1 /* Print National Semiconductor 32000 instructions. 2 Copyright 1986, 1988, 1991, 1992, 1994, 1998, 2001, 2002 3 Free Software Foundation, Inc. 4 5 This file is part of opcodes library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 22 #include "bfd.h" 23 #include "sysdep.h" 24 #include "dis-asm.h" 25 #if !defined(const) && !defined(__STDC__) 26 #define const 27 #endif 28 #include "opcode/ns32k.h" 29 #include "opintl.h" 30 31 static disassemble_info *dis_info; 32 33 /* 34 * Hacks to get it to compile <= READ THESE AS FIXES NEEDED 35 */ 36 #define INVALID_FLOAT(val, size) invalid_float((char *)val, size) 37 38 static int print_insn_arg 39 PARAMS ((int, int, int *, char *, bfd_vma, char *, int)); 40 static int get_displacement PARAMS ((char *, int *)); 41 static int invalid_float PARAMS ((char *, int)); 42 static long int read_memory_integer PARAMS ((unsigned char *, int)); 43 static int fetch_data PARAMS ((struct disassemble_info *, bfd_byte *)); 44 struct ns32k_option; 45 static void optlist PARAMS ((int, const struct ns32k_option *, char *)); 46 static void list_search PARAMS ((int, const struct ns32k_option *, char *)); 47 static int bit_extract PARAMS ((bfd_byte *, int, int)); 48 static int bit_extract_simple PARAMS ((bfd_byte *, int, int)); 49 static void bit_copy PARAMS ((char *, int, int, char *)); 50 static int sign_extend PARAMS ((int, int)); 51 static void flip_bytes PARAMS ((char *, int)); 52 53 static long read_memory_integer(addr, nr) 54 unsigned char *addr; 55 int nr; 56 { 57 long val; 58 int i; 59 for (val = 0, i = nr - 1; i >= 0; i--) { 60 val = (val << 8); 61 val |= (0xff & *(addr + i)); 62 } 63 return val; 64 } 65 66 /* 32000 instructions are never longer than this. */ 67 #define MAXLEN 62 68 69 70 #include <setjmp.h> 71 72 struct private 73 { 74 /* Points to first byte not fetched. */ 75 bfd_byte *max_fetched; 76 bfd_byte the_buffer[MAXLEN]; 77 bfd_vma insn_start; 78 jmp_buf bailout; 79 }; 80 81 82 /* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive) 83 to ADDR (exclusive) are valid. Returns 1 for success, longjmps 84 on error. */ 85 #define FETCH_DATA(info, addr) \ 86 ((addr) <= ((struct private *)(info->private_data))->max_fetched \ 87 ? 1 : fetch_data ((info), (addr))) 88 89 static int 90 fetch_data (info, addr) 91 struct disassemble_info *info; 92 bfd_byte *addr; 93 { 94 int status; 95 struct private *priv = (struct private *)info->private_data; 96 bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer); 97 98 status = (*info->read_memory_func) (start, 99 priv->max_fetched, 100 addr - priv->max_fetched, 101 info); 102 if (status != 0) 103 { 104 (*info->memory_error_func) (status, start, info); 105 longjmp (priv->bailout, 1); 106 } 107 else 108 priv->max_fetched = addr; 109 return 1; 110 } 111 /* Number of elements in the opcode table. */ 112 #define NOPCODES (sizeof ns32k_opcodes / sizeof