xref: /openbsd/gnu/usr.bin/perl/lib/Benchmark.pm (revision 91f110e0)
1package Benchmark;
2
3use strict;
4
5
6=head1 NAME
7
8Benchmark - benchmark running times of Perl code
9
10=head1 SYNOPSIS
11
12    use Benchmark qw(:all) ;
13
14    timethis ($count, "code");
15
16    # Use Perl code in strings...
17    timethese($count, {
18	'Name1' => '...code1...',
19	'Name2' => '...code2...',
20    });
21
22    # ... or use subroutine references.
23    timethese($count, {
24	'Name1' => sub { ...code1... },
25	'Name2' => sub { ...code2... },
26    });
27
28    # cmpthese can be used both ways as well
29    cmpthese($count, {
30	'Name1' => '...code1...',
31	'Name2' => '...code2...',
32    });
33
34    cmpthese($count, {
35	'Name1' => sub { ...code1... },
36	'Name2' => sub { ...code2... },
37    });
38
39    # ...or in two stages
40    $results = timethese($count,
41        {
42	    'Name1' => sub { ...code1... },
43	    'Name2' => sub { ...code2... },
44        },
45	'none'
46    );
47    cmpthese( $results ) ;
48
49    $t = timeit($count, '...other code...')
50    print "$count loops of other code took:",timestr($t),"\n";
51
52    $t = countit($time, '...other code...')
53    $count = $t->iters ;
54    print "$count loops of other code took:",timestr($t),"\n";
55
56    # enable hires wallclock timing if possible
57    use Benchmark ':hireswallclock';
58
59=head1 DESCRIPTION
60
61The Benchmark module encapsulates a number of routines to help you
62figure out how long it takes to execute some code.
63
64timethis - run a chunk of code several times
65
66timethese - run several chunks of code several times
67
68cmpthese - print results of timethese as a comparison chart
69
70timeit - run a chunk of code and see how long it goes
71
72countit - see how many times a chunk of code runs in a given time
73
74
75=head2 Methods
76
77=over 10
78
79=item new
80
81Returns the current time.   Example:
82
83    use Benchmark;
84    $t0 = Benchmark->new;
85    # ... your code here ...
86    $t1 = Benchmark->new;
87    $td = timediff($t1, $t0);
88    print "the code took:",timestr($td),"\n";
89
90=item debug
91
92Enables or disable debugging by setting the C<$Benchmark::Debug> flag:
93
94    Benchmark->debug(1);
95    $t = timeit(10, ' 5 ** $Global ');
96    Benchmark->debug(0);
97
98=item iters
99
100Returns the number of iterations.
101
102=back
103
104=head2 Standard Exports
105
106The following routines will be exported into your namespace
107if you use the Benchmark module:
108
109=over 10
110
111=item timeit(COUNT, CODE)
112
113Arguments: COUNT is the number of times to run the loop, and CODE is
114the code to run.  CODE may be either a code reference or a string to
115be eval'd; either way it will be run in the caller's package.
116
117Returns: a Benchmark object.
118
119=item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] )
120
121Time COUNT iterations of CODE. CODE may be a string to eval or a
122code reference; either way the CODE will run in the caller's package.
123Results will be printed to STDOUT as TITLE followed by the times.
124TITLE defaults to "timethis COUNT" if none is provided. STYLE
125determines the format of the output, as described for timestr() below.
126
127The COUNT can be zero or negative: this means the I<minimum number of
128CPU seconds> to run.  A zero signifies the default of 3 seconds.  For
129example to run at least for 10 seconds:
130
131	timethis(-10, $code)
132
133or to run two pieces of code tests for at least 3 seconds:
134
135	timethese(0, { test1 => '...', test2 => '...'})
136
137CPU seconds is, in UNIX terms, the user time plus the system time of
138the process itself, as opposed to the real (wallclock) time and the
139time spent by the child processes.  Less than 0.1 seconds is not
140accepted (-0.01 as the count, for example, will cause a fatal runtime
141exception).
142
143Note that the CPU seconds is the B<minimum> time: CPU scheduling and
144other operating system factors may complicate the attempt so that a
145little bit more time is spent.  The benchmark output will, however,
146also tell the number of C<$code> runs/second, which should be a more
147interesting number than the actually spent seconds.
