xref: /openbsd/lib/libc/time/localtime.c (revision db3296cf)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov).
4 */
5 
6 #if defined(LIBC_SCCS) && !defined(lint) && !defined(NOID)
7 static char elsieid[] = "@(#)localtime.c	7.75";
8 static char rcsid[] = "$OpenBSD: localtime.c,v 1.22 2003/03/13 15:47:34 deraadt Exp $";
9 #endif /* LIBC_SCCS and not lint */
10 
11 /*
12 ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
13 ** POSIX-style TZ environment variable handling from Guy Harris
14 ** (guy@auspex.com).
15 */
16 
17 /*LINTLIBRARY*/
18 
19 #include "private.h"
20 #include "tzfile.h"
21 #include "fcntl.h"
22 #include "thread_private.h"
23 
24 /*
25 ** SunOS 4.1.1 headers lack O_BINARY.
26 */
27 
28 #ifdef O_BINARY
29 #define OPEN_MODE	(O_RDONLY | O_BINARY)
30 #endif /* defined O_BINARY */
31 #ifndef O_BINARY
32 #define OPEN_MODE	O_RDONLY
33 #endif /* !defined O_BINARY */
34 
35 #ifndef WILDABBR
36 /*
37 ** Someone might make incorrect use of a time zone abbreviation:
38 **	1.	They might reference tzname[0] before calling tzset (explicitly
39 **		or implicitly).
40 **	2.	They might reference tzname[1] before calling tzset (explicitly
41 **		or implicitly).
42 **	3.	They might reference tzname[1] after setting to a time zone
43 **		in which Daylight Saving Time is never observed.
44 **	4.	They might reference tzname[0] after setting to a time zone
45 **		in which Standard Time is never observed.
46 **	5.	They might reference tm.TM_ZONE after calling offtime.
47 ** What's best to do in the above cases is open to debate;
48 ** for now, we just set things up so that in any of the five cases
49 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
50 ** string "tzname[0] used before set", and similarly for the other cases.
51 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
52 ** manual page of what this "time zone abbreviation" means (doing this so
53 ** that tzname[0] has the "normal" length of three characters).
54 */
55 #define WILDABBR	"   "
56 #endif /* !defined WILDABBR */
57 
58 static char		wildabbr[] = "WILDABBR";
59 
60 static const char	gmt[] = "GMT";
61 
62 /*
63 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
64 ** We default to US rules as of 1999-08-17.
65 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
66 ** implementation dependent; for historical reasons, US rules are a
67 ** common default.
68 */
69 #ifndef TZDEFRULESTRING
70 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
71 #endif /* !defined TZDEFDST */
72 
73 struct ttinfo {				/* time type information */
74 	long		tt_gmtoff;	/* UTC offset in seconds */
75 	int		tt_isdst;	/* used to set tm_isdst */
76 	int		tt_abbrind;	/* abbreviation list index */
77 	int		tt_ttisstd;	/* TRUE if transition is std time */
78 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
79 };
80 
81 struct lsinfo {				/* leap second information */
82 	time_t		ls_trans;	/* transition time */
83 	long		ls_corr;	/* correction to apply */
84 };
85 
86 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
87 
88 #ifdef TZNAME_MAX
89 #define MY_TZNAME_MAX	TZNAME_MAX
90 #endif /* defined TZNAME_MAX */
91 #ifndef TZNAME_MAX
92 #define MY_TZNAME_MAX	255
93 #endif /* !defined TZNAME_MAX */
94 
95 struct state {
96 	int		leapcnt;
97 	int		timecnt;
98 	int		typecnt;
99 	int		charcnt;
100 	time_t		ats[TZ_MAX_TIMES];
101 	unsigned char	types[TZ_MAX_TIMES];
102 	struct ttinfo	ttis[TZ_MAX_TYPES];
103 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
104 				(2 * (MY_TZNAME_MAX + 1)))];
105 	struct lsinfo	lsis[TZ_MAX_LEAPS];
106 };
107 
108 struct rule {
109 	int		r_type;		/* type of rule--see below */
110 	int		r_day;		/* day number of rule */
111 	int		r_week;		/* week number of rule */
112 	int		r_mon;		/* month number of rule */
113 	long		r_time;		/* transition time of rule */
114 };
115 
116 #define JULIAN_DAY		0	/* Jn - Julian day */
117 #define DAY_OF_YEAR		1	/* n - day of year */
118 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
119 
120 /*
121 ** Prototypes for static functions.
