1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <sys/types.h> 38 39 #include <string.h> 40 #include <sha2.h> 41 42 /* 43 * UNROLLED TRANSFORM LOOP NOTE: 44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 45 * loop version for the hash transform rounds (defined using macros 46 * later in this file). Either define on the command line, for example: 47 * 48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 49 * 50 * or define below: 51 * 52 * #define SHA2_UNROLL_TRANSFORM 53 * 54 */ 55 #ifndef SHA2_SMALL 56 #if defined(__amd64__) || defined(__i386__) 57 #define SHA2_UNROLL_TRANSFORM 58 #endif 59 #endif 60 61 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ 62 /* 63 * BYTE_ORDER NOTE: 64 * 65 * Please make sure that your system defines BYTE_ORDER. If your 66 * architecture is little-endian, make sure it also defines 67 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 68 * equivalent. 69 * 70 * If your system does not define the above, then you can do so by 71 * hand like this: 72 * 73 * #define LITTLE_ENDIAN 1234 74 * #define BIG_ENDIAN 4321 75 * 76 * And for little-endian machines, add: 77 * 78 * #define BYTE_ORDER LITTLE_ENDIAN 79 * 80 * Or for big-endian machines: 81 * 82 * #define BYTE_ORDER BIG_ENDIAN 83 * 84 * The FreeBSD machine this was written on defines BYTE_ORDER 85 * appropriately by including <sys/types.h> (which in turn includes 86 * <machine/endian.h> where the appropriate definitions are actually 87 * made). 88 */ 89 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 90 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 91 #endif 92 93 94 /*** SHA-224/256/384/512 Various Length Definitions ***********************/ 95 /* NOTE: Most of these are in sha2.h */ 96 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) 97 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 98 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 99 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 100 101 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 102 #define BE_8_TO_32(dst, cp) do { \ 103 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 104 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 105 } while(0) 106 107 #define BE_8_TO_64(dst, cp) do { \ 108 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 109 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 110 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 111 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 112 } while (0) 113 114 #define BE_64_TO_8(cp, src) do { \ 115 (cp)[0] = (src) >> 56; \ 116 (cp)[1] = (src) >> 48; \ 117 (cp)[2] = (src) >> 40; \ 118 (cp)[3] = (src) >> 32; \ 119 (cp)[4] = (src) >> 24; \ 120 (cp)[5] = (src) >> 16; \ 121 (cp)[6] = (src) >> 8; \ 122 (cp)[7] = (src); \ 123 } while (0) 124 125 #define BE_32_TO_8(cp, src) do { \ 126 (cp)[0] = (src) >> 24; \ 127 (cp)[1] = (src) >> 16; \ 128 (cp)[2] = (src) >> 8; \ 129 (cp)[3] = (src); \ 130 } while (0) 131 132 /* 133 * Macro for incrementally adding the unsigned 64-bit integer n to the 134 * unsigned 128-bit integer (represented using a two-element array of 135 * 64-bit words): 136 */ 137 #define ADDINC128(w,n) do { \ 138 (w)[0] += (u_int64_t)(n); \ 139 if ((w)[0] < (n)) { \ 140 (w)[1]++; \ 141 } \ 142 } while (0) 143 144 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 145 /* 146 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 147 * 148 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 149 * S is a ROTATION) because the SHA-224/256/384/512 description document 150 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 151 * same "backwards" definition. 152 */ 153 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ 154 #define R(b,x) ((x) >> (b)) 155 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ 156 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 157 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 158 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 159 160 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ 161 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 162 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 163 164 /* Four of six logical functions used in SHA-224 and SHA-256: */ 165 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 166 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 167 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 168 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 169 170 /* Four of six logical functions used in SHA-384 and SHA-512: */ 171 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 172 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 173 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 174 