ns32k_opcodes[0]) 113 114 #define NEXT_IS_ADDR '|' 115 116 117 struct ns32k_option { 118 char *pattern; /* the option itself */ 119 unsigned long value; /* binary value of the option */ 120 unsigned long match; /* these bits must match */ 121 }; 122 123 124 static const struct ns32k_option opt_u[]= /* restore, exit */ 125 { 126 { "r0", 0x80, 0x80 }, 127 { "r1", 0x40, 0x40 }, 128 { "r2", 0x20, 0x20 }, 129 { "r3", 0x10, 0x10 }, 130 { "r4", 0x08, 0x08 }, 131 { "r5", 0x04, 0x04 }, 132 { "r6", 0x02, 0x02 }, 133 { "r7", 0x01, 0x01 }, 134 { 0 , 0x00, 0x00 } 135 }; 136 137 static const struct ns32k_option opt_U[]= /* save, enter */ 138 { 139 { "r0", 0x01, 0x01 }, 140 { "r1", 0x02, 0x02 }, 141 { "r2", 0x04, 0x04 }, 142 { "r3", 0x08, 0x08 }, 143 { "r4", 0x10, 0x10 }, 144 { "r5", 0x20, 0x20 }, 145 { "r6", 0x40, 0x40 }, 146 { "r7", 0x80, 0x80 }, 147 { 0 , 0x00, 0x00 } 148 }; 149 150 static const struct ns32k_option opt_O[]= /* setcfg */ 151 { 152 { "c", 0x8, 0x8 }, 153 { "m", 0x4, 0x4 }, 154 { "f", 0x2, 0x2 }, 155 { "i", 0x1, 0x1 }, 156 { 0 , 0x0, 0x0 } 157 }; 158 159 static const struct ns32k_option opt_C[]= /* cinv */ 160 { 161 { "a", 0x4, 0x4 }, 162 { "i", 0x2, 0x2 }, 163 { "d", 0x1, 0x1 }, 164 { 0 , 0x0, 0x0 } 165 }; 166 167 static const struct ns32k_option opt_S[]= /* string inst */ 168 { 169 { "b", 0x1, 0x1 }, 170 { "u", 0x6, 0x6 }, 171 { "w", 0x2, 0x2 }, 172 { 0 , 0x0, 0x0 } 173 }; 174 175 static const struct ns32k_option list_P532[]= /* lpr spr */ 176 { 177 { "us", 0x0, 0xf }, 178 { "dcr", 0x1, 0xf }, 179 { "bpc", 0x2, 0xf }, 180 { "dsr", 0x3, 0xf }, 181 { "car", 0x4, 0xf }, 182 { "fp", 0x8, 0xf }, 183 { "sp", 0x9, 0xf }, 184 { "sb", 0xa, 0xf }, 185 { "usp", 0xb, 0xf }, 186 { "cfg", 0xc, 0xf }, 187 { "psr", 0xd, 0xf }, 188 { "intbase", 0xe, 0xf }, 189 { "mod", 0xf, 0xf }, 190 { 0 , 0x00, 0xf } 191 }; 192 193 static const struct ns32k_option list_M532[]= /* lmr smr */ 194 { 195 { "mcr", 0x9, 0xf }, 196 { "msr", 0xa, 0xf }, 197 { "tear", 0xb, 0xf }, 198 { "ptb0", 0xc, 0xf }, 199 { "ptb1", 0xd, 0xf }, 200 { "ivar0", 0xe, 0xf }, 201 { "ivar1", 0xf, 0xf }, 202 { 0 , 0x0, 0xf } 203 }; 204 205 static const struct ns32k_option list_P032[]= /* lpr spr */ 206 { 207 { "upsr", 0x0, 0xf }, 208 { "fp", 0x8, 0xf }, 209 { "sp", 0x9, 0xf }, 210 { "sb", 0xa, 0xf }, 211 { "psr", 0xb, 0xf }, 212 { "intbase", 0xe, 0xf }, 213 { "mod", 0xf, 0xf }, 214 { 0 , 0x0, 0xf } 215 }; 216 217 static const struct ns32k_option list_M032[]= /* lmr smr */ 218 { 219 { "bpr0", 0x0, 0xf }, 220 { "bpr1", 0x1, 0xf }, 221 { "pf0", 0x4, 0xf }, 222 { "pf1", 0x5, 0xf }, 223 { "sc", 0x8, 0xf }, 224 { "msr", 0xa, 0xf }, 225 { "bcnt", 0xb, 0xf }, 226 { "ptb0", 0xc, 0xf }, 227 { "ptb1", 0xd, 0xf }, 228 { "eia", 0xf, 0xf }, 229 { 0 , 0x0, 0xf } 230 }; 231 232 233 /* 234 * figure out which options are present 235 */ 236 static void 237 optlist(options, optionP, result) 238 int