1 /* Assemble Matsushita MN10200 instructions. 2 Copyright 1996, 1997, 2000 Free Software Foundation, Inc. 3 4 This program is free software; you can redistribute it and/or modify 5 it under the terms of the GNU General Public License as published by 6 the Free Software Foundation; either version 2 of the License, or 7 (at your option) any later version. 8 9 This program is distributed in the hope that it will be useful, 10 but WITHOUT ANY WARRANTY; without even the implied warranty of 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 GNU General Public License for more details. 13 14 You should have received a copy of the GNU General Public License 15 along with this program; if not, write to the Free Software 16 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 17 18 #include "sysdep.h" 19 #include "opcode/mn10200.h" 20 21 22 const struct mn10200_operand mn10200_operands[] = { 23 #define UNUSED 0 24 {0, 0, 0}, 25 26 /* dn register in the first register operand position. */ 27 #define DN0 (UNUSED+1) 28 {2, 0, MN10200_OPERAND_DREG}, 29 30 /* dn register in the second register operand position. */ 31 #define DN1 (DN0+1) 32 {2, 2, MN10200_OPERAND_DREG}, 33 34 /* dm register in the first register operand position. */ 35 #define DM0 (DN1+1) 36 {2, 0, MN10200_OPERAND_DREG}, 37 38 /* dm register in the second register operand position. */ 39 #define DM1 (DM0+1) 40 {2, 2, MN10200_OPERAND_DREG}, 41 42 /* an register in the first register operand position. */ 43 #define AN0 (DM1+1) 44 {2, 0, MN10200_OPERAND_AREG}, 45 46 /* an register in the second register operand position. */ 47 #define AN1 (AN0+1) 48 {2, 2, MN10200_OPERAND_AREG}, 49 50 /* am register in the first register operand position. */ 51 #define AM0 (AN1+1) 52 {2, 0, MN10200_OPERAND_AREG}, 53 54 /* am register in the second register operand position. */ 55 #define AM1 (AM0+1) 56 {2, 2, MN10200_OPERAND_AREG}, 57 58 /* 8 bit unsigned immediate which may promote to a 16bit 59 unsigned immediate. */ 60 #define IMM8 (AM1+1) 61 {8, 0, MN10200_OPERAND_PROMOTE}, 62 63 /* 16 bit unsigned immediate which may promote to a 32bit 64 unsigned immediate. */ 65 #define IMM16 (IMM8+1) 66 {16, 0, MN10200_OPERAND_PROMOTE}, 67 68 /* 16 bit pc-relative immediate which may promote to a 16bit 69 pc-relative immediate. */ 70 #define IMM16_PCREL (IMM16+1) 71 {16, 0, MN10200_OPERAND_PCREL | MN10200_OPERAND_RELAX | MN10200_OPERAND_SIGNED}, 72 73 /* 16bit unsigned dispacement in a memory operation which 74 may promote to a 32bit displacement. */ 75 #define IMM16_MEM (IMM16_PCREL+1) 76 {16, 0, MN10200_OPERAND_PROMOTE | MN10200_OPERAND_MEMADDR}, 77 78 /* 24 immediate, low 16 bits in the main instruction 79 word, 8 in the extension word. */ 80 81 #define IMM24 (IMM16_MEM+1) 82 {24, 0, MN10200_OPERAND_EXTENDED}, 83 84 /* 32bit pc-relative offset. */ 85 #define IMM24_PCREL (IMM24+1) 86 {24, 0, MN10200_OPERAND_EXTENDED | MN10200_OPERAND_PCREL | MN10200_OPERAND_SIGNED}, 87 88 /* 32bit memory offset. */ 89 #define IMM24_MEM (IMM24_PCREL+1) 90 {24, 0, MN10200_OPERAND_EXTENDED | MN10200_OPERAND_MEMADDR}, 91 92 /* Processor status word. */ 93 #define PSW (IMM24_MEM+1) 94 {0, 