xref: /openbsd/lib/libc/quad/qdivrem.c (revision d415bd75)
1 /*	$OpenBSD: qdivrem.c,v 1.8 2014/06/07 15:28:21 deraadt Exp $ */
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This software was developed by the Computer Systems Engineering group
7  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
8  * contributed to Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
37  * section 4.3.1, pp. 257--259.
38  */
39 
40 #include "quad.h"
41 
42 #define	B	((int)1 << HALF_BITS)	/* digit base */
43 
44 /* Combine two `digits' to make a single two-digit number. */
45 #define	COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
46 
47 /* select a type for digits in base B: use unsigned short if they fit */
48 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
49 typedef unsigned short digit;
50 #else
51 typedef u_int digit;
52 #endif
53 
54 static void shl(digit *p, int len, int sh);
55 
56 /*
57  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
58  *
59  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
60  * fit within u_int.  As a consequence, the maximum length dividend and
61  * divisor are 4 `digits' in this base (they are shorter if they have
62  * leading zeros).
63  */
64 u_quad_t
65 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
66 {
67 	union uu tmp;
68 	digit *u, *v, *q;
69 	digit v1, v2;
70 	u_int qhat, rhat, t;
71 	int m, n, d, j, i;
72 	digit uspace[5], vspace[5], qspace[5];
73 
74 	/*
75 	 * Take care of special cases: divide by zero, and u < v.
76 	 */
77 	if (vq == 0) {
78 		/* divide by zero. */
79 		static volatile const unsigned int zero = 0;
80 
81 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
82 		if (arq)
83 			*arq = uq;
84 		return (tmp.q);
85 	}
86 	if (uq < vq) {
87 		if (arq)
88 			*arq = uq;
89 		return (0);
90 	}
91 	u = &uspace[0];
92 	v = &vspace[0];
93 	q = &qspace[0];
94 
95 	/*
96 	 * Break dividend and divisor into digits in base B, then
97 	 * count leading zeros to determine m and n.  When done, we
98 	 * will have:
99 	 *	u = (u[1]u[2]...u[m+n]) sub B
100 	 *	v = (v[1]v[2]...v[n]) sub B
101 	 *	v[1] != 0
102 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
103 	 *	m >= 0 (otherwise u < v, which we already checked)
104 	 *	m + n = 4
105 	 * and thus
106 	 *	m = 4 - n <= 2
107 	 */
108 	tmp.uq = uq;
109 	u[0] = 0;
110 	u[1] = (digit)HHALF(tmp.ul[H]);
111 	u[2] = (digit)LHALF(tmp.ul[H]);
112 	u[3] = (digit)HHALF(tmp.ul[L]);
113 	u[4] = (digit)LHALF(tmp.ul[L]);
114 	tmp.uq = vq;
115 	v[1] = (digit)HHALF(tmp.ul[H]);
116 	v[2] = (digit)LHALF(tmp.ul[H]);
117 	v[3] = (digit)HHALF(tmp.ul[L]);
118 	v[4] = (digit)LHALF(tmp.ul[L]);
119 	for (n = 4; v[1] == 0; v++) {
120 		if (--n == 1) {
121 			u_int rbj;	/* r*B+u[j] (not root boy jim) */
122 			digit q1, q2, q3, q4;
123 
124 			/*
125 			 * Change of plan, per exercise 16.
126 			 *	r = 0;
127 			 *	for j = 1..4:
128 			 *		q[j] = floor((r*B + u[j]) / v),
129 			 *		r = (r*B + u[j]) % v;
130 			 * We unroll this completely here.
131 			 */
132 			t = v[2];	/* nonzero, by definition */
133 			q1 = (digit)(u[1] / t);
134 			rbj = COMBINE(u[1] % t, u[2]);
135 			q2 = (digit)(rbj / t);
136 			rbj = COMBINE(rbj % t, u[3]);
137 			q3 = (digit)(rbj / t);
138 			rbj = COMBINE(rbj % t, u[4]);
139 			q4 = (digit)(rbj / t);
140 			if (arq)
141 				*arq = rbj % t;
142 			tmp.ul[H] = COMBINE(q1, q2);
143 			tmp.ul[L] = COMBINE(q3, q4);
144 			return (tmp.q);
145 		}
146 	}
147 
148 	/*
149 	 * By adjusting q once we determine m, we can guarantee that
150 	 * there is a complete four-digit quotient at &qspace[1] when
151 	 * we finally stop.