148
149Returns a Benchmark object.
150
151=item timethese ( COUNT, CODEHASHREF, [ STYLE ] )
152
153The CODEHASHREF is a reference to a hash containing names as keys
154and either a string to eval or a code reference for each value.
155For each (KEY, VALUE) pair in the CODEHASHREF, this routine will
156call
157
158	timethis(COUNT, VALUE, KEY, STYLE)
159
160The routines are called in string comparison order of KEY.
161
162The COUNT can be zero or negative, see timethis().
163
164Returns a hash reference of Benchmark objects, keyed by name.
165
166=item timediff ( T1, T2 )
167
168Returns the difference between two Benchmark times as a Benchmark
169object suitable for passing to timestr().
170
171=item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] )
172
173Returns a string that formats the times in the TIMEDIFF object in
174the requested STYLE. TIMEDIFF is expected to be a Benchmark object
175similar to that returned by timediff().
176
177STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows
178each of the 5 times available ('wallclock' time, user time, system time,
179user time of children, and system time of children). 'noc' shows all
180except the two children times. 'nop' shows only wallclock and the
181two children times. 'auto' (the default) will act as 'all' unless
182the children times are both zero, in which case it acts as 'noc'.
183'none' prevents output.
184
185FORMAT is the L<printf(3)>-style format specifier (without the
186leading '%') to use to print the times. It defaults to '5.2f'.
187
188=back
189
190=head2 Optional Exports
191
192The following routines will be exported into your namespace
193if you specifically ask that they be imported:
194
195=over 10
196
197=item clearcache ( COUNT )
198
199Clear the cached time for COUNT rounds of the null loop.
200
201=item clearallcache ( )
202
203Clear all cached times.
204
205=item cmpthese ( COUNT, CODEHASHREF, [ STYLE ] )
206
207=item cmpthese ( RESULTSHASHREF, [ STYLE ] )
208
209Optionally calls timethese(), then outputs comparison chart.  This:
210
211    cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
212
213outputs a chart like:
214
215           Rate    b    a
216    b 2831802/s   -- -61%
217    a 7208959/s 155%   --
218
219This chart is sorted from slowest to fastest, and shows the percent speed
220difference between each pair of tests.
221
222C<cmpthese> can also be passed the data structure that timethese() returns:
223
224    $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ;
225    cmpthese( $results );
226
227in case you want to see both sets of results.
228If the first argument is an unblessed hash reference,
229that is RESULTSHASHREF; otherwise that is COUNT.
230
231Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
232above chart, including labels. This:
233
234    my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" );
235
236returns a data structure like:
237
238    [
239        [ '',       'Rate',   'b',    'a' ],
240        [ 'b', '2885232/s',  '--', '-59%' ],
241        [ 'a', '7099126/s', '146%',  '--' ],
242    ]
243
244B<NOTE>: This result value differs from previous versions, which returned
245the C<timethese()> result structure.  If you want that, just use the two
246statement C<timethese>...C<cmpthese> idiom shown above.
247
248Incidentally, note the variance in the result values between the two examples;
249this is typical of benchmarking.  If this were a real benchmark, you would
250probably want to run a lot more iterations.
251
252=item countit(TIME, CODE)
253
254Arguments: TIME is the minimum length of time to run CODE for, and CODE is
255the code to run.  CODE may be either a code reference or a string to
256be eval'd; either way it will be run in the caller's package.
257
258TIME is I<not> negative.  countit() will run the loop many times to
259calculate the speed of CODE before running it for TIME.  The actual
260time run for will usually be greater than TIME due to system clock
261resolution, so it's best to look at the number of iterations divided
262by the times that you are concerned with, not just the iterations.
263
264Returns: a Benchmark object.
265
266=item disablecache ( )
267
268Disable caching of timings for the null loop. This will force Benchmark
269to recalculate these timings for each new piece of code timed.
270
271=item enablecache ( )
272
273Enable caching of timings for the null loop. The time taken for COUNT
274rounds of the null loop will be calculated only once for each
275different COUNT used.