122 */
123 
124 static long		detzcode P((const char * codep));
125 static const char *	getzname P((const char * strp));
126 static const char *	getnum P((const char * strp, int * nump, int min,
127 				int max));
128 static const char *	getsecs P((const char * strp, long * secsp));
129 static const char *	getoffset P((const char * strp, long * offsetp));
130 static const char *	getrule P((const char * strp, struct rule * rulep));
131 static void		gmtload P((struct state * sp));
132 static void		gmtsub P((const time_t * timep, long offset,
133 				struct tm * tmp));
134 static void		localsub P((const time_t * timep, long offset,
135 				struct tm * tmp));
136 static int		increment_overflow P((int * number, int delta));
137 static int		normalize_overflow P((int * tensptr, int * unitsptr,
138 				int base));
139 static void		settzname P((void));
140 static time_t		time1 P((struct tm * tmp,
141 				void(*funcp) P((const time_t *,
142 				long, struct tm *)),
143 				long offset));
144 static time_t		time2 P((struct tm *tmp,
145 				void(*funcp) P((const time_t *,
146 				long, struct tm*)),
147 				long offset, int * okayp));
148 static time_t		time2sub P((struct tm *tmp,
149 				void(*funcp) P((const time_t *,
150 				long, struct tm*)),
151 				long offset, int * okayp, int do_norm_secs));
152 static void		timesub P((const time_t * timep, long offset,
153 				const struct state * sp, struct tm * tmp));
154 static int		tmcomp P((const struct tm * atmp,
155 				const struct tm * btmp));
156 static time_t		transtime P((time_t janfirst, int year,
157 				const struct rule * rulep, long offset));
158 static int		tzload P((const char * name, struct state * sp));
159 static int		tzparse P((const char * name, struct state * sp,
160 				int lastditch));
161 
162 #ifdef ALL_STATE
163 static struct state *	lclptr;
164 static struct state *	gmtptr;
165 #endif /* defined ALL_STATE */
166 
167 #ifndef ALL_STATE
168 static struct state	lclmem;
169 static struct state	gmtmem;
170 #define lclptr		(&lclmem)
171 #define gmtptr		(&gmtmem)
172 #endif /* State Farm */
173 
174 #ifndef TZ_STRLEN_MAX
175 #define TZ_STRLEN_MAX 255
176 #endif /* !defined TZ_STRLEN_MAX */
177 
178 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
179 static int		lcl_is_set;
180 static int		gmt_is_set;
181 _THREAD_PRIVATE_MUTEX(lcl);
182 _THREAD_PRIVATE_MUTEX(gmt);
183 
184 char *			tzname[2] = {
185 	wildabbr,
186 	wildabbr
187 };
188 
189 /*
190 ** Section 4.12.3 of X3.159-1989 requires that
191 **	Except for the strftime function, these functions [asctime,
192 **	ctime, gmtime, localtime] return values in one of two static
193 **	objects: a broken-down time structure and an array of char.
194 ** Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
195 */
196 
197 static struct tm	tm;
198 
199 #ifdef USG_COMPAT
200 time_t			timezone = 0;
201 int			daylight = 0;
202 #endif /* defined USG_COMPAT */
203 
204 #ifdef ALTZONE
205 time_t			altzone = 0;
206 #endif /* defined ALTZONE */
207 
208 static long
209 detzcode(codep)
210 const char * const	codep;
211 {
212 	register long	result;
213 	register int	i;
214 
215 	result = (codep[0] & 0x80) ? ~0L : 0L;
216 	for (i = 0; i < 4; ++i)
217 		result = (result << 8) | (codep[i] & 0xff);
218 	return result;
219 }
220 
221 static void
222 settzname P((void))
223 {
224 	register struct state * const	sp = lclptr;
225 	register int			i;
226 
227 	tzname[0] = wildabbr;
228 	tzname[1] = wildabbr;
229 #ifdef USG_COMPAT
230 	daylight = 0;
231 	timezone = 0;
232 #endif /* defined USG_COMPAT */
233 #ifdef ALTZONE
234 	altzone = 0;
235 #endif /* defined ALTZONE */
236 #ifdef ALL_STATE
237 	if (sp == NULL) {
238 		tzname[0] = tzname[1] = gmt;
239 		return;
240 	}
241 #endif /* defined ALL_STATE */
242 	for (i = 0; i < sp->typecnt; ++i) {
243 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
244 
245 		tzname[ttisp->tt_isdst] =
246 			&sp->chars[ttisp->tt_abbrind];
247 #ifdef USG_COMPAT
248 		if (ttisp->tt_isdst)
249 			daylight = 1;
250 		if (i == 0 || !ttisp->tt_isdst)
251 			timezone = -(ttisp->tt_gmtoff);
252 #endif /* defined USG_COMPAT */
253 #ifdef ALTZONE
254 		if (i == 0 || ttisp->tt_isdst)
255 			altzone = -(ttisp->tt_gmtoff);
256 #endif /* defined ALTZONE */
257 	}
258 	/*
259 	** And to get the latest zone names into tzname. . .