options; 239 const struct ns32k_option *optionP; 240 char *result; 241 { 242 if (options == 0) { 243 sprintf(result, "[]"); 244 return; 245 } 246 sprintf(result, "["); 247 248 for (; (options != 0) && optionP->pattern; optionP++) { 249 if ((options & optionP->match) == optionP->value) { 250 /* we found a match, update result and options */ 251 strcat(result, optionP->pattern); 252 options &= ~optionP->value; 253 if (options != 0) /* more options to come */ 254 strcat(result, ","); 255 } 256 } 257 if (options != 0) 258 strcat(result, "undefined"); 259 260 strcat(result, "]"); 261 } 262 263 static void 264 list_search (reg_value, optionP, result) 265 int reg_value; 266 const struct ns32k_option *optionP; 267 char *result; 268 { 269 for (; optionP->pattern; optionP++) { 270 if ((reg_value & optionP->match) == optionP->value) { 271 sprintf(result, "%s", optionP->pattern); 272 return; 273 } 274 } 275 sprintf(result, "undefined"); 276 } 277 278 /* 279 * extract "count" bits starting "offset" bits 280 * into buffer 281 */ 282 283 static int 284 bit_extract (buffer, offset, count) 285 bfd_byte *buffer; 286 int offset; 287 int count; 288 { 289 int result; 290 int bit; 291 292 buffer += offset >> 3; 293 offset &= 7; 294 bit = 1; 295 result = 0; 296 while (count--) 297 { 298 FETCH_DATA(dis_info, buffer + 1); 299 if ((*buffer & (1 << offset))) 300 result |= bit; 301 if (++offset == 8) 302 { 303 offset = 0; 304 buffer++; 305 } 306 bit <<= 1; 307 } 308 return result; 309 } 310 311 /* Like bit extract but the buffer is valid and doen't need to be 312 * fetched 313 */ 314 static int 315 bit_extract_simple (buffer, offset, count) 316 bfd_byte *buffer; 317 int offset; 318 int count; 319 { 320 int result; 321 int bit; 322 323 buffer += offset >> 3; 324 offset &= 7; 325 bit = 1; 326 result = 0; 327 while (count--) 328 { 329 if ((*buffer & (1 << offset))) 330 result |= bit; 331 if (++offset == 8) 332 { 333 offset = 0; 334 buffer++; 335 } 336 bit <<= 1; 337 } 338 return result; 339 } 340 341 static void 342 bit_copy (buffer, offset, count, to) 343 char *buffer; 344 int offset; 345 int count; 346 char *to; 347 { 348 for(; count > 8; count -= 8, to++, offset += 8) 349 *to = bit_extract (buffer, offset, 8); 350 *to = bit_extract (buffer, offset, count); 351 } 352 353 354 static int 355 sign_extend (value, bits) 356 int value, bits; 357 { 358 value = value & ((1 << bits) - 1); 359 return (value & (1 << (bits-1)) 360 ? value | (~((1 << bits) - 1)) 361 : value); 362 } 363 364 static void 365 flip_bytes (ptr, count) 366 char *ptr; 367 int count; 368 { 369 char tmp; 370 371 while (count > 0) 372 { 373 tmp = ptr[0]; 374 ptr[0] = ptr[count-1]; 375 ptr[count-1] = tmp; 376 ptr++; 377 count -= 2; 378 } 379 } 380 381 /* Given a character C, does it represent a general addressing mode? */ 382 #define Is_gen(c) \ 383 ((c) == 'F' || (c) == 'L' || (c) == 'B' \ 384 || (c) == 'W' || (c) == 'D' || (c) == 'A' || (c) == 'I' || (c) == 'Z') 385 386 /* Adressing modes. */ 387 #define Adrmod_index_byte 0x1c 388 #define Adrmod_index_word 0x1d 389 #define Adrmod_index_doubleword 0x1e 390 #define Adrmod_index_quadword 0x1f 391 392 /* Is MODE an indexed addressing mode? */ 393 #define Adrmod_is_index(mode) \ 394 (mode == Adrmod_index_byte \ 395 || mode == Adrmod_index_word \ 396 || mode == Adrmod_index_doubleword \ 397 || mode == Adrmod_index_quadword) 398 399 400 /* Print the 32000 instruction at address MEMADDR in debugged memory, 401 on STREAM. Returns length of the instruction, in bytes. */ 402 403 int 404 print_insn_ns32k (memaddr, info) 405 bfd_vma memaddr; 406 disassemble_info *info; 407 { 408 unsigned int i; 409 const char *d; 410 unsigned short first_word; 411 int ioffset; /* bits into instruction */ 412 int aoffset; /* bits into arguments */ 413 char arg_bufs[MAX_ARGS+1][ARG_LEN]; 414 int argnum; 415 int maxarg; 416 struct private priv; 417 bfd_byte *buffer = priv.the_buffer; 418 dis_info = info; 419 420 info->private_data = (PTR) &priv; 421 priv.max_fetched = priv.the_buffer; 422 priv.insn_start = memaddr; 423 if (setjmp (priv.bailout) != 0) 424 /* Error return. */ 425 return -1; 426 427 /* Look for 8bit opcodes first. Other wise, fetching two bytes could take 428 * us over the end of accessible data unnecessarilly 429 */ 430 FETCH_DATA(info, buffer + 1); 431 for (i = 0; i < NOPCODES; i++) 432 if (ns32k_opcodes[i].opcode_id_size <= 8 433 && ((buffer[0] 434 & (((unsigned long) 1 << ns32k_opcodes[i].opcode_id_size) - 1)) 435 == ns32k_opcodes[i].opcode_seed)) 436 break; 437 if (i == NOPCODES) { 438 /* Maybe it is 9 to 16 bits big */ 439 FETCH_DATA(info, buffer + 2); 440 first_word = read_memory_integer(buffer, 2); 441 442 for (i = 0; i < NOPCODES; i++) 443 if ((first_word 444 & (((unsigned long) 1 << ns32k_opcodes[i].opcode_id_size) - 1)) 445 == ns32k_opcodes[i].opcode_seed) 446 break; 447 448 /* Handle undefined instructions. */ 449 if (i == NOPCODES) 450 { 451 (*dis_info->fprintf_func)(dis_info->stream, "0%o", buffer[0]); 452 return 1; 453 } 454 } 455 456 (*dis_info->fprintf_func)(dis_info->stream, "%s", ns32k_opcodes[i].name); 457 458 ioffset = ns32k_opcodes[i].opcode_size; 459 aoffset = ns32k_opcodes[i].opcode_size; 460 d = ns32k_opcodes[i].operands; 461 462 if (*d) 463 { 464 /* Offset in bits of the first thing beyond each index byte. 465 Element 0 is for operand A and element 1 is for operand B. 466 The rest are irrelevant, but we put them here so we don't 467 index outside the array. */ 468 int index_offset[MAX_ARGS]; 469 470 /* 0 for operand A, 1 for operand B, greater for other args. */ 471 int whicharg = 0; 472 473 (*dis_info->fprintf_func)(dis_info->stream, "\t"); 474 475 maxarg = 0; 476 477 /* First we have to find and keep track of the index bytes, 478 if we are using scaled