276
277=item timesum ( T1, T2 )
278
279Returns the sum of two Benchmark times as a Benchmark object suitable
280for passing to timestr().
281
282=back
283
284=head2 :hireswallclock
285
286If the Time::HiRes module has been installed, you can specify the
287special tag C<:hireswallclock> for Benchmark (if Time::HiRes is not
288available, the tag will be silently ignored).  This tag will cause the
289wallclock time to be measured in microseconds, instead of integer
290seconds.  Note though that the speed computations are still conducted
291in CPU time, not wallclock time.
292
293=head1 NOTES
294
295The data is stored as a list of values from the time and times
296functions:
297
298      ($real, $user, $system, $children_user, $children_system, $iters)
299
300in seconds for the whole loop (not divided by the number of rounds).
301
302The timing is done using time(3) and times(3).
303
304Code is executed in the caller's package.
305
306The time of the null loop (a loop with the same
307number of rounds but empty loop body) is subtracted
308from the time of the real loop.
309
310The null loop times can be cached, the key being the
311number of rounds. The caching can be controlled using
312calls like these:
313
314    clearcache($key);
315    clearallcache();
316
317    disablecache();
318    enablecache();
319
320Caching is off by default, as it can (usually slightly) decrease
321accuracy and does not usually noticeably affect runtimes.
322
323=head1 EXAMPLES
324
325For example,
326
327    use Benchmark qw( cmpthese ) ;
328    $x = 3;
329    cmpthese( -5, {
330        a => sub{$x*$x},
331        b => sub{$x**2},
332    } );
333
334outputs something like this:
335
336   Benchmark: running a, b, each for at least 5 CPU seconds...
337          Rate    b    a
338   b 1559428/s   -- -62%
339   a 4152037/s 166%   --
340
341
342while
343
344    use Benchmark qw( timethese cmpthese ) ;
345    $x = 3;
346    $r = timethese( -5, {
347        a => sub{$x*$x},
348        b => sub{$x**2},
349    } );
350    cmpthese $r;
351
352outputs something like this:
353
354    Benchmark: running a, b, each for at least 5 CPU seconds...
355             a: 10 wallclock secs ( 5.14 usr +  0.13 sys =  5.27 CPU) @ 3835055.60/s (n=20210743)
356             b:  5 wallclock secs ( 5.41 usr +  0.00 sys =  5.41 CPU) @ 1574944.92/s (n=8520452)
357           Rate    b    a
358    b 1574945/s   -- -59%
359    a 3835056/s 144%   --
360
361
362=head1 INHERITANCE
363
364Benchmark inherits from no other class, except of course
365for Exporter.
366
367=head1 CAVEATS
368
369Comparing eval'd strings with code references will give you
370inaccurate results: a code reference will show a slightly slower
371execution time than the equivalent eval'd string.
372
373The real time timing is done using time(2) and
374the granularity is therefore only one second.
375
376Short tests may produce negative figures because perl
377can appear to take longer to execute the empty loop
378than a short test; try:
379
380    timethis(100,'1');
381
382The system time of the null loop might be slightly
383more than the system time of the loop with the actual
384code and therefore the difference might end up being E<lt> 0.
385
386=head1 SEE ALSO
387
388L<Devel::NYTProf> - a Perl code profiler
389
390=head1 AUTHORS
391
392Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>>
393
394=head1 MODIFICATION HISTORY
395
396September 8th, 1994; by Tim Bunce.
397
398March 28th, 1997; by Hugo van der Sanden: added support for code
399references and the already documented 'debug' method; revamped
400documentation.
401
402April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time
403functionality.
404
405September, 1999; by Barrie Slaymaker: math fixes and accuracy and
406efficiency tweaks.  Added cmpthese().  A result is now returned from
407timethese().  Exposed countit() (was runfor()).
408
409December, 2001; by Nicholas Clark: make timestr() recognise the style 'none'
410and return an empty string. If cmpthese is calling timethese, make it pass the
411style in. (so that 'none' will suppress output). Make sub new dump its
412debugging output to STDERR, to be consistent with everything else.
413All bugs found while writing a regression test.
414
415September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.