260 	*/
261 	for (i = 0; i < sp->timecnt; ++i) {
262 		register const struct ttinfo * const	ttisp =
263 							&sp->ttis[
264 								sp->types[i]];
265 
266 		tzname[ttisp->tt_isdst] =
267 			&sp->chars[ttisp->tt_abbrind];
268 	}
269 }
270 
271 static int
272 tzload(name, sp)
273 register const char *		name;
274 register struct state * const	sp;
275 {
276 	register const char *	p;
277 	register int		i;
278 	register int		fid;
279 
280 	if (name != NULL && issetugid() != 0)
281 		if ((name[0] == ':' && (strchr(name, '/') || strstr(name, ".."))) ||
282 		    name[0] == '/' || strchr(name, '.'))
283 			name = NULL;
284 	if (name == NULL && (name = TZDEFAULT) == NULL)
285 		return -1;
286 	{
287 		register int	doaccess;
288 		/*
289 		** Section 4.9.1 of the C standard says that
290 		** "FILENAME_MAX expands to an integral constant expression
291 		** that is the size needed for an array of char large enough
292 		** to hold the longest file name string that the implementation
293 		** guarantees can be opened."
294 		*/
295 		char		fullname[FILENAME_MAX];
296 
297 		if (name[0] == ':')
298 			++name;
299 		doaccess = name[0] == '/';
300 		if (!doaccess) {
301 			if ((p = TZDIR) == NULL)
302 				return -1;
303 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
304 				return -1;
305 			(void) strlcpy(fullname, p, sizeof fullname);
306 			(void) strlcat(fullname, "/", sizeof fullname);
307 			(void) strlcat(fullname, name, sizeof fullname);
308 			/*
309 			** Set doaccess if '.' (as in "../") shows up in name.
310 			*/
311 			if (strchr(name, '.') != NULL)
312 				doaccess = TRUE;
313 			name = fullname;
314 		}
315 		if (doaccess && access(name, R_OK) != 0)
316 			return -1;
317 		if ((fid = open(name, OPEN_MODE)) == -1)
318 			return -1;
319 	}
320 	{
321 		struct tzhead *	tzhp;
322 		union {
323 			struct tzhead	tzhead;
324 			char		buf[sizeof *sp + sizeof *tzhp];
325 		} u;
326 		int		ttisstdcnt;
327 		int		ttisgmtcnt;
328 
329 		i = read(fid, u.buf, sizeof u.buf);
330 		if (close(fid) != 0)
331 			return -1;
332 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
333 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
334 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
335 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
336 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
337 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
338 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
339 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
340 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
341 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
342 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
343 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
344 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
345 				return -1;
346 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
347 			sp->timecnt +			/* types */
348 			sp->typecnt * (4 + 2) +		/* ttinfos */
349 			sp->charcnt +			/* chars */
350 			sp->leapcnt * (4 + 4) +		/* lsinfos */
351 			ttisstdcnt +			/* ttisstds */
352 			ttisgmtcnt)			/* ttisgmts */
353 				return -1;
354 		for (i = 0; i < sp->timecnt; ++i) {
355 			sp->ats[i] = detzcode(p);
356 			p += 4;
357 		}
358 		for (i = 0; i < sp->timecnt; ++i) {
359 			sp->types[i] = (unsigned char) *p++;
360 			if (sp->types[i] >= sp->typecnt)
361 				return -1;
362 		}
363 		for (i = 0; i < sp->typecnt; ++i) {
364 			register struct ttinfo *	ttisp;
365 
366 			ttisp = &sp->ttis[i];
367 			ttisp->tt_gmtoff = detzcode(p);