indexed addressing mode, since the index 479 bytes occur right after the basic instruction, not as part 480 of the addressing extension. */ 481 if (Is_gen(d[1])) 482 { 483 int addr_mode = bit_extract (buffer, ioffset - 5, 5); 484 485 if (Adrmod_is_index (addr_mode)) 486 { 487 aoffset += 8; 488 index_offset[0] = aoffset; 489 } 490 } 491 if (d[2] && Is_gen(d[3])) 492 { 493 int addr_mode = bit_extract (buffer, ioffset - 10, 5); 494 495 if (Adrmod_is_index (addr_mode)) 496 { 497 aoffset += 8; 498 index_offset[1] = aoffset; 499 } 500 } 501 502 while (*d) 503 { 504 argnum = *d - '1'; 505 d++; 506 if (argnum > maxarg && argnum < MAX_ARGS) 507 maxarg = argnum; 508 ioffset = print_insn_arg (*d, ioffset, &aoffset, buffer, 509 memaddr, arg_bufs[argnum], 510 index_offset[whicharg]); 511 d++; 512 whicharg++; 513 } 514 for (argnum = 0; argnum <= maxarg; argnum++) 515 { 516 bfd_vma addr; 517 char *ch; 518 for (ch = arg_bufs[argnum]; *ch;) 519 { 520 if (*ch == NEXT_IS_ADDR) 521 { 522 ++ch; 523 addr = bfd_scan_vma (ch, NULL, 16); 524 (*dis_info->print_address_func) (addr, dis_info); 525 while (*ch && *ch != NEXT_IS_ADDR) 526 ++ch; 527 if (*ch) 528 ++ch; 529 } 530 else 531 (*dis_info->fprintf_func)(dis_info->stream, "%c", *ch++); 532 } 533 if (argnum < maxarg) 534 (*dis_info->fprintf_func)(dis_info->stream, ", "); 535 } 536 } 537 return aoffset / 8; 538 } 539 540 /* Print an instruction operand of category given by d. IOFFSET is 541 the bit position below which small (<1 byte) parts of the operand can 542 be found (usually in the basic instruction, but for indexed 543 addressing it can be in the index byte). AOFFSETP is a pointer to the 544 bit position of the addressing extension. BUFFER contains the 545 instruction. ADDR is where BUFFER was read from. Put the disassembled 546 version of the operand in RESULT. INDEX_OFFSET is the bit position 547 of the index byte (it contains garbage if this operand is not a 548 general operand using scaled indexed addressing mode). */ 549 550 static int 551 print_insn_arg (d, ioffset, aoffsetp, buffer, addr, result, index_offset) 552 int d; 553 int ioffset, *aoffsetp; 554 char *buffer; 555 bfd_vma addr; 556 char *result; 557 int index_offset; 558 { 559 union { 560 float f; 561 double d; 562 int i[2]; 563 } value; 564 int Ivalue; 565 int addr_mode; 566 int disp1, disp2; 567 int index; 568 int size; 569 570 switch (d) 571 { 572 case 'f': 573 /* a "gen" operand but 5 bits from the end of instruction */ 574 ioffset -= 5; 575 case 'Z': 576 case 'F': 577 case 'L': 578 case 'I': 579 case 'B': 580 case 'W': 581 case 'D': 582 case 'A': 583 addr_mode = bit_extract (buffer, ioffset-5, 5); 584 ioffset -= 5; 585 switch (addr_mode) 586 { 587 case 0x0: case 0x1: case 0x2: case 0x3: 588 case 0x4: case 0x5: case 0x6: case 0x7: 589 /* register mode R0 -- R7 */ 590 switch (d) 591 { 592 case 'F': 593 case 'L': 594 case 'Z': 595 