416
417February, 2004; by Chia-liang Kao: make cmpthese and timestr use time
418statistics for children instead of parent when the style is 'nop'.
419
420November, 2007; by Christophe Grosjean: make cmpthese and timestr compute
421time consistently with style argument, default is 'all' not 'noc' any more.
422
423=cut
424
425# evaluate something in a clean lexical environment
426sub _doeval { no strict;  eval shift }
427
428#
429# put any lexicals at file scope AFTER here
430#
431
432use Carp;
433use Exporter;
434
435our(@ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSION);
436
437@ISA=qw(Exporter);
438@EXPORT=qw(timeit timethis timethese timediff timestr);
439@EXPORT_OK=qw(timesum cmpthese countit
440	      clearcache clearallcache disablecache enablecache);
441%EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ;
442
443$VERSION = 1.13;
444
445# --- ':hireswallclock' special handling
446
447my $hirestime;
448
449sub mytime () { time }
450
451init();
452
453sub BEGIN {
454    if (eval 'require Time::HiRes') {
455	import Time::HiRes qw(time);
456	$hirestime = \&Time::HiRes::time;
457    }
458}
459
460sub import {
461    my $class = shift;
462    if (grep { $_ eq ":hireswallclock" } @_) {
463	@_ = grep { $_ ne ":hireswallclock" } @_;
464	local $^W=0;
465	*mytime = $hirestime if defined $hirestime;
466    }
467    Benchmark->export_to_level(1, $class, @_);
468}
469
470our($Debug, $Min_Count, $Min_CPU, $Default_Format, $Default_Style,
471    %_Usage, %Cache, $Do_Cache);
472
473sub init {
474    $Debug = 0;
475    $Min_Count = 4;
476    $Min_CPU   = 0.4;
477    $Default_Format = '5.2f';
478    $Default_Style = 'auto';
479    # The cache can cause a slight loss of sys time accuracy. If a
480    # user does many tests (>10) with *very* large counts (>10000)
481    # or works on a very slow machine the cache may be useful.
482    disablecache();
483    clearallcache();
484}
485
486sub debug { $Debug = ($_[1] != 0); }
487
488sub usage {
489    my $calling_sub = (caller(1))[3];
490    $calling_sub =~ s/^Benchmark:://;
491    return $_Usage{$calling_sub} || '';
492}
493
494# The cache needs two branches: 's' for strings and 'c' for code.  The
495# empty loop is different in these two cases.
496
497$_Usage{clearcache} = <<'USAGE';
498usage: clearcache($count);
499USAGE
500
501sub clearcache    {
502    die usage unless @_ == 1;
503    delete $Cache{"$_[0]c"}; delete $Cache{"$_[0]s"};
504}
505
506$_Usage{clearallcache} = <<'USAGE';
507usage: clearallcache();
508USAGE
509
510sub clearallcache {
511    die usage if @_;
512    %Cache = ();
513}
514
515$_Usage{enablecache} = <<'USAGE';
516usage: enablecache();
517USAGE
518
519sub enablecache   {
520    die usage if @_;
521    $Do_Cache = 1;
522}
523
524$_Usage{disablecache} = <<'USAGE';
525usage: disablecache();
526USAGE
527
528sub disablecache  {
529    die usage if @_;
530    $Do_Cache = 0;
531}
532
533
534# --- Functions to process the 'time' data type
535
536sub new { my @t = (mytime, times, @_ == 2 ? $_[1] : 0);
537	  print STDERR "new=@t\n" if $Debug;
538	  bless \@t; }
539
540sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps         ; }
541sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]};         $cu+$cs ; }
542sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; }
543sub real  { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r              ; }
544sub iters { $_[0]->[5] ; }
545
546
547$_Usage{timediff} = <<'USAGE';
548usage: $result_diff = timediff($result1, $result2);
549USAGE
550
551sub timediff {
552    my($a, $b) = @_;