152 	 */
153 	for (m = 4 - n; u[1] == 0; u++)
154 		m--;
155 	for (i = 4 - m; --i >= 0;)
156 		q[i] = 0;
157 	q += 4 - m;
158 
159 	/*
160 	 * Here we run Program D, translated from MIX to C and acquiring
161 	 * a few minor changes.
162 	 *
163 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
164 	 */
165 	d = 0;
166 	for (t = v[1]; t < B / 2; t <<= 1)
167 		d++;
168 	if (d > 0) {
169 		shl(&u[0], m + n, d);		/* u <<= d */
170 		shl(&v[1], n - 1, d);		/* v <<= d */
171 	}
172 	/*
173 	 * D2: j = 0.
174 	 */
175 	j = 0;
176 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
177 	v2 = v[2];	/* for D3 */
178 	do {
179 		digit uj0, uj1, uj2;
180 
181 		/*
182 		 * D3: Calculate qhat (\^q, in TeX notation).
183 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
184 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
185 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
186 		 * decrement qhat and increase rhat correspondingly.
187 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
188 		 */
189 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
190 		uj1 = u[j + 1];	/* for D3 only */
191 		uj2 = u[j + 2];	/* for D3 only */
192 		if (uj0 == v1) {
193 			qhat = B;
194 			rhat = uj1;
195 			goto qhat_too_big;
196 		} else {
197 			u_int nn = COMBINE(uj0, uj1);
198 			qhat = nn / v1;
199 			rhat = nn % v1;
200 		}
201 		while (v2 * qhat > COMBINE(rhat, uj2)) {
202 	qhat_too_big:
203 			qhat--;
204 			if ((rhat += v1) >= B)
205 				break;
206 		}
207 		/*
208 		 * D4: Multiply and subtract.
209 		 * The variable `t' holds any borrows across the loop.
210 		 * We split this up so that we do not require v[0] = 0,
211 		 * and to eliminate a final special case.
212 		 */
213 		for (t = 0, i = n; i > 0; i--) {
214 			t = u[i + j] - v[i] * qhat - t;
215 			u[i + j] = (digit)LHALF(t);
216 			t = (B - HHALF(t)) & (B - 1);
217 		}
218 		t = u[j] - t;
219 		u[j] = (digit)LHALF(t);
220 		/*
221 		 * D5: test remainder.
222 		 * There is a borrow if and only if HHALF(t) is nonzero;
223 		 * in that (rare) case, qhat was too large (by exactly 1).
224 		 * Fix it by adding v[1..n] to u[j..j+n].
225 		 */
226 		if (HHALF(t)) {
227 			qhat--;
228 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
229 				t += u[i + j] + v[i];
230 				u[i + j] = (digit)LHALF(t);
231 				t = HHALF(t);
232 			}
233 			u[j] = (digit)LHALF(u[j] + t);
234 		}
235 		q[j] = (digit)qhat;
236 	} while (++j <= m);		/* D7: loop on j. */
237 
238 	/*
239 	 * If caller wants the remainder, we have to calculate it as
240 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
241 	 * u[m+1..m+n], but we may need more source digits).
242 	 */
243 	if (arq) {
244 		if (d) {
245 			for (i = m + n; i > m; --i)
246 				u[i] = (digit)(((u_int)u[i] >> d) |
247 				    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
248 			u[i] = 0;
249 		}
250 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
251 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
252 		*arq = tmp.q;
253 	}
254 
255 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
256 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
257 	return (tmp.q);
258 }
259 
260 /*
261  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
262  * `fall out' the left (there never will be any such anyway).
263  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
264  */
265 static void
266 shl(digit *p, int len, int sh)
267 {
268 	int i;
269 
270 	for (i = 0; i < len; i++)
271 		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
272 		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
273 	p[i] = (digit)(LHALF((u_int)p[i] << sh));
274 }
275