEST) 0) << bitpos); 1109 oword |= fieldval << bitpos; 1110 1111 store_signed_integer (addr, sizeof oword, oword); 1112 } 1113 1114 /* Convert C numbers into newly allocated values */ 1115 1116 struct value * 1117 value_from_longest (struct type *type, LONGEST num) 1118 { 1119 struct value *val = allocate_value (type); 1120 enum type_code code; 1121 int len; 1122 retry: 1123 code = TYPE_CODE (type); 1124 len = TYPE_LENGTH (type); 1125 1126 switch (code) 1127 { 1128 case TYPE_CODE_TYPEDEF: 1129 type = check_typedef (type); 1130 goto retry; 1131 case TYPE_CODE_INT: 1132 case TYPE_CODE_CHAR: 1133 case TYPE_CODE_ENUM: 1134 case TYPE_CODE_BOOL: 1135 case TYPE_CODE_RANGE: 1136 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); 1137 break; 1138 1139 case TYPE_CODE_REF: 1140 case TYPE_CODE_PTR: 1141 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num); 1142 break; 1143 1144 default: 1145 error ("Unexpected type (%d) encountered for integer constant.", code); 1146 } 1147 return val; 1148 } 1149 1150 1151 /* Create a value representing a pointer of type TYPE to the address 1152 ADDR. */ 1153 struct value * 1154 value_from_pointer (struct type *type, CORE_ADDR addr) 1155 { 1156 struct value *val = allocate_value (type); 1157 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr); 1158 return val; 1159 } 1160 1161 1162 /* Create a value for a string constant to be stored locally 1163 (not in the inferior's memory space, but in GDB memory). 1164 This is analogous to value_from_longest, which also does not 1165 use inferior memory. String shall NOT contain embedded nulls. */ 1166 1167 struct value * 1168 value_from_string (char *ptr) 1169 { 1170 struct value *val; 1171 int len = strlen (ptr); 1172 int lowbound = current_language->string_lower_bound; 1173 struct type *string_char_type; 1174 struct type *rangetype; 1175 struct type *stringtype; 1176 1177 rangetype = create_range_type ((struct type *) NULL, 1178 builtin_type_int, 1179 lowbound, len + lowbound - 1); 1180 string_char_type = language_string_char_type (current_language, 1181 current_gdbarch); 1182 stringtype = create_array_type ((struct type *) NULL, 1183 string_char_type, 1184 rangetype); 1185 val = allocate_value (stringtype); 1186 memcpy (VALUE_CONTENTS_RAW (val), ptr, len); 1187 return val; 1188 } 1189 1190 struct value * 1191 value_from_double (struct type *type, DOUBLEST num) 1192 { 1193 struct value *val = allocate_value (type); 1194 struct type *base_type = check_typedef (type); 1195 enum type_code code = TYPE_CODE (base_type); 1196 int len = TYPE_LENGTH (base_type); 1197 1198 if (code == TYPE_CODE_FLT) 1199 { 1200 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num); 1201 } 1202 else 1203 error ("Unexpected type encountered for floating constant."); 1204 1205 return val; 1206 } 1207 1208 1209 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of 1210 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE 1211 is the type (which is known to be struct, union or array). 1212 1213 On most machines, the struct convention is used unless we are 1214 using gcc and the type is of a special size. */ 1215 /* As of about 31 Mar 93, GCC was changed to be compatible with the 1216 native compiler. GCC 2.3.3 was the last release that did it the 1217 old way. Since gcc2_compiled was not changed, we have no 1218 way to correctly win in all cases, so we just do the right thing 1219 for gcc1 and for gcc2 after this change. Thus it loses for gcc 1220 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled 1221 would cause more chaos than dealing with some struct returns being 1222 handled wrong. */ 1223 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is 1224 dead. */ 1225 1226 int 1227 generic_use_struct_convention (int gcc_p, struct type *value_type) 1228 { 1229 return !(TYPE_LENGTH (value_type) == 1 1230 || TYPE_LENGTH (value_type) == 2 1231 || TYPE_LENGTH (value_type) == 4 1232 || TYPE_LENGTH (value_type) == 8); 1233 } 1234 1235 /* Return true if the function returning the specified type is using 1236 the convention of returning structures in memory (passing in the 1237 address as a hidden first parameter). GCC_P is nonzero if compiled 1238 with GCC. */ 1239 1240 int 1241 using_struct_return (struct type *value_type, int gcc_p) 1242 { 1243 enum type_code code = TYPE_CODE (value_type); 1244 1245 if (code == TYPE_CODE_ERROR) 1246 error ("Function return type unknown."); 1247 1248 if (code == TYPE_CODE_VOID) 1249 /* A void return value is never in memory. See also corresponding 1250 code in "print_return_value". */ 1251 return 0; 1252 1253 /* Probe the architecture for the return-value convention. */ 1254 return (gdbarch_return_value (current_gdbarch, value_type, 1255 NULL, NULL, NULL) 1256 != RETURN_VALUE_REGISTER_CONVENTION); 1257 } 1258 1259 void 1260 _initialize_values (void) 1261 { 1262 add_cmd ("convenience", no_class, show_convenience, 1263 "Debugger convenience (\"$foo\") variables.\n\ 1264 These variables are created when you assign them values;\n\ 1265 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ 1266 A few convenience variables are given values automatically:\n\ 1267 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ 1268 \"$__\" holds the contents of the last address examined with \"x\".", 1269 &showlist); 1270 1271 add_cmd ("values", no_class, show_values, 1272 "Elements of value history around item number IDX (or last ten).", 1273 &showlist); 1274 } 1275