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 175 176 177 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 178 /* Hash constant words K for SHA-224 and SHA-256: */ 179 static const u_int32_t K256[64] = { 180 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 181 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 182 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 183 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 184 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 185 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 186 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 187 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 188 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 189 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 190 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 191 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 192 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 193 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 194 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 195 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 196 }; 197 198 /* Initial hash value H for SHA-256: */ 199 static const u_int32_t sha256_initial_hash_value[8] = { 200 0x6a09e667UL, 201 0xbb67ae85UL, 202 0x3c6ef372UL, 203 0xa54ff53aUL, 204 0x510e527fUL, 205 0x9b05688cUL, 206 0x1f83d9abUL, 207 0x5be0cd19UL 208 }; 209 210 /* Hash constant words K for SHA-384 and SHA-512: */ 211 static const u_int64_t K512[80] = { 212 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 213 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 214 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 215 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 216 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 217 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 218 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 219 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 220 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 221 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 222 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 223 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 224 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 225 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 226 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 227 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 228 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 229 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 230 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 231 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 232 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 233 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 234 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 235 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 236 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 237 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 238 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 239 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 240 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 241 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 242 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 243 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 244 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 245 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 246 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 247 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 248 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 249 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 250 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 251 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 252 }; 253 254 /* Initial hash value H for SHA-512 */ 255 static const u_int64_t sha512_initial_hash_value[8] = { 256 0x6a09e667f3bcc908ULL, 257 0xbb67ae8584caa73bULL, 258 0x3c6ef372fe94f82bULL, 259 0xa54ff53a5f1d36f1ULL, 260 0x510e527fade682d1ULL, 261 0x9b05688c2b3e6c1fULL, 262 0x1f83d9abfb41bd6bULL, 263 0x5be0cd19137e2179ULL 264 }; 265 266 #if !defined(SHA2_SMALL) 267 /* Initial hash value H for SHA-224: */ 268 static const u_int32_t sha224_initial_hash_value[8] = { 269 0xc1059ed8UL, 270 0x367cd507UL, 271 0x3070dd17UL, 272 0xf70e5939UL, 273 0xffc00b31UL, 274 0x68581511UL, 275 0x64f98fa7UL, 276 0xbefa4fa4UL 277 }; 278 279 /* Initial hash value H for SHA-384 */ 280 static const u_int64_t sha384_initial_hash_value[8] = { 281 0xcbbb9d5dc1059ed8ULL, 282 0x629a292a367cd507ULL, 283 0x9159015a3070dd17ULL, 284 0x152fecd8f70e5939ULL, 285 0x67332667ffc00b31ULL, 286 