553
554    die usage unless ref $a and ref $b;
555
556    my @r;
557    for (my $i=0; $i < @$a; ++$i) {
558	push(@r, $a->[$i] - $b->[$i]);
559    }
560    #die "Bad timediff(): ($r[1] + $r[2]) <= 0 (@$a[1,2]|@$b[1,2])\n"
561    #        if ($r[1] + $r[2]) < 0;
562    bless \@r;
563}
564
565$_Usage{timesum} = <<'USAGE';
566usage: $sum = timesum($result1, $result2);
567USAGE
568
569sub timesum {
570    my($a, $b) = @_;
571
572    die usage unless ref $a and ref $b;
573
574    my @r;
575    for (my $i=0; $i < @$a; ++$i) {
576 	push(@r, $a->[$i] + $b->[$i]);
577    }
578    bless \@r;
579}
580
581
582$_Usage{timestr} = <<'USAGE';
583usage: $formatted_result = timestr($result1);
584USAGE
585
586sub timestr {
587    my($tr, $style, $f) = @_;
588
589    die usage unless ref $tr;
590
591    my @t = @$tr;
592    warn "bad time value (@t)" unless @t==6;
593    my($r, $pu, $ps, $cu, $cs, $n) = @t;
594    my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a);
595    $f = $Default_Format unless defined $f;
596    # format a time in the required style, other formats may be added here
597    $style ||= $Default_Style;
598    return '' if $style eq 'none';
599    $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto';
600    my $s = "@t $style"; # default for unknown style
601    my $w = $hirestime ? "%2g" : "%2d";
602    $s = sprintf("$w wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)",
603			    $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all';
604    $s = sprintf("$w wallclock secs (%$f usr + %$f sys = %$f CPU)",
605			    $r,$pu,$ps,$pt) if $style eq 'noc';
606    $s = sprintf("$w wallclock secs (%$f cusr + %$f csys = %$f CPU)",
607			    $r,$cu,$cs,$ct) if $style eq 'nop';
608    my $elapsed = do {
609	if ($style eq 'nop') {$cu+$cs}
610	elsif ($style eq 'noc') {$pu+$ps}
611	else {$cu+$cs+$pu+$ps}
612    };
613    $s .= sprintf(" @ %$f/s (n=$n)",$n/($elapsed)) if $n && $elapsed;
614    $s;
615}
616
617sub timedebug {
618    my($msg, $t) = @_;
619    print STDERR "$msg",timestr($t),"\n" if $Debug;
620}
621
622# --- Functions implementing low-level support for timing loops
623
624$_Usage{runloop} = <<'USAGE';
625usage: runloop($number, [$string | $coderef])
626USAGE
627
628sub runloop {
629    my($n, $c) = @_;
630
631    $n+=0; # force numeric now, so garbage won't creep into the eval
632    croak "negative loopcount $n" if $n<0;
633    confess usage unless defined $c;
634    my($t0, $t1, $td); # before, after, difference
635
636    # find package of caller so we can execute code there
637    my($curpack) = caller(0);
638    my($i, $pack)= 0;
639    while (($pack) = caller(++$i)) {
640	last if $pack ne $curpack;
641    }
642
643    my ($subcode, $subref);
644    if (ref $c eq 'CODE') {
645	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }";
646        $subref  = eval $subcode;
647    }
648    else {
649	$subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }";
650        $subref  = _doeval($subcode);
651    }
652    croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@;
653    print STDERR "runloop $n '$subcode'\n" if $Debug;
654
655    # Wait for the user timer to tick.  This makes the error range more like
656    # -0.01, +0.  If we don't wait, then it's more like -0.01, +0.01.  This
657    # may not seem important, but it significantly reduces the chances of
658    # getting a too low initial $n in the initial, 'find the minimum' loop
659    # in &countit.  This, in turn, can reduce the number of calls to
660    # &runloop a lot, and thus reduce additive errors.
