xref: /openbsd/gnu/usr.bin/binutils/gprof/cg_arcs.c (revision d415bd75)
1 /*
2  * Copyright (c) 1983, 1993, 2001
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include "libiberty.h"
30 #include "gprof.h"
31 #include "search_list.h"
32 #include "source.h"
33 #include "symtab.h"
34 #include "call_graph.h"
35 #include "cg_arcs.h"
36 #include "cg_dfn.h"
37 #include "cg_print.h"
38 #include "utils.h"
39 #include "sym_ids.h"
40 
41 static int cmp_topo PARAMS ((const PTR, const PTR));
42 static void propagate_time PARAMS ((Sym *));
43 static void cycle_time PARAMS ((void));
44 static void cycle_link PARAMS ((void));
45 static void inherit_flags PARAMS ((Sym *));
46 static void propagate_flags PARAMS ((Sym **));
47 static int cmp_total PARAMS ((const PTR, const PTR));
48 
49 Sym *cycle_header;
50 unsigned int num_cycles;
51 Arc **arcs;
52 unsigned int numarcs;
53 
54 /*
55  * Return TRUE iff PARENT has an arc to covers the address
56  * range covered by CHILD.
57  */
58 Arc *
59 arc_lookup (parent, child)
60      Sym *parent;
61      Sym *child;
62 {
63   Arc *arc;
64 
65   if (!parent || !child)
66     {
67       printf ("[arc_lookup] parent == 0 || child == 0\n");
68       return 0;
69     }
70   DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n",
71 			    parent->name, child->name));
72   for (arc = parent->cg.children; arc; arc = arc->next_child)
73     {
74       DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n",
75 				arc->parent->name, arc->child->name));
76       if (child->addr >= arc->child->addr
77 	  && child->end_addr <= arc->child->end_addr)
78 	{
79 	  return arc;
80 	}
81     }
82   return 0;
83 }
84 
85 
86 /*
87  * Add (or just increment) an arc:
88  */
89 void
90 arc_add (parent, child, count)
91      Sym *parent;
92      Sym *child;
93      unsigned long count;
94 {
95   static unsigned int maxarcs = 0;
96   Arc *arc, **newarcs;
97 
98   DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n",
99 			   count, parent->name, child->name));
100   arc = arc_lookup (parent, child);
101   if (arc)
102     {
103       /*
104        * A hit: just increment the count.
105        */
106       DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n",
107 			       arc->count, count));
108       arc->count += count;
109       return;
110     }
111   arc = (Arc *) xmalloc (sizeof (*arc));
112   memset (arc, 0, sizeof (*arc));
113   arc->parent = parent;
114   arc->child = child;
115   arc->count = count;
116 
117   /* If this isn't an arc for a recursive call to parent, then add it
118      to the array of arcs.  */
119   if (parent != child)
120     {
121       /* If we've exhausted space in our current array, get a new one
122 	 and copy the contents.   We might want to throttle the doubling
123 	 factor one day.  */
124       if (numarcs == maxarcs)
125 	{
126 	  /* Determine how much space we want to allocate.  */
127 	  if (maxarcs == 0)
128 	    maxarcs = 1;
129 	  maxarcs *= 2;
130 
131 	  /* Allocate the new array.  */
132 	  newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs);
133 
134 	  /* Copy the old array's contents into the new array.  */
135 	  memcpy (newarcs, arcs, numarcs * sizeof (Arc *));
136 
137 	  /* Free up the old array.  */
138 	  free (arcs);
139 
140 	  /* And make the new array be the current array.  */
141 	  arcs = newarcs;
142 	}
143 
144       /* Place this arc in the arc array.  */
145       arcs[numarcs++] = arc;
146     }
147 
148   /* prepend this child to the children of this parent: */
149   arc->next_child = parent->cg.children;
150   parent->cg.children = arc;
151 
152   /* prepend this parent to the parents of this child: */
153   arc->next_parent = child->cg.parents;
154   child->cg.parents = arc;
155 }
156 
157 
158 static int
159 cmp_topo (lp, rp)
160      const PTR lp;
161      const PTR rp;
162 {
163   const Sym *left = *(const Sym **) lp;