368 			p += 4;
369 			ttisp->tt_isdst = (unsigned char) *p++;
370 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
371 				return -1;
372 			ttisp->tt_abbrind = (unsigned char) *p++;
373 			if (ttisp->tt_abbrind < 0 ||
374 				ttisp->tt_abbrind > sp->charcnt)
375 					return -1;
376 		}
377 		for (i = 0; i < sp->charcnt; ++i)
378 			sp->chars[i] = *p++;
379 		sp->chars[i] = '\0';	/* ensure '\0' at end */
380 		for (i = 0; i < sp->leapcnt; ++i) {
381 			register struct lsinfo *	lsisp;
382 
383 			lsisp = &sp->lsis[i];
384 			lsisp->ls_trans = detzcode(p);
385 			p += 4;
386 			lsisp->ls_corr = detzcode(p);
387 			p += 4;
388 		}
389 		for (i = 0; i < sp->typecnt; ++i) {
390 			register struct ttinfo *	ttisp;
391 
392 			ttisp = &sp->ttis[i];
393 			if (ttisstdcnt == 0)
394 				ttisp->tt_ttisstd = FALSE;
395 			else {
396 				ttisp->tt_ttisstd = *p++;
397 				if (ttisp->tt_ttisstd != TRUE &&
398 					ttisp->tt_ttisstd != FALSE)
399 						return -1;
400 			}
401 		}
402 		for (i = 0; i < sp->typecnt; ++i) {
403 			register struct ttinfo *	ttisp;
404 
405 			ttisp = &sp->ttis[i];
406 			if (ttisgmtcnt == 0)
407 				ttisp->tt_ttisgmt = FALSE;
408 			else {
409 				ttisp->tt_ttisgmt = *p++;
410 				if (ttisp->tt_ttisgmt != TRUE &&
411 					ttisp->tt_ttisgmt != FALSE)
412 						return -1;
413 			}
414 		}
415 	}
416 	return 0;
417 }
418 
419 static const int	mon_lengths[2][MONSPERYEAR] = {
420 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
421 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
422 };
423 
424 static const int	year_lengths[2] = {
425 	DAYSPERNYEAR, DAYSPERLYEAR
426 };
427 
428 /*
429 ** Given a pointer into a time zone string, scan until a character that is not
430 ** a valid character in a zone name is found.  Return a pointer to that
431 ** character.
432 */
433 
434 static const char *
435 getzname(strp)
436 register const char *	strp;
437 {
438 	register char	c;
439 
440 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
441 		c != '+')
442 			++strp;
443 	return strp;
444 }
445 
446 /*
447 ** Given a pointer into a time zone string, extract a number from that string.
448 ** Check that the number is within a specified range; if it is not, return
449 ** NULL.
450 ** Otherwise, return a pointer to the first character not part of the number.
451 */
452 
453 static const char *
454 getnum(strp, nump, min, max)
455 register const char *	strp;
456 int * const		nump;
457 const int		min;
458 const int		max;
459 {
460 	register char	c;
461 	register int	num;
462 
463 	if (strp == NULL || !is_digit(c = *strp))
464 		return NULL;
465 	num = 0;
466 	do {
467 		num = num * 10 + (c - '0');
468 		if (num > max)
469 			return NULL;	/* illegal value */
470 		c = *++strp;
471 	} while (is_digit(c));
472 	if (num < min)
473 		return NULL;		/* illegal value */
474 	*nump = num;
475 	return strp;
476 }
477 
478 /*
479 ** Given a pointer into a time zone string, extract a number of seconds,
480 ** in hh[:mm[:ss]] form, from the string.
481 ** If any error occurs, return NULL.
482 ** Otherwise, return a pointer to the first character not part of the number
483 ** of seconds.
484 */
485 
486 static const char *
487 getsecs(strp, secsp)
488 register const char *	strp;
489 long * const		secsp;
490 {
491 	int	num;
492 
493 	/*
494 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
495 	** "M10.4.6/26", which does not conform to Posix,
496 	** but which specifies the equivalent of
497 	** ``02:00 on the first Sunday on or after 23 Oct''.