0, MN10200_OPERAND_PSW}, 95 96 /* MDR register. */ 97 #define MDR (PSW+1) 98 {0, 0, MN10200_OPERAND_MDR}, 99 100 /* Index register. */ 101 #define DI (MDR+1) 102 {2, 4, MN10200_OPERAND_DREG}, 103 104 /* 8 bit signed displacement, may promote to 16bit signed dispacement. */ 105 #define SD8 (DI+1) 106 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 107 108 /* 16 bit signed displacement, may promote to 32bit dispacement. */ 109 #define SD16 (SD8+1) 110 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 111 112 /* 8 bit pc-relative displacement. */ 113 #define SD8N_PCREL (SD16+1) 114 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PCREL | MN10200_OPERAND_RELAX}, 115 116 /* 8 bit signed immediate which may promote to 16bit signed immediate. */ 117 #define SIMM8 (SD8N_PCREL+1) 118 {8, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 119 120 /* 16 bit signed immediate which may promote to 32bit immediate. */ 121 #define SIMM16 (SIMM8+1) 122 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_PROMOTE}, 123 124 /* 16 bit signed immediate which may not promote. */ 125 #define SIMM16N (SIMM16+1) 126 {16, 0, MN10200_OPERAND_SIGNED | MN10200_OPERAND_NOCHECK}, 127 128 /* Either an open paren or close paren. */ 129 #define PAREN (SIMM16N+1) 130 {0, 0, MN10200_OPERAND_PAREN}, 131 132 /* dn register that appears in the first and second register positions. */ 133 #define DN01 (PAREN+1) 134 {2, 0, MN10200_OPERAND_DREG | MN10200_OPERAND_REPEATED}, 135 136 /* an register that appears in the first and second register positions. */ 137 #define AN01 (DN01+1) 138 {2, 0, MN10200_OPERAND_AREG | MN10200_OPERAND_REPEATED}, 139 } ; 140 141 #define MEM(ADDR) PAREN, ADDR, PAREN 142 #define MEM2(ADDR1,ADDR2) PAREN, ADDR1, ADDR2, PAREN 143 144 /* The opcode table. 145 146 The format of the opcode table is: 147 148 NAME OPCODE MASK { OPERANDS } 149 150 NAME is the name of the instruction. 151 OPCODE is the instruction opcode. 152 MASK is the opcode mask; this is used to tell the disassembler 153 which bits in the actual opcode must match OPCODE. 154 OPERANDS is the list of operands. 155 156 The disassembler reads the table in order and prints the first 157 instruction which matches, so this table is sorted to put more 158 specific instructions before more general instructions. It is also 159 sorted by major opcode. */ 160 161 const struct mn10200_opcode mn10200_opcodes[] = { 162 { "mov", 0x8000, 0xf000, FMT_2, {SIMM8, DN01}}, 163 { "mov", 0x80, 0xf0, FMT_1, {DN1, DM0}}, 164 { "mov", 0xf230, 0xfff0, FMT_4, {DM1, AN0}}, 165 { "mov", 0xf2f0, 0xfff0, FMT_4, {AN1, DM0}}, 166 { "mov", 0xf270, 0xfff0, FMT_4, {AN1, AM0}}, 167 { "mov", 0xf3f0, 0xfffc, FMT_4, {PSW, DN0}}, 168 { "mov", 0xf3d0, 0xfff3, FMT_4, {DN1, PSW}}, 169 { "mov", 0xf3e0, 0xfffc, FMT_4, {MDR, DN0}}, 170 { "mov", 0xf3c0, 0xfff3, FMT_4, {DN1, MDR}}, 171 { "mov", 0x20, 0xf0, FMT_1, {MEM(AN1), DM0}}, 172 { "mov", 0x6000, 0xf000, FMT_2, {MEM2(SD8, AN1), DM0}}, 173 { "mov", 0xf7c00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 174 { "mov", 0xf4800000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 175 { "mov", 0xf140, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 