0x8eb44a8768581511ULL, 287 0xdb0c2e0d64f98fa7ULL, 288 0x47b5481dbefa4fa4ULL 289 }; 290 291 /* Initial hash value H for SHA-512-256 */ 292 static const u_int64_t sha512_256_initial_hash_value[8] = { 293 0x22312194fc2bf72cULL, 294 0x9f555fa3c84c64c2ULL, 295 0x2393b86b6f53b151ULL, 296 0x963877195940eabdULL, 297 0x96283ee2a88effe3ULL, 298 0xbe5e1e2553863992ULL, 299 0x2b0199fc2c85b8aaULL, 300 0x0eb72ddc81c52ca2ULL 301 }; 302 303 /*** SHA-224: *********************************************************/ 304 void 305 SHA224Init(SHA2_CTX *context) 306 { 307 memcpy(context->state.st32, sha224_initial_hash_value, 308 sizeof(sha224_initial_hash_value)); 309 memset(context->buffer, 0, sizeof(context->buffer)); 310 context->bitcount[0] = 0; 311 } 312 DEF_WEAK(SHA224Init); 313 314 MAKE_CLONE(SHA224Transform, SHA256Transform); 315 MAKE_CLONE(SHA224Update, SHA256Update); 316 MAKE_CLONE(SHA224Pad, SHA256Pad); 317 DEF_WEAK(SHA224Transform); 318 DEF_WEAK(SHA224Update); 319 DEF_WEAK(SHA224Pad); 320 321 void 322 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context) 323 { 324 SHA224Pad(context); 325 326 #if BYTE_ORDER == LITTLE_ENDIAN 327 int i; 328 329 /* Convert TO host byte order */ 330 for (i = 0; i < 7; i++) 331 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 332 #else 333 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); 334 #endif 335 explicit_bzero(context, sizeof(*context)); 336 } 337 DEF_WEAK(SHA224Final); 338 #endif /* !defined(SHA2_SMALL) */ 339 340 /*** SHA-256: *********************************************************/ 341 void 342 SHA256Init(SHA2_CTX *context) 343 { 344 memcpy(context->state.st32, sha256_initial_hash_value, 345 sizeof(sha256_initial_hash_value)); 346 memset(context->buffer, 0, sizeof(context->buffer)); 347 context->bitcount[0] = 0; 348 } 349 DEF_WEAK(SHA256Init); 350 351 #ifdef SHA2_UNROLL_TRANSFORM 352 353 /* Unrolled SHA-256 round macros: */ 354 355 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 356 BE_8_TO_32(W256[j], data); \ 357 data += 4; \ 358 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 359 (d) += T1; \ 360 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 361 j++; \ 362 } while(0) 363 364 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 365 s0 = W256[(j+1)&0x0f]; \ 366 s0 = sigma0_256(s0); \ 367 s1 = W256[(j+14)&0x0f]; \ 368 s1 = sigma1_256(s1); \ 369 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 370 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 371 (d) += T1; \ 372 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 373 j++; \ 374 } while(0) 375 376 void 377 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 378 { 379 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 380 u_int32_t T1, W256[16]; 381 int j; 382 383 /* Initialize registers with the prev. intermediate value */ 384 a = state[0]; 385 b = state[1]; 386 c = state[2]; 387 d = state[3]; 388 e = state[4]; 389 f = state[5]; 390 g = state[6]; 391 h = state[7]; 392 393 j = 0; 394 do { 395 /* Rounds 0 to 15 (unrolled): */ 396 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 397 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 398 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 399 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 400 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 401 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 402 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 403 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 404 } while (j < 16); 405 406 /* Now for the remaining rounds up to 63: */ 407 do { 408 ROUND256(a,b,c,d,e,f,g,h); 409 ROUND256(h,a,b,c,d,e,f,g); 410 ROUND256(g,h,a,b,c,d,e,f); 411 ROUND256(f,g,h,a,b,c,d,e); 412 ROUND256(e,f,g,h,a,b,c,d); 413 ROUND256(d,e,f,g,h,a,b,c); 414 ROUND256(c,d,e,f,g,h,a,b); 415 ROUND256(b,c,d,e,f,g,h,a); 416 } while (j < 64); 417 418 /* Compute the current intermediate hash value */ 419 state[0] += a; 420 state[1] += b; 421 state[2] += c; 422 state[3] += d; 423 state[4] += e; 424 state[5] += f; 425 state[6] += g; 426 state[7] += h; 427 428 /* Clean up */ 429 a = b = c = d = e = f = g = h = T1 = 0; 430 } 431 432 #else /* SHA2_UNROLL_TRANSFORM */ 433 434 void 435 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 436 { 437 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 438 u_int32_t T1, T2, W256[16]; 439 int j; 440 441 /* Initialize registers with the prev. intermediate value */ 442 a = state[0]; 443 b = state[1]; 444 c = state[2]; 445 d = state[3]; 446 e = state[4]; 447 f = state[5]; 448 g = state[6]; 449 h = state[7]; 450 451 j = 0; 452 do { 453 BE_8_TO_32(W256[j], data); 454 data += 4; 455 /* Apply the SHA-256 compression function to update a..h */ 456 