498 	*/
499 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
500 	if (strp == NULL)
501 		return NULL;
502 	*secsp = num * (long) SECSPERHOUR;
503 	if (*strp == ':') {
504 		++strp;
505 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
506 		if (strp == NULL)
507 			return NULL;
508 		*secsp += num * SECSPERMIN;
509 		if (*strp == ':') {
510 			++strp;
511 			/* `SECSPERMIN' allows for leap seconds.  */
512 			strp = getnum(strp, &num, 0, SECSPERMIN);
513 			if (strp == NULL)
514 				return NULL;
515 			*secsp += num;
516 		}
517 	}
518 	return strp;
519 }
520 
521 /*
522 ** Given a pointer into a time zone string, extract an offset, in
523 ** [+-]hh[:mm[:ss]] form, from the string.
524 ** If any error occurs, return NULL.
525 ** Otherwise, return a pointer to the first character not part of the time.
526 */
527 
528 static const char *
529 getoffset(strp, offsetp)
530 register const char *	strp;
531 long * const		offsetp;
532 {
533 	register int	neg = 0;
534 
535 	if (*strp == '-') {
536 		neg = 1;
537 		++strp;
538 	} else if (*strp == '+')
539 		++strp;
540 	strp = getsecs(strp, offsetp);
541 	if (strp == NULL)
542 		return NULL;		/* illegal time */
543 	if (neg)
544 		*offsetp = -*offsetp;
545 	return strp;
546 }
547 
548 /*
549 ** Given a pointer into a time zone string, extract a rule in the form
550 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
551 ** If a valid rule is not found, return NULL.
552 ** Otherwise, return a pointer to the first character not part of the rule.
553 */
554 
555 static const char *
556 getrule(strp, rulep)
557 const char *			strp;
558 register struct rule * const	rulep;
559 {
560 	if (*strp == 'J') {
561 		/*
562 		** Julian day.
563 		*/
564 		rulep->r_type = JULIAN_DAY;
565 		++strp;
566 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
567 	} else if (*strp == 'M') {
568 		/*
569 		** Month, week, day.
570 		*/
571 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
572 		++strp;
573 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
574 		if (strp == NULL)
575 			return NULL;
576 		if (*strp++ != '.')
577 			return NULL;
578 		strp = getnum(strp, &rulep->r_week, 1, 5);
579 		if (strp == NULL)
580 			return NULL;
581 		if (*strp++ != '.')
582 			return NULL;
583 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
584 	} else if (is_digit(*strp)) {
585 		/*
586 		** Day of year.
587 		*/
588 		rulep->r_type = DAY_OF_YEAR;
589 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
590 	} else	return NULL;		/* invalid format */
591 	if (strp == NULL)
592 		return NULL;
593 	if (*strp == '/') {
594 		/*
595 		** Time specified.
596 		*/
597 		++strp;
598 		strp = getsecs(strp, &rulep->r_time);
599 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
600 	return strp;
601 }
602 
603 /*
604 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
605 ** year, a rule, and the offset from UTC at the time that rule takes effect,
606 ** calculate the Epoch-relative time that rule takes effect.
607 */
608 
609 static time_t
610 transtime(janfirst, year, rulep, offset)
611 const time_t				janfirst;
612 const int				year;
613 register const struct rule * const	rulep;
614 const long				offset;
615 {
616 	register int	leapyear;
617 	register time_t	value;
618 	register int	i;
619 	int		d, m1, yy0, yy1, yy2, dow;
620 
621 	INITIALIZE(value);
622 	leapyear = isleap(year);
623 	switch (rulep->r_type) {
624 
625 	case JULIAN_DAY:
626 		/*
627 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
628 		** years.
629 		** In non-leap years, or if the day number is 59 or less, just
630 		** add SECSPERDAY times the day number-1 to the time of
631 		** January 1, midnight, to get the day.
632 		*/
633 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
634 		if (leapyear && rulep->r_day >= 60)
635 			value += SECSPERDAY;
636 		break;
637 
638 	case DAY_OF_YEAR:
639 		/*
640 		** n - day of year.
641 		** Just add SECSPERDAY times the day number to the time of
642 		** January 1, midnight, to get the day.
643 		*/
644 		value = janfirst + rulep->r_day * SECSPERDAY;
645 		break;
646 
647 	case MONTH_NTH_DAY_OF_WEEK:
648 		/*
649 		** Mm.n.d - nth "dth day" of month m.