176 { "mov", 0xc80000, 0xfc0000, FMT_3, {MEM(IMM16_MEM), DN0}}, 177 { "mov", 0xf4c00000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 178 { "mov", 0x7000, 0xf000, FMT_2, {MEM2(SD8,AN1), AM0}}, 179 { "mov", 0x7000, 0xf000, FMT_2, {MEM(AN1), AM0}}, 180 { "mov", 0xf7b00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), AM0}}, 181 { "mov", 0xf4f00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), AM0}}, 182 { "mov", 0xf100, 0xffc0, FMT_4, {MEM2(DI, AN1), AM0}}, 183 { "mov", 0xf7300000, 0xfffc0000, FMT_6, {MEM(IMM16_MEM), AN0}}, 184 { "mov", 0xf4d00000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), AN0}}, 185 { "mov", 0x00, 0xf0, FMT_1, {DM0, MEM(AN1)}}, 186 { "mov", 0x4000, 0xf000, FMT_2, {DM0, MEM2(SD8, AN1)}}, 187 { "mov", 0xf7800000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 188 { "mov", 0xf4000000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 189 { "mov", 0xf1c0, 0xffc0, FMT_4, {DM0, MEM2(DI, AN1)}}, 190 { "mov", 0xc00000, 0xfc0000, FMT_3, {DN0, MEM(IMM16_MEM)}}, 191 { "mov", 0xf4400000, 0xfffc0000, FMT_7, {DN0, MEM(IMM24_MEM)}}, 192 { "mov", 0x5000, 0xf000, FMT_2, {AM0, MEM2(SD8, AN1)}}, 193 { "mov", 0x5000, 0xf000, FMT_2, {AM0, MEM(AN1)}}, 194 { "mov", 0xf7a00000, 0xfff00000, FMT_6, {AM0, MEM2(SD16, AN1)}}, 195 { "mov", 0xf4100000, 0xfff00000, FMT_7, {AM0, MEM2(IMM24,AN1)}}, 196 { "mov", 0xf180, 0xffc0, FMT_4, {AM0, MEM2(DI, AN1)}}, 197 { "mov", 0xf7200000, 0xfffc0000, FMT_6, {AN0, MEM(IMM16_MEM)}}, 198 { "mov", 0xf4500000, 0xfffc0000, FMT_7, {AN0, MEM(IMM24_MEM)}}, 199 { "mov", 0xf80000, 0xfc0000, FMT_3, {SIMM16, DN0}}, 200 { "mov", 0xf4700000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 201 { "mov", 0xdc0000, 0xfc0000, FMT_3, {IMM16, AN0}}, 202 { "mov", 0xf4740000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 203 204 { "movx", 0xf57000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 205 { "movx", 0xf7700000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 206 { "movx", 0xf4b00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 207 { "movx", 0xf55000, 0xfff000, FMT_5, {DM0, MEM2(SD8, AN1)}}, 208 { "movx", 0xf7600000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 209 { "movx", 0xf4300000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 210 211 { "movb", 0xf52000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 212 { "movb", 0xf7d00000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 213 { "movb", 0xf4a00000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 214 { "movb", 0xf040, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 215 { "movb", 0xf4c40000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 216 { "movb", 0x10, 0xf0, FMT_1, {DM0, MEM(AN1)}}, 217 { "movb", 0xf51000, 0xfff000, FMT_5, {DM0, MEM2(SD8, AN1)}}, 218 { "movb", 0xf7900000, 0xfff00000, FMT_6, {DM0, MEM2(SD16, AN1)}}, 219 { "movb", 0xf4200000, 0xfff00000, FMT_7, {DM0, MEM2(IMM24, AN1)}}, 220 { "movb", 0xf0c0, 0xffc0, FMT_4, {DM0, MEM2(DI, AN1)}}, 221 { "movb", 0xc40000, 0xfc0000, FMT_3, {DN0, MEM(IMM16_MEM)}}, 222 { "movb", 0xf4440000, 0xfffc0000, FMT_7, {DN0, MEM(IMM24_MEM)}}, 223 224 { "movbu", 0x30, 0xf0, FMT_1, {MEM(AN1), DM0}}, 225 { "movbu", 