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 457 T2 = Sigma0_256(a) + Maj(a, b, c); 458 h = g; 459 g = f; 460 f = e; 461 e = d + T1; 462 d = c; 463 c = b; 464 b = a; 465 a = T1 + T2; 466 467 j++; 468 } while (j < 16); 469 470 do { 471 /* Part of the message block expansion: */ 472 s0 = W256[(j+1)&0x0f]; 473 s0 = sigma0_256(s0); 474 s1 = W256[(j+14)&0x0f]; 475 s1 = sigma1_256(s1); 476 477 /* Apply the SHA-256 compression function to update a..h */ 478 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 479 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 480 T2 = Sigma0_256(a) + Maj(a, b, c); 481 h = g; 482 g = f; 483 f = e; 484 e = d + T1; 485 d = c; 486 c = b; 487 b = a; 488 a = T1 + T2; 489 490 j++; 491 } while (j < 64); 492 493 /* Compute the current intermediate hash value */ 494 state[0] += a; 495 state[1] += b; 496 state[2] += c; 497 state[3] += d; 498 state[4] += e; 499 state[5] += f; 500 state[6] += g; 501 state[7] += h; 502 503 /* Clean up */ 504 a = b = c = d = e = f = g = h = T1 = T2 = 0; 505 } 506 507 #endif /* SHA2_UNROLL_TRANSFORM */ 508 DEF_WEAK(SHA256Transform); 509 510 void 511 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 512 { 513 u_int64_t freespace, usedspace; 514 515 /* Calling with no data is valid (we do nothing) */ 516 if (len == 0) 517 return; 518 519 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 520 if (usedspace > 0) { 521 /* Calculate how much free space is available in the buffer */ 522 freespace = SHA256_BLOCK_LENGTH - usedspace; 523 524 if (len >= freespace) { 525 /* Fill the buffer completely and process it */ 526 memcpy(&context->buffer[usedspace], data, freespace); 527 context->bitcount[0] += freespace << 3; 528 len -= freespace; 529 data += freespace; 530 SHA256Transform(context->state.st32, context->buffer); 531 } else { 532 /* The buffer is not yet full */ 533 memcpy(&context->buffer[usedspace], data, len); 534 context->bitcount[0] += (u_int64_t)len << 3; 535 /* Clean up: */ 536 usedspace = freespace = 0; 537 return; 538 } 539 } 540 while (len >= SHA256_BLOCK_LENGTH) { 541 /* Process as many complete blocks as we can */ 542 SHA256Transform(context->state.st32, data); 543 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 544 len -= SHA256_BLOCK_LENGTH; 545 data += SHA256_BLOCK_LENGTH; 546 } 547 if (len > 0) { 548 /* There's left-overs, so save 'em */ 549 memcpy(context->buffer, data, len); 550 context->bitcount[0] += len << 3; 551 } 552 /* Clean up: */ 553 usedspace = freespace = 0; 554 } 555 DEF_WEAK(SHA256Update); 556 557 void 558 SHA256Pad(SHA2_CTX *context) 559 { 560 unsigned int usedspace; 561 562 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 563 if (usedspace > 0) { 564 /* Begin padding with a 1 bit: */ 565 context->buffer[usedspace++] = 0x80; 566 567 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 568 /* Set-up for the last transform: */ 569 memset(&context->buffer[usedspace], 0, 570 SHA256_SHORT_BLOCK_LENGTH - usedspace); 571 } else { 572 if (usedspace < SHA256_BLOCK_LENGTH) { 573 memset(&context->buffer[usedspace], 0, 574 SHA256_BLOCK_LENGTH - usedspace); 575 } 576 /* Do second-to-last transform: */ 577 SHA256Transform(context->state.st32, context->buffer); 578 579 /* Prepare for last transform: */ 580 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 581 } 582 } else { 583 /* Set-up for the last transform: */ 584 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 585 586 /* Begin padding with a 1 bit: */ 587 *context->buffer = 0x80; 588 } 589 /* Store the length of input data (in bits) in big endian format: */ 590 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 591 context->bitcount[0]); 592 593 /* Final transform: */ 594 SHA256Transform(context->state.st32, context->buffer); 595 596 /* Clean up: */ 597 usedspace = 0; 598 } 599 DEF_WEAK(SHA256Pad); 600 601 void 602 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 603 { 604 SHA256Pad(context); 605 606 #if BYTE_ORDER == LITTLE_ENDIAN 607 int i; 608 609 /* Convert TO host byte order */ 610 for (i = 0; i < 8; i++) 611 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 612 #else 613 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 614 #endif 615 explicit_bzero(context, sizeof(*context)); 616 } 617 DEF_WEAK(SHA256Final); 618 619 620 /*** SHA-512: *********************************************************/ 621 void 622 SHA512Init(SHA2_CTX *context) 623 { 624 memcpy(context->state.st64, sha512_initial_hash_value, 625 sizeof(sha512_initial_hash_value)); 626 memset(context->buffer, 0, sizeof(context->buffer)); 627 context->bitcount[0] = context->bitcount[1] = 0; 628 } 629 DEF_WEAK(SHA512Init); 630 631 #ifdef SHA2_UNROLL_TRANSFORM 632 633 /* Unrolled