650 		*/
651 		value = janfirst;
652 		for (i = 0; i < rulep->r_mon - 1; ++i)
653 			value += mon_lengths[leapyear][i] * SECSPERDAY;
654 
655 		/*
656 		** Use Zeller's Congruence to get day-of-week of first day of
657 		** month.
658 		*/
659 		m1 = (rulep->r_mon + 9) % 12 + 1;
660 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
661 		yy1 = yy0 / 100;
662 		yy2 = yy0 % 100;
663 		dow = ((26 * m1 - 2) / 10 +
664 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
665 		if (dow < 0)
666 			dow += DAYSPERWEEK;
667 
668 		/*
669 		** "dow" is the day-of-week of the first day of the month.  Get
670 		** the day-of-month (zero-origin) of the first "dow" day of the
671 		** month.
672 		*/
673 		d = rulep->r_day - dow;
674 		if (d < 0)
675 			d += DAYSPERWEEK;
676 		for (i = 1; i < rulep->r_week; ++i) {
677 			if (d + DAYSPERWEEK >=
678 				mon_lengths[leapyear][rulep->r_mon - 1])
679 					break;
680 			d += DAYSPERWEEK;
681 		}
682 
683 		/*
684 		** "d" is the day-of-month (zero-origin) of the day we want.
685 		*/
686 		value += d * SECSPERDAY;
687 		break;
688 	}
689 
690 	/*
691 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
692 	** question.  To get the Epoch-relative time of the specified local
693 	** time on that day, add the transition time and the current offset
694 	** from UTC.
695 	*/
696 	return value + rulep->r_time + offset;
697 }
698 
699 /*
700 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
701 ** appropriate.
702 */
703 
704 static int
705 tzparse(name, sp, lastditch)
706 const char *			name;
707 register struct state * const	sp;
708 const int			lastditch;
709 {
710 	const char *			stdname;
711 	const char *			dstname;
712 	size_t				stdlen;
713 	size_t				dstlen;
714 	long				stdoffset;
715 	long				dstoffset;
716 	register time_t *		atp;
717 	register unsigned char *	typep;
718 	register char *			cp;
719 	register int			load_result;
720 
721 	INITIALIZE(dstname);
722 	stdname = name;
723 	if (lastditch) {
724 		stdlen = strlen(name);	/* length of standard zone name */
725 		name += stdlen;
726 		if (stdlen >= sizeof sp->chars)
727 			stdlen = (sizeof sp->chars) - 1;
728 		stdoffset = 0;
729 	} else {
730 		name = getzname(name);
731 		stdlen = name - stdname;
732 		if (stdlen < 3)
733 			return -1;
734 		if (*name == '\0')
735 			return -1;
736 		name = getoffset(name, &stdoffset);
737 		if (name == NULL)
738 			return -1;
739 	}
740 	load_result = tzload(TZDEFRULES, sp);
741 	if (load_result != 0)
742 		sp->leapcnt = 0;		/* so, we're off a little */
743 	if (*name != '\0') {
744 		dstname = name;
745 		name = getzname(name);
746 		dstlen = name - dstname;	/* length of DST zone name */
747 		if (dstlen < 3)
748 			return -1;
749 		if (*name != '\0' && *name != ',' && *name != ';') {
750 			name = getoffset(name, &dstoffset);
751 			if (name == NULL)
752 				return -1;
753 		} else	dstoffset = stdoffset - SECSPERHOUR;
754 		if (*name == '\0' && load_result != 0)
755 			name = TZDEFRULESTRING;
756 		if (*name == ',' || *name == ';') {
757 			struct rule	start;
758 			struct rule	end;
759 			register int	year;
760 			register time_t	janfirst;
761 			time_t		starttime;
762 			time_t		endtime;
763 
764 			++name;
765 			if ((name = getrule(name, &start)) == NULL)
766 				return -1;
767 			if (*name++ != ',')
768 				return -1;
769 			if ((name = getrule(name, &end)) == NULL)
770 				return -1;
771 			if (*name != '\0')
772 				return -1;
773 			sp->typecnt = 2;	/* standard time and DST */
774 			/*
775 			** Two transitions per year, from EPOCH_YEAR to 2037.