sprintf (result, "f%d", addr_mode); 596 break; 597 default: 598 sprintf (result, "r%d", addr_mode); 599 } 600 break; 601 case 0x8: case 0x9: case 0xa: case 0xb: 602 case 0xc: case 0xd: case 0xe: case 0xf: 603 /* Register relative disp(R0 -- R7) */ 604 disp1 = get_displacement (buffer, aoffsetp); 605 sprintf (result, "%d(r%d)", disp1, addr_mode & 7); 606 break; 607 case 0x10: 608 case 0x11: 609 case 0x12: 610 /* Memory relative disp2(disp1(FP, SP, SB)) */ 611 disp1 = get_displacement (buffer, aoffsetp); 612 disp2 = get_displacement (buffer, aoffsetp); 613 sprintf (result, "%d(%d(%s))", disp2, disp1, 614 addr_mode==0x10?"fp":addr_mode==0x11?"sp":"sb"); 615 break; 616 case 0x13: 617 /* reserved */ 618 sprintf (result, "reserved"); 619 break; 620 case 0x14: 621 /* Immediate */ 622 switch (d) 623 { 624 case 'I': case 'Z': case 'A': 625 /* I and Z are output operands and can`t be immediate 626 * A is an address and we can`t have the address of 627 * an immediate either. We don't know how much to increase 628 * aoffsetp by since whatever generated this is broken 629 * anyway! 630 */ 631 sprintf (result, _("$<undefined>")); 632 break; 633 case 'B': 634 Ivalue = bit_extract (buffer, *aoffsetp, 8); 635 Ivalue = sign_extend (Ivalue, 8); 636 *aoffsetp += 8; 637 sprintf (result, "$%d", Ivalue); 638 break; 639 case 'W': 640 Ivalue = bit_extract (buffer, *aoffsetp, 16); 641 flip_bytes ((char *) & Ivalue, 2); 642 *aoffsetp += 16; 643 Ivalue = sign_extend (Ivalue, 16); 644 sprintf (result, "$%d", Ivalue); 645 break; 646 case 'D': 647 Ivalue = bit_extract (buffer, *aoffsetp, 32); 648 flip_bytes ((char *) & Ivalue, 4); 649 *aoffsetp += 32; 650 sprintf (result, "$%d", Ivalue); 651 break; 652 case 'F': 653 bit_copy (buffer, *aoffsetp, 32, (char *) &value.f); 654 flip_bytes ((char *) &value.f, 4); 655 *aoffsetp += 32; 656 if (INVALID_FLOAT (&value.f, 4)) 657 sprintf (result, "<<invalid float 0x%.8x>>", value.i[0]); 658 else /* assume host has ieee float */ 659 sprintf (result, "$%g", value.f); 660 break; 661 case 'L': 662 bit_copy (buffer, *aoffsetp, 64, (char *) &value.d); 663 flip_bytes ((char *) &value.d, 8); 664 *aoffsetp += 64; 665 if (INVALID_FLOAT (&value.d, 8)) 666 sprintf (result, "<<invalid double 0x%.8x%.8x>>", 667 value.i[1], value.i[0]); 668 else /* assume host has ieee float */ 669 sprintf (result, "$%g", value.d); 670 break; 671 } 672 break; 673 case 0x15: 674 /* Absolute @disp */ 675 disp1 = get_displacement (buffer, aoffsetp); 676 sprintf (result, "@|%d|", disp1); 677 break; 678 case 0x16: 679 /* External EXT(disp1) + disp2 (Mod table stuff) */ 680 disp1 = get_displacement (buffer, aoffsetp); 681 disp2 = get_displacement (buffer, aoffsetp); 682 sprintf (result, "EXT(%d) + %d", disp1, disp2); 683 break; 684 case 0x17: 685 /* Top of stack tos */ 686 sprintf (result, "tos"); 687 break; 688 case 0x18: 689 /* Memory space disp(FP) */ 