SHA-512 round macros: */ 634 635 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 636 BE_8_TO_64(W512[j], data); \ 637 data += 8; \ 638 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 639 (d) += T1; \ 640 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 641 j++; \ 642 } while(0) 643 644 645 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 646 s0 = W512[(j+1)&0x0f]; \ 647 s0 = sigma0_512(s0); \ 648 s1 = W512[(j+14)&0x0f]; \ 649 s1 = sigma1_512(s1); \ 650 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 651 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 652 (d) += T1; \ 653 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 654 j++; \ 655 } while(0) 656 657 void 658 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 659 { 660 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 661 u_int64_t T1, W512[16]; 662 int j; 663 664 /* Initialize registers with the prev. intermediate value */ 665 a = state[0]; 666 b = state[1]; 667 c = state[2]; 668 d = state[3]; 669 e = state[4]; 670 f = state[5]; 671 g = state[6]; 672 h = state[7]; 673 674 j = 0; 675 do { 676 /* Rounds 0 to 15 (unrolled): */ 677 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 678 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 679 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 680 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 681 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 682 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 683 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 684 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 685 } while (j < 16); 686 687 /* Now for the remaining rounds up to 79: */ 688 do { 689 ROUND512(a,b,c,d,e,f,g,h); 690 ROUND512(h,a,b,c,d,e,f,g); 691 ROUND512(g,h,a,b,c,d,e,f); 692 ROUND512(f,g,h,a,b,c,d,e); 693 ROUND512(e,f,g,h,a,b,c,d); 694 ROUND512(d,e,f,g,h,a,b,c); 695 ROUND512(c,d,e,f,g,h,a,b); 696 ROUND512(b,c,d,e,f,g,h,a); 697 } while (j < 80); 698 699 /* Compute the current intermediate hash value */ 700 state[0] += a; 701 state[1] += b; 702 state[2] += c; 703 state[3] += d; 704 state[4] += e; 705 state[5] += f; 706 state[6] += g; 707 state[7] += h; 708 709 /* Clean up */ 710 a = b = c = d = e = f = g = h = T1 = 0; 711 } 712 713 #else /* SHA2_UNROLL_TRANSFORM */ 714 715 void 716 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 717 { 718 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 719 u_int64_t T1, T2, W512[16]; 720 int j; 721 722 /* Initialize registers with the prev. intermediate value */ 723 a = state[0]; 724 b = state[1]; 725 c = state[2]; 726 d = state[3]; 727 e = state[4]; 728 f = state[5]; 729 g = state[6]; 730 h = state[7]; 731 732 j = 0; 733 do { 734 BE_8_TO_64(W512[j], data); 735 data += 8; 736 /* Apply the SHA-512 compression function to update a..h */ 737 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 738 T2 = Sigma0_512(a) + Maj(a, b, c); 739 h = g; 740 g = f; 741 f = e; 742 e = d + T1; 743 d = c; 744 c = b; 745 b = a; 746 a = T1 + T2; 747 748 j++; 749 } while (j < 16); 750 751 do { 752 /* Part of the message block expansion: */ 753 s0 = W512[(j+1)&0x0f]; 754 s0 = sigma0_512(s0); 755 s1 = W512[(j+14)&0x0f]; 756 s1 = sigma1_512(s1); 757 758 /* Apply the SHA-512 compression function to update a..h */ 759 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 760 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 761 T2 = Sigma0_512(a) + Maj(a, b, c); 762 h = g; 763 g = f; 764 f = e; 765 e = d + T1; 766 d = c; 767 c = b; 768 b = a; 769 a = T1 + T2; 770 771 j++; 772 } while (j < 80); 773 774 /* Compute the current intermediate hash value */ 775 state[0] += a; 776 state[1] += b; 777 state[2] += c; 778 state[3] += d; 779 state[4] += e; 780 state[5] += f; 781 state[6] += g; 782 state[7] += h; 783 784 /* Clean up */ 785 a = b = c = d = e = f = g = h = T1 = T2 = 0; 786 } 787 788 #endif /* SHA2_UNROLL_TRANSFORM */ 789 DEF_WEAK(SHA512Transform); 790 791 void 792 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 793 { 794 size_t freespace, usedspace; 795 796 /* Calling with no data is valid (we do nothing) */ 797 if (len == 0) 798 return; 799 800 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 801 if (usedspace > 0) { 802 /* Calculate how much free space is available in the buffer */ 803 freespace = SHA512_BLOCK_LENGTH - usedspace; 804 805 if (len >= freespace) { 806 /* Fill the buffer completely and process it */ 807 memcpy(&context->buffer[usedspace], data, freespace); 808 ADDINC128(context->bitcount, freespace << 3); 809 len -= freespace; 810 data += freespace; 811 SHA512Transform(context->state.st64, context->buffer); 812 } else { 813 /* The buffer is not yet full */ 814 