164   const Sym *right = *(const Sym **) rp;
165 
166   return left->cg.top_order - right->cg.top_order;
167 }
168 
169 
170 static void
171 propagate_time (parent)
172      Sym *parent;
173 {
174   Arc *arc;
175   Sym *child;
176   double share, prop_share;
177 
178   if (parent->cg.prop.fract == 0.0)
179     {
180       return;
181     }
182 
183   /* gather time from children of this parent: */
184 
185   for (arc = parent->cg.children; arc; arc = arc->next_child)
186     {
187       child = arc->child;
188       if (arc->count == 0 || child == parent || child->cg.prop.fract == 0)
189 	{
190 	  continue;
191 	}
192       if (child->cg.cyc.head != child)
193 	{
194 	  if (parent->cg.cyc.num == child->cg.cyc.num)
195 	    {
196 	      continue;
197 	    }
198 	  if (parent->cg.top_order <= child->cg.top_order)
199 	    {
200 	      fprintf (stderr, "[propagate] toporder botches\n");
201 	    }
202 	  child = child->cg.cyc.head;
203 	}
204       else
205 	{
206 	  if (parent->cg.top_order <= child->cg.top_order)
207 	    {
208 	      fprintf (stderr, "[propagate] toporder botches\n");
209 	      continue;
210 	    }
211 	}
212       if (child->ncalls == 0)
213 	{
214 	  continue;
215 	}
216 
217       /* distribute time for this arc: */
218       arc->time = child->hist.time * (((double) arc->count)
219 				      / ((double) child->ncalls));
220       arc->child_time = child->cg.child_time
221 	* (((double) arc->count) / ((double) child->ncalls));
222       share = arc->time + arc->child_time;
223       parent->cg.child_time += share;
224 
225       /* (1 - cg.prop.fract) gets lost along the way: */
226       prop_share = parent->cg.prop.fract * share;
227 
228       /* fix things for printing: */
229       parent->cg.prop.child += prop_share;
230       arc->time *= parent->cg.prop.fract;
231       arc->child_time *= parent->cg.prop.fract;
232 
233       /* add this share to the parent's cycle header, if any: */
234       if (parent->cg.cyc.head != parent)
235 	{
236 	  parent->cg.cyc.head->cg.child_time += share;
237 	  parent->cg.cyc.head->cg.prop.child += prop_share;
238 	}
239       DBG (PROPDEBUG,
240 	   printf ("[prop_time] child \t");
241 	   print_name (child);
242 	   printf (" with %f %f %lu/%lu\n", child->hist.time,
243 		   child->cg.child_time, arc->count, child->ncalls);
244 	   printf ("[prop_time] parent\t");
245 	   print_name (parent);
246 	   printf ("\n[prop_time] share %f\n", share));
247     }
248 }
249 
250 
251 /*
252  * Compute the time of a cycle as the sum of the times of all
253  * its members.
254  */
255 static void
256 cycle_time ()
257 {
258   Sym *member, *cyc;
259 
260   for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc)
261     {
262       for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next)
263 	{
264 	  if (member->cg.prop.fract == 0.0)
265 	    {
266 	      /*
267 	       * All members have the same propfraction except those
268 	       * that were excluded with -E.
269 	       */
270 	      continue;
271 	    }
272 	  cyc->hist.time += member->hist.time;
273 	}
274       cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time;
275     }
276 }
277 
278 
279 static void
280 cycle_link ()
281 {
282   Sym *sym, *cyc, *member;
283   Arc *arc;
284   int num;
285 
286   /* count the number of cycles, and initialize the cycle lists: */
287 
288   num_cycles = 0;
289   for (sym = symtab.base; sym < symtab.limit; ++sym)
290     {
291       /* this is how you find unattached cycles: */
292       if (sym->cg.cyc.head == sym && sym->cg.cyc.next)
293 	{
294 	  ++num_cycles;
295 	}
296     }
297 
298   /*
299    * cycle_header is indexed by cycle number: i.e. it is origin 1,
300    * not origin 0.
301    */
302   cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym));
303 
304   /*
305    * Now link cycles to true cycle-heads, number them, accumulate
306    * the data for the cycle.