661    my $tbase = Benchmark->new(0)->[1];
662    while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ;
663    $subref->();
664    $t1 = Benchmark->new($n);
665    $td = &timediff($t1, $t0);
666    timedebug("runloop:",$td);
667    $td;
668}
669
670$_Usage{timeit} = <<'USAGE';
671usage: $result = timeit($count, 'code' );        or
672       $result = timeit($count, sub { code } );
673USAGE
674
675sub timeit {
676    my($n, $code) = @_;
677    my($wn, $wc, $wd);
678
679    die usage unless defined $code and
680                     (!ref $code or ref $code eq 'CODE');
681
682    printf STDERR "timeit $n $code\n" if $Debug;
683    my $cache_key = $n . ( ref( $code ) ? 'c' : 's' );
684    if ($Do_Cache && exists $Cache{$cache_key} ) {
685	$wn = $Cache{$cache_key};
686    } else {
687	$wn = &runloop($n, ref( $code ) ? sub { } : '' );
688	# Can't let our baseline have any iterations, or they get subtracted
689	# out of the result.
690	$wn->[5] = 0;
691	$Cache{$cache_key} = $wn;
692    }
693
694    $wc = &runloop($n, $code);
695
696    $wd = timediff($wc, $wn);
697    timedebug("timeit: ",$wc);
698    timedebug("      - ",$wn);
699    timedebug("      = ",$wd);
700
701    $wd;
702}
703
704
705my $default_for = 3;
706my $min_for     = 0.1;
707
708
709$_Usage{countit} = <<'USAGE';
710usage: $result = countit($time, 'code' );        or
711       $result = countit($time, sub { code } );
712USAGE
713
714sub countit {
715    my ( $tmax, $code ) = @_;
716
717    die usage unless @_;
718
719    if ( not defined $tmax or $tmax == 0 ) {
720	$tmax = $default_for;
721    } elsif ( $tmax < 0 ) {
722	$tmax = -$tmax;
723    }
724
725    die "countit($tmax, ...): timelimit cannot be less than $min_for.\n"
726	if $tmax < $min_for;
727
728    my ($n, $tc);
729
730    # First find the minimum $n that gives a significant timing.
731    my $zeros=0;
732    for ($n = 1; ; $n *= 2 ) {
733	my $td = timeit($n, $code);
734	$tc = $td->[1] + $td->[2];
735	if ( $tc <= 0 and $n > 1024 ) {
736	    ++$zeros > 16
737	        and die "Timing is consistently zero in estimation loop, cannot benchmark. N=$n\n";
738	} else {
739	    $zeros = 0;
740	}
741	last if $tc > 0.1;
742    }
743
744    my $nmin = $n;
745
746    # Get $n high enough that we can guess the final $n with some accuracy.
747    my $tpra = 0.1 * $tmax; # Target/time practice.
748    while ( $tc < $tpra ) {
749	# The 5% fudge is to keep us from iterating again all
750	# that often (this speeds overall responsiveness when $tmax is big
751	# and we guess a little low).  This does not noticably affect
752	# accuracy since we're not counting these times.
753	$n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation.
754	my $td = timeit($n, $code);
755	my $new_tc = $td->[1] + $td->[2];
756        # Make sure we are making progress.
757        $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc;
758    }
759
760    # Now, do the 'for real' timing(s), repeating until we exceed
761    # the max.
762    my $ntot  = 0;
763    my $rtot  = 0;
764    my $utot  = 0.0;
765    my $stot  = 0.0;
766    my $cutot = 0.0;
767    my $cstot = 0.0;
768    my $ttot  = 0.0;
769
770    # The 5% fudge is because $n is often a few % low even for routines
771    # with stable times and avoiding extra timeit()s is nice for
772    # accuracy's sake.
773    $n = int( $n * ( 1.05 * $tmax / $tc ) );
774    $zeros=0;
775    while () {
776	my $td = timeit($n, $code);
777	$ntot  += $n;
778	$rtot  += $td->[0];
779	$utot  += $td->[1];
780	$stot  += $td->[2];
781	$cutot += $td->[3];
782	$cstot += $td->[4];
783	$ttot = $utot + $stot;
784	last if $ttot >= $tmax;
785	if ( $ttot <= 0 ) {
786	    ++$zeros > 16
787	        and die "Timing is consistently zero, cannot benchmark. N=$n\n";
788	} else {
789	    $zeros = 0;
790	}
791        $ttot = 0.01 if $ttot < 0.01;
792	my $r = $tmax / $ttot - 1; # Linear approximation.