memcpy(&context->buffer[usedspace], data, len); 815 ADDINC128(context->bitcount, len << 3); 816 /* Clean up: */ 817 usedspace = freespace = 0; 818 return; 819 } 820 } 821 while (len >= SHA512_BLOCK_LENGTH) { 822 /* Process as many complete blocks as we can */ 823 SHA512Transform(context->state.st64, data); 824 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 825 len -= SHA512_BLOCK_LENGTH; 826 data += SHA512_BLOCK_LENGTH; 827 } 828 if (len > 0) { 829 /* There's left-overs, so save 'em */ 830 memcpy(context->buffer, data, len); 831 ADDINC128(context->bitcount, len << 3); 832 } 833 /* Clean up: */ 834 usedspace = freespace = 0; 835 } 836 DEF_WEAK(SHA512Update); 837 838 void 839 SHA512Pad(SHA2_CTX *context) 840 { 841 unsigned int usedspace; 842 843 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 844 if (usedspace > 0) { 845 /* Begin padding with a 1 bit: */ 846 context->buffer[usedspace++] = 0x80; 847 848 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 849 /* Set-up for the last transform: */ 850 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 851 } else { 852 if (usedspace < SHA512_BLOCK_LENGTH) { 853 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 854 } 855 /* Do second-to-last transform: */ 856 SHA512Transform(context->state.st64, context->buffer); 857 858 /* And set-up for the last transform: */ 859 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 860 } 861 } else { 862 /* Prepare for final transform: */ 863 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 864 865 /* Begin padding with a 1 bit: */ 866 *context->buffer = 0x80; 867 } 868 /* Store the length of input data (in bits) in big endian format: */ 869 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 870 context->bitcount[1]); 871 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 872 context->bitcount[0]); 873 874 /* Final transform: */ 875 SHA512Transform(context->state.st64, context->buffer); 876 877 /* Clean up: */ 878 usedspace = 0; 879 } 880 DEF_WEAK(SHA512Pad); 881 882 void 883 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 884 { 885 SHA512Pad(context); 886 887 #if BYTE_ORDER == LITTLE_ENDIAN 888 int i; 889 890 /* Convert TO host byte order */ 891 for (i = 0; i < 8; i++) 892 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 893 #else 894 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 895 #endif 896 explicit_bzero(context, sizeof(*context)); 897 } 898 DEF_WEAK(SHA512Final); 899 900 #if !defined(SHA2_SMALL) 901 902 /*** SHA-384: *********************************************************/ 903 void 904 SHA384Init(SHA2_CTX *context) 905 { 906 memcpy(context->state.st64, sha384_initial_hash_value, 907 sizeof(sha384_initial_hash_value)); 908 memset(context->buffer, 0, sizeof(context->buffer)); 909 context->bitcount[0] = context->bitcount[1] = 0; 910 } 911 DEF_WEAK(SHA384Init); 912 913 MAKE_CLONE(SHA384Transform, SHA512Transform); 914 MAKE_CLONE(SHA384Update, SHA512Update); 915 MAKE_CLONE(SHA384Pad, SHA512Pad); 916 DEF_WEAK(SHA384Transform); 917 DEF_WEAK(SHA384Update); 918 DEF_WEAK(SHA384Pad); 919 920 void 921 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 922 { 923 SHA384Pad(context); 924 925 #if BYTE_ORDER == LITTLE_ENDIAN 926 int i; 927 928 /* Convert TO host byte order */ 929 for (i = 0; i < 6; i++) 930 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 931 #else 932 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 933 #endif 934 /* Zero out state data */ 935 explicit_bzero(context, sizeof(*context)); 936 } 937 DEF_WEAK(SHA384Final); 938 939 /*** SHA-512/256: *********************************************************/ 940 void 941 SHA512_256Init(SHA2_CTX *context) 942 { 943 memcpy(context->state.st64, sha512_256_initial_hash_value, 944 sizeof(sha512_256_initial_hash_value)); 945 memset(context->buffer, 0, sizeof(context->buffer)); 946 context->bitcount[0] = context->bitcount[1] = 0; 947 } 948 DEF_WEAK(SHA512_256Init); 949 950 MAKE_CLONE(SHA512_256Transform, SHA512Transform); 951 MAKE_CLONE(SHA512_256Update, SHA512Update); 952 MAKE_CLONE(SHA512_256Pad, SHA512Pad); 953 DEF_WEAK(SHA512_256Transform); 954 DEF_WEAK(SHA512_256Update); 955 DEF_WEAK(SHA512_256Pad); 956 957 void 958 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context) 959 { 960 SHA512_256Pad(context); 961 962 #if BYTE_ORDER == LITTLE_ENDIAN 963 int i; 964 965 /* Convert TO host byte order */ 966 for (i = 0; i < 4; i++) 967 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 968 #else 969 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH); 970 #endif 971 /* Zero out state data */ 972 explicit_bzero(context, sizeof(*context)); 973 } 974 DEF_WEAK(SHA512_256Final); 975 #endif /* !defined(SHA2_SMALL) */ 976