307    */
308   num = 0;
309   cyc = cycle_header;
310   for (sym = symtab.base; sym < symtab.limit; ++sym)
311     {
312       if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0))
313 	{
314 	  continue;
315 	}
316       ++num;
317       ++cyc;
318       sym_init (cyc);
319       cyc->cg.print_flag = TRUE;	/* should this be printed? */
320       cyc->cg.top_order = DFN_NAN;	/* graph call chain top-sort order */
321       cyc->cg.cyc.num = num;	/* internal number of cycle on */
322       cyc->cg.cyc.head = cyc;	/* pointer to head of cycle */
323       cyc->cg.cyc.next = sym;	/* pointer to next member of cycle */
324       DBG (CYCLEDEBUG, printf ("[cycle_link] ");
325 	   print_name (sym);
326 	   printf (" is the head of cycle %d\n", num));
327 
328       /* link members to cycle header: */
329       for (member = sym; member; member = member->cg.cyc.next)
330 	{
331 	  member->cg.cyc.num = num;
332 	  member->cg.cyc.head = cyc;
333 	}
334 
335       /*
336        * Count calls from outside the cycle and those among cycle
337        * members:
338        */
339       for (member = sym; member; member = member->cg.cyc.next)
340 	{
341 	  for (arc = member->cg.parents; arc; arc = arc->next_parent)
342 	    {
343 	      if (arc->parent == member)
344 		{
345 		  continue;
346 		}
347 	      if (arc->parent->cg.cyc.num == num)
348 		{
349 		  cyc->cg.self_calls += arc->count;
350 		}
351 	      else
352 		{
353 		  cyc->ncalls += arc->count;
354 		}
355 	    }
356 	}
357     }
358 }
359 
360 
361 /*
362  * Check if any parent of this child (or outside parents of this
363  * cycle) have their print flags on and set the print flag of the
364  * child (cycle) appropriately.  Similarly, deal with propagation
365  * fractions from parents.
366  */
367 static void
368 inherit_flags (child)
369      Sym *child;
370 {
371   Sym *head, *parent, *member;
372   Arc *arc;
373 
374   head = child->cg.cyc.head;
375   if (child == head)
376     {
377       /* just a regular child, check its parents: */
378       child->cg.print_flag = FALSE;
379       child->cg.prop.fract = 0.0;
380       for (arc = child->cg.parents; arc; arc = arc->next_parent)
381 	{
382 	  parent = arc->parent;
383 	  if (child == parent)
384 	    {
385 	      continue;
386 	    }
387 	  child->cg.print_flag |= parent->cg.print_flag;
388 	  /*
389 	   * If the child was never actually called (e.g., this arc
390 	   * is static (and all others are, too)) no time propagates
391 	   * along this arc.
392 	   */
393 	  if (child->ncalls != 0)
394 	    {
395 	      child->cg.prop.fract += parent->cg.prop.fract
396 		* (((double) arc->count) / ((double) child->ncalls));
397 	    }
398 	}
399     }
400   else
401     {
402       /*
403        * Its a member of a cycle, look at all parents from outside
404        * the cycle.
405        */
406       head->cg.print_flag = FALSE;
407       head->cg.prop.fract = 0.0;
408       for (member = head->cg.cyc.next; member; member = member->cg.cyc.next)
409 	{
410 	  for (arc = member->cg.parents; arc; arc = arc->next_parent)
411 	    {
412 	      if (arc->parent->cg.cyc.head == head)
413 		{
414 		  continue;
415 		}
416 	      parent = arc->parent;
417 	      head->cg.print_flag |= parent->cg.print_flag;
418 	      /*
419 	       * If the cycle was never actually called (e.g. this
420 	       * arc is static (and all others are, too)) no time
421 	       * propagates along this arc.
422 	       */
423 	      if (head->ncalls != 0)
424 		{
425 		  head->cg.prop.fract += parent->cg.prop.fract
426 		    * (((double) arc->count) / ((double) head->ncalls));
427 		}
428 	    }
429 	}
430       for (member = head; member; member = member->cg.cyc.next)
431 	{
432 	  member->cg.print_flag = head->cg.print_flag;
433 	  member->cg.prop.fract = head->cg.prop.fract;
434 	}
435     }
436 }
437 
438 
439 /*
440  * In one top-to-bottom pass over the topologically sorted symbols
441  * propagate:
442  *      cg.print_flag as the union of parents' print_flags
443  *      propfraction as the sum of fractional parents' propfractions
444  * and while we're here, sum time for functions.
445  */
446 static void
447 propagate_flags (symbols)
448      Sym **symbols;
449 {
450   int index;
451   Sym *old_head, *child;
452 
453   old_head = 0;
454   for (index = symtab.len - 1; index >= 0; --index)
455     {
456       child = symbols[index];
457       /*
458        * If we haven't done this function or cycle, inherit things
459        * from parent.  This way, we are linear in the number of arcs
460        * since we do all members of a cycle (and the cycle itself)
461        * as we hit the first member of the cycle.