0xf53000, 0xfff000, FMT_5, {MEM2(SD8, AN1), DM0}}, 226 { "movbu", 0xf7500000, 0xfff00000, FMT_6, {MEM2(SD16, AN1), DM0}}, 227 { "movbu", 0xf4900000, 0xfff00000, FMT_7, {MEM2(IMM24,AN1), DM0}}, 228 { "movbu", 0xf080, 0xffc0, FMT_4, {MEM2(DI, AN1), DM0}}, 229 { "movbu", 0xcc0000, 0xfc0000, FMT_3, {MEM(IMM16_MEM), DN0}}, 230 { "movbu", 0xf4c80000, 0xfffc0000, FMT_7, {MEM(IMM24_MEM), DN0}}, 231 232 { "ext", 0xf3c1, 0xfff3, FMT_4, {DN1}}, 233 { "extx", 0xb0, 0xfc, FMT_1, {DN0}}, 234 { "extxu", 0xb4, 0xfc, FMT_1, {DN0}}, 235 { "extxb", 0xb8, 0xfc, FMT_1, {DN0}}, 236 { "extxbu", 0xbc, 0xfc, FMT_1, {DN0}}, 237 238 { "add", 0x90, 0xf0, FMT_1, {DN1, DM0}}, 239 { "add", 0xf200, 0xfff0, FMT_4, {DM1, AN0}}, 240 { "add", 0xf2c0, 0xfff0, FMT_4, {AN1, DM0}}, 241 { "add", 0xf240, 0xfff0, FMT_4, {AN1, AM0}}, 242 { "add", 0xd400, 0xfc00, FMT_2, {SIMM8, DN0}}, 243 { "add", 0xf7180000, 0xfffc0000, FMT_6, {SIMM16, DN0}}, 244 { "add", 0xf4600000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 245 { "add", 0xd000, 0xfc00, FMT_2, {SIMM8, AN0}}, 246 { "add", 0xf7080000, 0xfffc0000, FMT_6, {SIMM16, AN0}}, 247 { "add", 0xf4640000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 248 { "addc", 0xf280, 0xfff0, FMT_4, {DN1, DM0}}, 249 { "addnf", 0xf50c00, 0xfffc00, FMT_5, {SIMM8, AN0}}, 250 251 { "sub", 0xa0, 0xf0, FMT_1, {DN1, DM0}}, 252 { "sub", 0xf210, 0xfff0, FMT_4, {DN1, AN0}}, 253 { "sub", 0xf2d0, 0xfff0, FMT_4, {AN1, DM0}}, 254 { "sub", 0xf250, 0xfff0, FMT_4, {AN1, AM0}}, 255 { "sub", 0xf71c0000, 0xfffc0000, FMT_6, {IMM16, DN0}}, 256 { "sub", 0xf4680000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 257 { "sub", 0xf70c0000, 0xfffc0000, FMT_6, {IMM16, AN0}}, 258 { "sub", 0xf46c0000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 259 { "subc", 0xf290, 0xfff0, FMT_4, {DN1, DM0}}, 260 261 { "mul", 0xf340, 0xfff0, FMT_4, {DN1, DM0}}, 262 { "mulu", 0xf350, 0xfff0, FMT_4, {DN1, DM0}}, 263 264 { "divu", 0xf360, 0xfff0, FMT_4, {DN1, DM0}}, 265 266 { "cmp", 0xf390, 0xfff0, FMT_4, {DN1, DM0}}, 267 { "cmp", 0xf220, 0xfff0, FMT_4, {DM1, AN0}}, 268 { "cmp", 0xf2e0, 0xfff0, FMT_4, {AN1, DM0}}, 269 { "cmp", 0xf260, 0xfff0, FMT_4, {AN1, AM0}}, 270 { "cmp", 0xd800, 0xfc00, FMT_2, {SIMM8, DN0}}, 271 { "cmp", 0xf7480000, 0xfffc0000, FMT_6, {SIMM16, DN0}}, 272 { "cmp", 0xf4780000, 0xfffc0000, FMT_7, {IMM24, DN0}}, 273 { "cmp", 0xec0000, 0xfc0000, FMT_3, {IMM16, AN0}}, 274 { "cmp", 0xf47c0000, 0xfffc0000, FMT_7, {IMM24, AN0}}, 275 276 { "and", 0xf300, 0xfff0, FMT_4, {DN1, DM0}}, 277 { "and", 0xf50000, 0xfffc00, FMT_5, {IMM8, DN0}}, 278 { "and", 0xf7000000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 279 { "and", 0xf7100000, 0xffff0000, FMT_6, {SIMM16N, PSW}}, 280 { "or", 0xf310, 0xfff0, FMT_4, {DN1, DM0}}, 281 { "or", 0xf50800, 0xfffc00, FMT_5, {IMM8, DN0}}, 282 { "or", 0xf7400000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 283 { "or", 0xf7140000, 0xffff0000, FMT_6, {SIMM16N, PSW}}, 284 { "xor", 0xf320, 0xfff0, FMT_4, {DN1, DM0}}, 285 { "xor", 0xf74c0000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 286 { "not", 0xf3e4, 0xfffc, FMT_4, {DN0}}, 287 288 { "asr", 0xf338, 0xfffc, FMT_4, {DN0}}, 289 { "lsr", 0xf33c, 