793	$n = int( $r * $ntot );
794	$n = $nmin if $n < $nmin;
795    }
796
797    return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ];
798}
799
800# --- Functions implementing high-level time-then-print utilities
801
802sub n_to_for {
803    my $n = shift;
804    return $n == 0 ? $default_for : $n < 0 ? -$n : undef;
805}
806
807$_Usage{timethis} = <<'USAGE';
808usage: $result = timethis($time, 'code' );        or
809       $result = timethis($time, sub { code } );
810USAGE
811
812sub timethis{
813    my($n, $code, $title, $style) = @_;
814    my($t, $forn);
815
816    die usage unless defined $code and
817                     (!ref $code or ref $code eq 'CODE');
818
819    if ( $n > 0 ) {
820	croak "non-integer loopcount $n, stopped" if int($n)<$n;
821	$t = timeit($n, $code);
822	$title = "timethis $n" unless defined $title;
823    } else {
824	my $fort  = n_to_for( $n );
825	$t     = countit( $fort, $code );
826	$title = "timethis for $fort" unless defined $title;
827	$forn  = $t->[-1];
828    }
829    local $| = 1;
830    $style = "" unless defined $style;
831    printf("%10s: ", $title) unless $style eq 'none';
832    print timestr($t, $style, $Default_Format),"\n" unless $style eq 'none';
833
834    $n = $forn if defined $forn;
835
836    # A conservative warning to spot very silly tests.
837    # Don't assume that your benchmark is ok simply because
838    # you don't get this warning!
839    print "            (warning: too few iterations for a reliable count)\n"
840	if     $n < $Min_Count
841	    || ($t->real < 1 && $n < 1000)
842	    || $t->cpu_a < $Min_CPU;
843    $t;
844}
845
846
847$_Usage{timethese} = <<'USAGE';
848usage: timethese($count, { Name1 => 'code1', ... });        or
849       timethese($count, { Name1 => sub { code1 }, ... });
850USAGE
851
852sub timethese{
853    my($n, $alt, $style) = @_;
854    die usage unless ref $alt eq 'HASH';
855
856    my @names = sort keys %$alt;
857    $style = "" unless defined $style;
858    print "Benchmark: " unless $style eq 'none';
859    if ( $n > 0 ) {
860	croak "non-integer loopcount $n, stopped" if int($n)<$n;
861	print "timing $n iterations of" unless $style eq 'none';
862    } else {
863	print "running" unless $style eq 'none';
864    }
865    print " ", join(', ',@names) unless $style eq 'none';
866    unless ( $n > 0 ) {
867	my $for = n_to_for( $n );
868	print ", each" if $n > 1 && $style ne 'none';
869	print " for at least $for CPU seconds" unless $style eq 'none';
870    }
871    print "...\n" unless $style eq 'none';
872
873    # we could save the results in an array and produce a summary here
874    # sum, min, max, avg etc etc
875    my %results;
876    foreach my $name (@names) {
877        $results{$name} = timethis ($n, $alt -> {$name}, $name, $style);
878    }
879
880    return \%results;
881}
882
883
884$_Usage{cmpthese} = <<'USAGE';
885usage: cmpthese($count, { Name1 => 'code1', ... });        or
886       cmpthese($count, { Name1 => sub { code1 }, ... });  or
887       cmpthese($result, $style);
888USAGE
889
890sub cmpthese{
891    my ($results, $style);
892
893    # $count can be a blessed object.
894    if ( ref $_[0] eq 'HASH' ) {
895        ($results, $style) = @_;
896    }
897    else {
898        my($count, $code) = @_[0,1];
899        $style = $_[2] if defined $_[2];
900
901        die usage unless ref $code eq 'HASH';
902
903        $results = timethese($count, $code, ($style || "none"));
904    }
905
906    $style = "" unless defined $style;
907
908    # Flatten in to an array of arrays with the name as the first field
909    my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results;
910
911    for (@vals) {
912	# The epsilon fudge here is to prevent div by 0.  Since clock
913	# resolutions are much larger, it's below the noise floor.