462        */
463       if (child->cg.cyc.head != old_head)
464 	{
465 	  old_head = child->cg.cyc.head;
466 	  inherit_flags (child);
467 	}
468       DBG (PROPDEBUG,
469 	   printf ("[prop_flags] ");
470 	   print_name (child);
471 	   printf ("inherits print-flag %d and prop-fract %f\n",
472 		   child->cg.print_flag, child->cg.prop.fract));
473       if (!child->cg.print_flag)
474 	{
475 	  /*
476 	   * Printflag is off. It gets turned on by being in the
477 	   * INCL_GRAPH table, or there being an empty INCL_GRAPH
478 	   * table and not being in the EXCL_GRAPH table.
479 	   */
480 	  if (sym_lookup (&syms[INCL_GRAPH], child->addr)
481 	      || (syms[INCL_GRAPH].len == 0
482 		  && !sym_lookup (&syms[EXCL_GRAPH], child->addr)))
483 	    {
484 	      child->cg.print_flag = TRUE;
485 	    }
486 	}
487       else
488 	{
489 	  /*
490 	   * This function has printing parents: maybe someone wants
491 	   * to shut it up by putting it in the EXCL_GRAPH table.
492 	   * (But favor INCL_GRAPH over EXCL_GRAPH.)
493 	   */
494 	  if (!sym_lookup (&syms[INCL_GRAPH], child->addr)
495 	      && sym_lookup (&syms[EXCL_GRAPH], child->addr))
496 	    {
497 	      child->cg.print_flag = FALSE;
498 	    }
499 	}
500       if (child->cg.prop.fract == 0.0)
501 	{
502 	  /*
503 	   * No parents to pass time to.  Collect time from children
504 	   * if its in the INCL_TIME table, or there is an empty
505 	   * INCL_TIME table and its not in the EXCL_TIME table.
506 	   */
507 	  if (sym_lookup (&syms[INCL_TIME], child->addr)
508 	      || (syms[INCL_TIME].len == 0
509 		  && !sym_lookup (&syms[EXCL_TIME], child->addr)))
510 	    {
511 	      child->cg.prop.fract = 1.0;
512 	    }
513 	}
514       else
515 	{
516 	  /*
517 	   * It has parents to pass time to, but maybe someone wants
518 	   * to shut it up by puttting it in the EXCL_TIME table.
519 	   * (But favor being in INCL_TIME tabe over being in
520 	   * EXCL_TIME table.)
521 	   */
522 	  if (!sym_lookup (&syms[INCL_TIME], child->addr)
523 	      && sym_lookup (&syms[EXCL_TIME], child->addr))
524 	    {
525 	      child->cg.prop.fract = 0.0;
526 	    }
527 	}
528       child->cg.prop.self = child->hist.time * child->cg.prop.fract;
529       print_time += child->cg.prop.self;
530       DBG (PROPDEBUG,
531 	   printf ("[prop_flags] ");
532 	   print_name (child);
533 	   printf (" ends up with printflag %d and prop-fract %f\n",
534 		   child->cg.print_flag, child->cg.prop.fract);
535 	   printf ("[prop_flags] time %f propself %f print_time %f\n",
536 		   child->hist.time, child->cg.prop.self, print_time));
537     }
538 }
539 
540 
541 /*
542  * Compare by decreasing propagated time.  If times are equal, but one
543  * is a cycle header, say that's first (e.g. less, i.e. -1).  If one's
544  * name doesn't have an underscore and the other does, say that one is
545  * first.  All else being equal, compare by names.