0xfffc, FMT_4, {DN0}}, 290 { "ror", 0xf334, 0xfffc, FMT_4, {DN0}}, 291 { "rol", 0xf330, 0xfffc, FMT_4, {DN0}}, 292 293 { "btst", 0xf50400, 0xfffc00, FMT_5, {IMM8, DN0}}, 294 { "btst", 0xf7040000, 0xfffc0000, FMT_6, {SIMM16N, DN0}}, 295 { "bset", 0xf020, 0xfff0, FMT_4, {DM0, MEM(AN1)}}, 296 { "bclr", 0xf030, 0xfff0, FMT_4, {DM0, MEM(AN1)}}, 297 298 { "beq", 0xe800, 0xff00, FMT_2, {SD8N_PCREL}}, 299 { "bne", 0xe900, 0xff00, FMT_2, {SD8N_PCREL}}, 300 { "blt", 0xe000, 0xff00, FMT_2, {SD8N_PCREL}}, 301 { "ble", 0xe300, 0xff00, FMT_2, {SD8N_PCREL}}, 302 { "bge", 0xe200, 0xff00, FMT_2, {SD8N_PCREL}}, 303 { "bgt", 0xe100, 0xff00, FMT_2, {SD8N_PCREL}}, 304 { "bcs", 0xe400, 0xff00, FMT_2, {SD8N_PCREL}}, 305 { "bls", 0xe700, 0xff00, FMT_2, {SD8N_PCREL}}, 306 { "bcc", 0xe600, 0xff00, FMT_2, {SD8N_PCREL}}, 307 { "bhi", 0xe500, 0xff00, FMT_2, {SD8N_PCREL}}, 308 { "bvc", 0xf5fc00, 0xffff00, FMT_5, {SD8N_PCREL}}, 309 { "bvs", 0xf5fd00, 0xffff00, FMT_5, {SD8N_PCREL}}, 310 { "bnc", 0xf5fe00, 0xffff00, FMT_5, {SD8N_PCREL}}, 311 { "bns", 0xf5ff00, 0xffff00, FMT_5, {SD8N_PCREL}}, 312 { "bra", 0xea00, 0xff00, FMT_2, {SD8N_PCREL}}, 313 314 { "beqx", 0xf5e800, 0xffff00, FMT_5, {SD8N_PCREL}}, 315 { "bnex", 0xf5e900, 0xffff00, FMT_5, {SD8N_PCREL}}, 316 { "bltx", 0xf5e000, 0xffff00, FMT_5, {SD8N_PCREL}}, 317 { "blex", 0xf5e300, 0xffff00, FMT_5, {SD8N_PCREL}}, 318 { "bgex", 0xf5e200, 0xffff00, FMT_5, {SD8N_PCREL}}, 319 { "bgtx", 0xf5e100, 0xffff00, FMT_5, {SD8N_PCREL}}, 320 { "bcsx", 0xf5e400, 0xffff00, FMT_5, {SD8N_PCREL}}, 321 { "blsx", 0xf5e700, 0xffff00, FMT_5, {SD8N_PCREL}}, 322 { "bccx", 0xf5e600, 0xffff00, FMT_5, {SD8N_PCREL}}, 323 { "bhix", 0xf5e500, 0xffff00, FMT_5, {SD8N_PCREL}}, 324 { "bvcx", 0xf5ec00, 0xffff00, FMT_5, {SD8N_PCREL}}, 325 { "bvsx", 0xf5ed00, 0xffff00, FMT_5, {SD8N_PCREL}}, 326 { "bncx", 0xf5ee00, 0xffff00, FMT_5, {SD8N_PCREL}}, 327 { "bnsx", 0xf5ef00, 0xffff00, FMT_5, {SD8N_PCREL}}, 328 329 { "jmp", 0xfc0000, 0xff0000, FMT_3, {IMM16_PCREL}}, 330 { "jmp", 0xf4e00000, 0xffff0000, FMT_7, {IMM24_PCREL}}, 331 { "jmp", 0xf000, 0xfff3, FMT_4, {PAREN,AN1,PAREN}}, 332 { "jsr", 0xfd0000, 0xff0000, FMT_3, {IMM16_PCREL}}, 333 { "jsr", 0xf4e10000, 0xffff0000, FMT_7, {IMM24_PCREL}}, 334 { "jsr", 0xf001, 0xfff3, FMT_4, {PAREN,AN1,PAREN}}, 335 336 { "nop", 0xf6, 0xff, FMT_1, {UNUSED}}, 337 338 { "rts", 0xfe, 0xff, FMT_1, {UNUSED}}, 339 { "rti", 0xeb, 0xff, FMT_1, {UNUSED}}, 340 341 /* Extension. We need some instruction to trigger "emulated syscalls" 342 for our simulator. */ 343 { "syscall", 0xf010, 0xffff, FMT_4, {UNUSED}}, 344 345 /* Extension. When talking to the simulator, gdb requires some instruction 346 that will trigger a "breakpoint" (really just an instruction that isn't 347 otherwise used by the tools. This instruction must be the same size 348 as the smallest instruction on the target machine. In the case of the 349 mn10x00 the "break" instruction must be one byte. 0xff is available on 350 both mn10x00 architectures. */ 351 { "break", 0xff, 0xff, FMT_1, {UNUSED}}, 352 353 { 0, 0, 0, 0, {0}}, 354 355 } ; 356 357 const int mn10200_num_opcodes = 358 sizeof (mn10200_opcodes) / sizeof (mn10200_opcodes[0]); 359 360 361