xref: /openbsd/lib/libc/quad/qdivrem.c (revision df930be7)
1 /*	$NetBSD: qdivrem.c,v 1.4 1995/02/27 17:30:53 cgd Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #ifdef notdef
42 static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
43 #endif
44 static char rcsid[] = "$NetBSD: qdivrem.c,v 1.4 1995/02/27 17:30:53 cgd Exp $";
45 #endif /* LIBC_SCCS and not lint */
46 
47 /*
48  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
49  * section 4.3.1, pp. 257--259.
50  */
51 
52 #include "quad.h"
53 
54 #define	B	((long)1 << HALF_BITS)	/* digit base */
55 
56 /* Combine two `digits' to make a single two-digit number. */
57 #define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
58 
59 /* select a type for digits in base B: use unsigned short if they fit */
60 #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
61 typedef unsigned short digit;
62 #else
63 typedef u_long digit;
64 #endif
65 
66 static void shl __P((digit *p, int len, int sh));
67 
68 /*
69  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
70  *
71  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
72  * fit within u_long.  As a consequence, the maximum length dividend and
73  * divisor are 4 `digits' in this base (they are shorter if they have
74  * leading zeros).
75  */
76 u_quad_t
77 __qdivrem(uq, vq, arq)
78 	u_quad_t uq, vq, *arq;
79 {
80 	union uu tmp;
81 	digit *u, *v, *q;
82 	register digit v1, v2;
83 	u_long qhat, rhat, t;
84 	int m, n, d, j, i;
85 	digit uspace[5], vspace[5], qspace[5];
86 
87 	/*
88 	 * Take care of special cases: divide by zero, and u < v.
89 	 */
90 	if (vq == 0) {
91 		/* divide by zero. */
92 		static volatile const unsigned int zero = 0;
93 
94 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
95 		if (arq)
96 			*arq = uq;
97 		return (tmp.q);
98 	}
99 	if (uq < vq) {
100 		if (arq)
101 			*arq = uq;
102 		return (0);
103 	}
104 	u = &uspace[0];
105 	v = &vspace[0];
106 	q = &qspace[0];
107 
108 	/*
109 	 * Break dividend and divisor into digits in base B, then
110 	 * count leading zeros to determine m and n.  When done, we
111 	 * will have:
112 	 *	u = (u[1]u[2]...u[m+n]) sub B
113 	 *	v = (v[1]v[2]...v[n]) sub B
114 	 *	v[1] != 0
115 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
116 	 *	m >= 0 (otherwise u < v, which we already checked)
117 	 *	m + n = 4
118 	 * and thus
119 	 *	m = 4 - n <= 2
120 	 */
121 	tmp.uq = uq;
122 	u[0] = 0;
123 	u[1] = HHALF(tmp.ul[H]);
124 	u[2] = LHALF(tmp.ul[H]);
125 	u[3] = HHALF(tmp.ul[L]);
126 	u[4] = LHALF(tmp.ul[L]);
127 	tmp.uq = vq;
128 	v[1] = HHALF(tmp.ul[H]);
129 	v[2] = LHALF(tmp.ul[H]);
130 	v[3] = HHALF(tmp.ul[L]);
131 	v[4] = LHALF(tmp.ul[L]);
132 	for (n = 4; v[1] == 0; v++) {
133 		if (--n == 1) {
134 			u_long rbj;	/* r*B+u[j] (not root boy jim) */
135 			digit q1, q2, q3, q4;
136 
137 			/*
138 			 * Change of plan, per exercise 16.
139 			 *	r = 0;
140 			 *	for j = 1..4:
141 			 *		q[j] = floor((r*B + u[j]) / v),
142 			 *		r = (r*B + u[j]) % v;
143 			 * We unroll this completely here.
144 			 */
145 			t = v[2];	/* nonzero, by definition */
146 			q1 = u[1] / t;
147 			rbj = COMBINE(u[1] % t, u[2]);
148 			q2 = rbj / t;
149 			rbj = COMBINE(rbj % t, u[3]);
150 			q3 = rbj / t;
151 			rbj = COMBINE(rbj % t, u[4]);
152 			q4 = rbj / t;
153 			if (arq)
154 				*arq = rbj % t;
155 			tmp.ul[H] = COMBINE(q1, q2);
156 			tmp.ul[L] = COMBINE(q3, q4);
157 			return (tmp.q);
158 		}
159 	}
160 
161 	/*
162 	 * By adjusting q once we determine m, we can guarantee that
163 	 * there is a complete four-digit quotient at &qspace[1] when
164 	 * we finally stop.