914	my $elapsed = do {
915	    if ($style eq 'nop') {$_->[4]+$_->[5]}
916	    elsif ($style eq 'noc') {$_->[2]+$_->[3]}
917	    else {$_->[2]+$_->[3]+$_->[4]+$_->[5]}
918	};
919	my $rate = $_->[6]/(($elapsed)+0.000000000000001);
920	$_->[7] = $rate;
921    }
922
923    # Sort by rate
924    @vals = sort { $a->[7] <=> $b->[7] } @vals;
925
926    # If more than half of the rates are greater than one...
927    my $display_as_rate = @vals ? ($vals[$#vals>>1]->[7] > 1) : 0;
928
929    my @rows;
930    my @col_widths;
931
932    my @top_row = (
933        '',
934	$display_as_rate ? 'Rate' : 's/iter',
935	map { $_->[0] } @vals
936    );
937
938    push @rows, \@top_row;
939    @col_widths = map { length( $_ ) } @top_row;
940
941    # Build the data rows
942    # We leave the last column in even though it never has any data.  Perhaps
943    # it should go away.  Also, perhaps a style for a single column of
944    # percentages might be nice.
945    for my $row_val ( @vals ) {
946	my @row;
947
948        # Column 0 = test name
949	push @row, $row_val->[0];
950	$col_widths[0] = length( $row_val->[0] )
951	    if length( $row_val->[0] ) > $col_widths[0];
952
953        # Column 1 = performance
954	my $row_rate = $row_val->[7];
955
956	# We assume that we'll never get a 0 rate.
957	my $rate = $display_as_rate ? $row_rate : 1 / $row_rate;
958
959	# Only give a few decimal places before switching to sci. notation,
960	# since the results aren't usually that accurate anyway.
961	my $format =
962	   $rate >= 100 ?
963	       "%0.0f" :
964	   $rate >= 10 ?
965	       "%0.1f" :
966	   $rate >= 1 ?
967	       "%0.2f" :
968	   $rate >= 0.1 ?
969	       "%0.3f" :
970	       "%0.2e";
971
972	$format .= "/s"
973	    if $display_as_rate;
974
975	my $formatted_rate = sprintf( $format, $rate );
976	push @row, $formatted_rate;
977	$col_widths[1] = length( $formatted_rate )
978	    if length( $formatted_rate ) > $col_widths[1];
979
980        # Columns 2..N = performance ratios
981	my $skip_rest = 0;
982	for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) {
983	    my $col_val = $vals[$col_num];
984	    my $out;
985	    if ( $skip_rest ) {
986		$out = '';
987	    }
988	    elsif ( $col_val->[0] eq $row_val->[0] ) {
989		$out = "--";
990		# $skip_rest = 1;
991	    }
992	    else {
993		my $col_rate = $col_val->[7];
994		$out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 );
995	    }
996	    push @row, $out;
997	    $col_widths[$col_num+2] = length( $out )
998		if length( $out ) > $col_widths[$col_num+2];
999
1000	    # A little wierdness to set the first column width properly
1001	    $col_widths[$col_num+2] = length( $col_val->[0] )
1002		if length( $col_val->[0] ) > $col_widths[$col_num+2];
1003	}
1004	push @rows, \@row;
1005    }
1006
1007    return \@rows if $style eq "none";
1008
1009    # Equalize column widths in the chart as much as possible without
1010    # exceeding 80 characters.  This does not use or affect cols 0 or 1.
1011    my @sorted_width_refs =
1012       sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths];
1013    my $max_width = ${$sorted_width_refs[-1]};
1014
1015    my $total = @col_widths - 1 ;
1016    for ( @col_widths ) { $total += $_ }
1017
1018    STRETCHER:
1019    while ( $total < 80 ) {
1020	my $min_width = ${$sorted_width_refs[0]};
1021	last
1022	   if $min_width == $max_width;
1023	for ( @sorted_width_refs ) {
1024	    last
1025		if $$_ > $min_width;
1026	    ++$$_;
1027	    ++$total;
1028	    last STRETCHER
1029		if $total >= 80;
1030	}
1031    }
1032
1033    # Dump the output
1034    my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n";
1035    substr( $format, 1, 0 ) = '-';
1036    for ( @rows ) {
1037	printf $format, @$_;
1038    }
1039
1040    return \@rows ;
1041}
1042
1043
10441;
1045