690 disp1 = get_displacement (buffer, aoffsetp); 691 sprintf (result, "%d(fp)", disp1); 692 break; 693 case 0x19: 694 /* Memory space disp(SP) */ 695 disp1 = get_displacement (buffer, aoffsetp); 696 sprintf (result, "%d(sp)", disp1); 697 break; 698 case 0x1a: 699 /* Memory space disp(SB) */ 700 disp1 = get_displacement (buffer, aoffsetp); 701 sprintf (result, "%d(sb)", disp1); 702 break; 703 case 0x1b: 704 /* Memory space disp(PC) */ 705 disp1 = get_displacement (buffer, aoffsetp); 706 *result++ = NEXT_IS_ADDR; 707 sprintf_vma (result, addr + disp1); 708 result += strlen (result); 709 *result++ = NEXT_IS_ADDR; 710 *result = '\0'; 711 break; 712 case 0x1c: 713 case 0x1d: 714 case 0x1e: 715 case 0x1f: 716 /* Scaled index basemode[R0 -- R7:B,W,D,Q] */ 717 index = bit_extract (buffer, index_offset - 8, 3); 718 print_insn_arg (d, index_offset, aoffsetp, buffer, addr, 719 result, 0); 720 { 721 static const char *ind = "bwdq"; 722 char *off; 723 724 off = result + strlen (result); 725 sprintf (off, "[r%d:%c]", index, 726 ind[addr_mode & 3]); 727 } 728 break; 729 } 730 break; 731 case 'H': 732 case 'q': 733 Ivalue = bit_extract (buffer, ioffset-4, 4); 734 Ivalue = sign_extend (Ivalue, 4); 735 sprintf (result, "%d", Ivalue); 736 ioffset -= 4; 737 break; 738 case 'r': 739 Ivalue = bit_extract (buffer, ioffset-3, 3); 740 sprintf (result, "r%d", Ivalue&7); 741 ioffset -= 3; 742 break; 743 case 'd': 744 sprintf (result, "%d", get_displacement (buffer, aoffsetp)); 745 break; 746 case 'b': 747 Ivalue = get_displacement (buffer, aoffsetp); 748 /* 749 * Warning!! HACK ALERT! 750 * Operand type 'b' is only used by the cmp{b,w,d} and 751 * movm{b,w,d} instructions; we need to know whether 752 * it's a `b' or `w' or `d' instruction; and for both 753 * cmpm and movm it's stored at the same place so we 754 * just grab two bits of the opcode and look at it... 755 * 756 */ 757 size = bit_extract(buffer, ioffset-6, 2); 758 if (size == 0) /* 00 => b */ 759 size = 1; 760 else if (size == 1) /* 01 => w */ 761 size = 2; 762 else 763 size = 4; /* 11 => d */ 764 765 sprintf (result, "%d", (Ivalue / size) + 1); 766 break; 767 case 'p': 768 *result++ = NEXT_IS_ADDR; 769 sprintf_vma (result, addr + get_displacement (buffer, aoffsetp)); 770 result += strlen (result); 771 *result++ = NEXT_IS_ADDR; 772 *result = '\0'; 773 break; 774 case 'i': 775 Ivalue = bit_extract (buffer, *aoffsetp, 8); 776 *aoffsetp += 8; 777 sprintf (result, "0x%x", Ivalue); 778 break; 779 case 'u': 780 Ivalue = bit_extract (buffer, *aoffsetp, 8); 781 optlist(Ivalue, opt_u, result); 782 *aoffsetp += 8; 783 break; 784 case 'U': 785 Ivalue = bit_extract(buffer, *aoffsetp, 8); 786 optlist(Ivalue, opt_U, result); 787 *aoffsetp += 8; 788 break; 789 case 'O': 790 Ivalue = bit_extract(buffer, ioffset-9, 9); 791 optlist(Ivalue, opt_O, result); 792 ioffset -= 9; 793 break; 794 case 'C': 795 Ivalue = bit_extract(buffer, ioffset-4, 4); 796 optlist(Ivalue, opt_C, result); 797 ioffset -= 4; 798 break; 799 case 'S': 800 Ivalue = bit_extract(buffer, ioffset - 8, 8); 801 optlist(Ivalue, opt_S, result); 802 ioffset -= 8; 803 break; 804 case 'M': 805 Ivalue = bit_extract(buffer, ioffset-4, 4); 806 list_search(Ivalue, 0 ? list_M032 : list_M532, result); 807 ioffset -= 4; 808 break; 809 case 'P': 810 Ivalue = bit_extract(buffer, ioffset-4, 4); 811 list_search(Ivalue, 0 ? list_P032 : list_P532, result); 812 ioffset -= 4; 813 break; 814 case 'g': 815 Ivalue = bit_extract(buffer, *aoffsetp, 3); 816 sprintf(result, "%d", Ivalue); 817 *aoffsetp += 3; 818 break; 819 case 'G': 820 Ivalue = bit_extract(buffer, *aoffsetp, 5); 821 sprintf(result, "%d", Ivalue + 1); 822 *aoffsetp += 5; 823 break; 824 } 825 return ioffset; 826 } 827 828 static int 829 get_displacement (buffer, aoffsetp) 830 char *buffer; 831 int *aoffsetp; 832 { 833 int Ivalue; 834 short Ivalue2; 835 836 Ivalue = bit_extract (buffer, *aoffsetp, 8); 837 switch (Ivalue & 0xc0) 838 { 839 case 0x00: 840 case 0x40: 841 Ivalue = sign_extend (Ivalue, 7); 842 *aoffsetp += 8; 843 break; 844 case 0x80: 845 Ivalue2 = bit_extract (buffer, *aoffsetp, 16); 846 flip_bytes ((char *) & Ivalue2, 2); 847 Ivalue = sign_extend (Ivalue2, 14); 848 *aoffsetp += 16; 849 break; 850 case 0xc0: 851 Ivalue = bit_extract (buffer, *aoffsetp, 32); 852 flip_bytes ((char *) & Ivalue, 4); 853 Ivalue = sign_extend (Ivalue, 30); 854 *aoffsetp += 32; 855 break; 856 } 857 return Ivalue; 858 } 859 860 861 #if 1 /* a version that should work on ns32k f's&d's on any machine */ 862 static int 863 invalid_float (p, len) 864 register char *p; 865 register int len; 866 { 867 register int val; 868 869 if ( len == 4 ) 870 val = (bit_extract_simple(p, 23, 8)/*exponent*/ == 0xff 871 || (bit_extract_simple(p, 23, 8)/*exponent*/ == 0 && 872 bit_extract_simple(p, 0, 23)/*mantisa*/ != 0)); 873 else if ( len == 8 ) 874 val = (bit_extract_simple(p, 52, 11)/*exponent*/ == 0x7ff 875 || (bit_extract_simple(p, 52, 11)/*exponent*/ == 0 876 && (bit_extract_simple(p, 0, 32)/*low mantisa*/ != 0 877 || bit_extract_simple(p, 32, 20)/*high mantisa*/ != 0))); 878 else 879 val = 1; 880 return (val); 881 } 882 #else 883 884 /* assumes the bytes have been swapped to local order */ 885 typedef union { double d; 886 float f; 887 struct { unsigned m:23, e:8, :1;} sf; 888 struct { unsigned lm; unsigned m:20, e:11, :1;} sd; 889 } float_type_u; 890 891 static int 892 invalid_float (p, len) 893 register float_type_u *p; 894 register int len; 895 { 896 register int val; 897 if ( len == sizeof (float) ) 898 val = (p->sf.e == 0xff 899 || (p->sf.e == 0 && p->sf.m != 0)); 900 else if ( len == sizeof (double) ) 901 val = (p->sd.e == 0x7ff 902 || (p->sd.e == 0 && (p->sd.m != 0 || p->sd.lm != 0))); 903 else 904 val = 1; 905 return (val); 906 } 907 #endif 908