165 	 */
166 	for (m = 4 - n; u[1] == 0; u++)
167 		m--;
168 	for (i = 4 - m; --i >= 0;)
169 		q[i] = 0;
170 	q += 4 - m;
171 
172 	/*
173 	 * Here we run Program D, translated from MIX to C and acquiring
174 	 * a few minor changes.
175 	 *
176 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
177 	 */
178 	d = 0;
179 	for (t = v[1]; t < B / 2; t <<= 1)
180 		d++;
181 	if (d > 0) {
182 		shl(&u[0], m + n, d);		/* u <<= d */
183 		shl(&v[1], n - 1, d);		/* v <<= d */
184 	}
185 	/*
186 	 * D2: j = 0.
187 	 */
188 	j = 0;
189 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
190 	v2 = v[2];	/* for D3 */
191 	do {
192 		register digit uj0, uj1, uj2;
193 
194 		/*
195 		 * D3: Calculate qhat (\^q, in TeX notation).
196 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
197 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
198 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
199 		 * decrement qhat and increase rhat correspondingly.
200 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
201 		 */
202 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
203 		uj1 = u[j + 1];	/* for D3 only */
204 		uj2 = u[j + 2];	/* for D3 only */
205 		if (uj0 == v1) {
206 			qhat = B;
207 			rhat = uj1;
208 			goto qhat_too_big;
209 		} else {
210 			u_long n = COMBINE(uj0, uj1);
211 			qhat = n / v1;
212 			rhat = n % v1;
213 		}
214 		while (v2 * qhat > COMBINE(rhat, uj2)) {
215 	qhat_too_big:
216 			qhat--;
217 			if ((rhat += v1) >= B)
218 				break;
219 		}
220 		/*
221 		 * D4: Multiply and subtract.
222 		 * The variable `t' holds any borrows across the loop.
223 		 * We split this up so that we do not require v[0] = 0,
224 		 * and to eliminate a final special case.
225 		 */
226 		for (t = 0, i = n; i > 0; i--) {
227 			t = u[i + j] - v[i] * qhat - t;
228 			u[i + j] = LHALF(t);
229 			t = (B - HHALF(t)) & (B - 1);
230 		}
231 		t = u[j] - t;
232 		u[j] = LHALF(t);
233 		/*
234 		 * D5: test remainder.
235 		 * There is a borrow if and only if HHALF(t) is nonzero;
236 		 * in that (rare) case, qhat was too large (by exactly 1).
237 		 * Fix it by adding v[1..n] to u[j..j+n].
238 		 */
239 		if (HHALF(t)) {
240 			qhat--;
241 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
242 				t += u[i + j] + v[i];
243 				u[i + j] = LHALF(t);
244 				t = HHALF(t);
245 			}
246 			u[j] = LHALF(u[j] + t);
247 		}
248 		q[j] = qhat;
249 	} while (++j <= m);		/* D7: loop on j. */
250 
251 	/*
252 	 * If caller wants the remainder, we have to calculate it as
253 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
254 	 * u[m+1..m+n], but we may need more source digits).
255 	 */
256 	if (arq) {
257 		if (d) {
258 			for (i = m + n; i > m; --i)
259 				u[i] = (u[i] >> d) |
260 				    LHALF(u[i - 1] << (HALF_BITS - d));
261 			u[i] = 0;
262 		}
263 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
264 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
265 		*arq = tmp.q;
266 	}
267 
268 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
269 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
270 	return (tmp.q);
271 }
272 
273 /*
274  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
275  * `fall out' the left (there never will be any such anyway).
276  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
277  */
278 static void
279 shl(register digit *p, register int len, register int sh)
280 {
281 	register int i;
282 
283 	for (i = 0; i < len; i++)
284 		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
285 	p[i] = LHALF(p[i] << sh);
286 }
287