546  */
547 static int
548 cmp_total (lp, rp)
549      const PTR lp;
550      const PTR rp;
551 {
552   const Sym *left = *(const Sym **) lp;
553   const Sym *right = *(const Sym **) rp;
554   double diff;
555 
556   diff = (left->cg.prop.self + left->cg.prop.child)
557     - (right->cg.prop.self + right->cg.prop.child);
558   if (diff < 0.0)
559     {
560       return 1;
561     }
562   if (diff > 0.0)
563     {
564       return -1;
565     }
566   if (!left->name && left->cg.cyc.num != 0)
567     {
568       return -1;
569     }
570   if (!right->name && right->cg.cyc.num != 0)
571     {
572       return 1;
573     }
574   if (!left->name)
575     {
576       return -1;
577     }
578   if (!right->name)
579     {
580       return 1;
581     }
582   if (left->name[0] != '_' && right->name[0] == '_')
583     {
584       return -1;
585     }
586   if (left->name[0] == '_' && right->name[0] != '_')
587     {
588       return 1;
589     }
590   if (left->ncalls > right->ncalls)
591     {
592       return -1;
593     }
594   if (left->ncalls < right->ncalls)
595     {
596       return 1;
597     }
598   return strcmp (left->name, right->name);
599 }
600 
601 
602 /*
603  * Topologically sort the graph (collapsing cycles), and propagates
604  * time bottom up and flags top down.
605  */
606 Sym **
607 cg_assemble ()
608 {
609   Sym *parent, **time_sorted_syms, **top_sorted_syms;
610   unsigned int index;
611   Arc *arc;
612 
613   /*
614    * initialize various things:
615    *      zero out child times.
616    *      count self-recursive calls.
617    *      indicate that nothing is on cycles.
618    */
619   for (parent = symtab.base; parent < symtab.limit; parent++)
620     {
621       parent->cg.child_time = 0.0;
622       arc = arc_lookup (parent, parent);
623       if (arc && parent == arc->child)
624 	{
625 	  parent->ncalls -= arc->count;
626 	  parent->cg.self_calls = arc->count;
627 	}
628       else
629 	{
630 	  parent->cg.self_calls = 0;
631 	}
632       parent->cg.prop.fract = 0.0;
633       parent->cg.prop.self = 0.0;
634       parent->cg.prop.child = 0.0;
635       parent->cg.print_flag = FALSE;
636       parent->cg.top_order = DFN_NAN;
637       parent->cg.cyc.num = 0;
638       parent->cg.cyc.head = parent;
639       parent->cg.cyc.next = 0;
640       if (ignore_direct_calls)
641 	{
642 	  find_call (parent, parent->addr, (parent + 1)->addr);
643 	}
644     }
645   /*
646    * Topologically order things.  If any node is unnumbered, number
647    * it and any of its descendents.
648    */
649   for (parent = symtab.base; parent < symtab.limit; parent++)
650     {
651       if (parent->cg.top_order == DFN_NAN)
652 	{
653 	  cg_dfn (parent);
654 	}
655     }
656 
657   /* link together nodes on the same cycle: */
658   cycle_link ();
659 
660   /* sort the symbol table in reverse topological order: */
661   top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
662   for (index = 0; index < symtab.len; ++index)
663     {
664       top_sorted_syms[index] = &symtab.base[index];
665     }
666   qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo);
667   DBG (DFNDEBUG,
668        printf ("[cg_assemble] topological sort listing\n");
669        for (index = 0; index < symtab.len; ++index)
670        {
671        printf ("[cg_assemble] ");
672        printf ("%d:", top_sorted_syms[index]->cg.top_order);
673        print_name (top_sorted_syms[index]);
674        printf ("\n");
675        }
676   );
677   /*
678    * Starting from the topological top, propagate print flags to
679    * children.  also, calculate propagation fractions.  this happens
680    * before time propagation since time propagation uses the
681    * fractions.
682    */
683   propagate_flags (top_sorted_syms);
684 
685   /*
686    * Starting from the topological bottom, propogate children times
687    * up to parents.
688    */
689   cycle_time ();
690   for (index = 0; index < symtab.len; ++index)
691     {
692       propagate_time (top_sorted_syms[index]);
693     }
694 
695   free (top_sorted_syms);
696 
697   /*
698    * Now, sort by CG.PROP.SELF + CG.PROP.CHILD.  Sorting both the regular
699    * function names and cycle headers.
700    */
701   time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *));
702   for (index = 0; index < symtab.len; index++)
703     {
704       time_sorted_syms[index] = &symtab.base[index];
705     }
706   for (index = 1; index <= num_cycles; index++)
707     {
708       time_sorted_syms[symtab.len + index - 1] = &cycle_header[index];
709     }
710   qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *),
711 	 cmp_total);
712   for (index = 0; index < symtab.len + num_cycles; index++)
713     {
714       time_sorted_syms[index]->cg.index = index + 1;
715     }
716   return time_sorted_syms;
717 }
718