776 			*/
777 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
778 			if (sp->timecnt > TZ_MAX_TIMES)
779 				return -1;
780 			sp->ttis[0].tt_gmtoff = -dstoffset;
781 			sp->ttis[0].tt_isdst = 1;
782 			sp->ttis[0].tt_abbrind = stdlen + 1;
783 			sp->ttis[1].tt_gmtoff = -stdoffset;
784 			sp->ttis[1].tt_isdst = 0;
785 			sp->ttis[1].tt_abbrind = 0;
786 			atp = sp->ats;
787 			typep = sp->types;
788 			janfirst = 0;
789 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
790 				starttime = transtime(janfirst, year, &start,
791 					stdoffset);
792 				endtime = transtime(janfirst, year, &end,
793 					dstoffset);
794 				if (starttime > endtime) {
795 					*atp++ = endtime;
796 					*typep++ = 1;	/* DST ends */
797 					*atp++ = starttime;
798 					*typep++ = 0;	/* DST begins */
799 				} else {
800 					*atp++ = starttime;
801 					*typep++ = 0;	/* DST begins */
802 					*atp++ = endtime;
803 					*typep++ = 1;	/* DST ends */
804 				}
805 				janfirst += year_lengths[isleap(year)] *
806 					SECSPERDAY;
807 			}
808 		} else {
809 			register long	theirstdoffset;
810 			register long	theirdstoffset;
811 			register long	theiroffset;
812 			register int	isdst;
813 			register int	i;
814 			register int	j;
815 
816 			if (*name != '\0')
817 				return -1;
818 			/*
819 			** Initial values of theirstdoffset and theirdstoffset.
820 			*/
821 			theirstdoffset = 0;
822 			for (i = 0; i < sp->timecnt; ++i) {
823 				j = sp->types[i];
824 				if (!sp->ttis[j].tt_isdst) {
825 					theirstdoffset =
826 						-sp->ttis[j].tt_gmtoff;
827 					break;
828 				}
829 			}
830 			theirdstoffset = 0;
831 			for (i = 0; i < sp->timecnt; ++i) {
832 				j = sp->types[i];
833 				if (sp->ttis[j].tt_isdst) {
834 					theirdstoffset =
835 						-sp->ttis[j].tt_gmtoff;
836 					break;
837 				}
838 			}
839 			/*
840 			** Initially we're assumed to be in standard time.
841 			*/
842 			isdst = FALSE;
843 			theiroffset = theirstdoffset;
844 			/*
845 			** Now juggle transition times and types
846 			** tracking offsets as you do.
847 			*/
848 			for (i = 0; i < sp->timecnt; ++i) {
849 				j = sp->types[i];
850 				sp->types[i] = sp->ttis[j].tt_isdst;
851 				if (sp->ttis[j].tt_ttisgmt) {
852 					/* No adjustment to transition time */
853 				} else {
854 					/*
855 					** If summer time is in effect, and the
856 					** transition time was not specified as
857 					** standard time, add the summer time
858 					** offset to the transition time;
859 					** otherwise, add the standard time
860 					** offset to the transition time.
861 					*/
862 					/*
863 					** Transitions from DST to DDST
864 					** will effectively disappear since
865 					** POSIX provides for only one DST
866 					** offset.
867 					*/
868 					if (isdst && !sp->ttis[j].tt_ttisstd) {
869 						sp->ats[i] += dstoffset -
870 							theirdstoffset;
871 					} else {
872 						sp->ats[i] += stdoffset -
873 							theirstdoffset;
874 					}
875 				}
876 				theiroffset = -sp->ttis[j].tt_gmtoff;
877 				if (sp->ttis[j].tt_isdst)
878 					theirdstoffset = theiroffset;
879 				else	theirstdoffset = theiroffset;
880 			}
881 			/*
882 			** Finally, fill in ttis.
883 			** ttisstd and ttisgmt need not be handled.
884 			*/
885 			sp->ttis[0].tt_gmtoff = -stdoffset;
886 			sp->ttis[0].tt_isdst = FALSE;
887 			sp->ttis[0].tt_abbrind = 0;
888 			sp->ttis[1].tt_gmtoff = -dstoffset;
889 			sp->ttis[1].tt_isdst = TRUE;
890 			sp->ttis[1].tt_abbrind = stdlen + 1;
891 			sp->typecnt = 2;
892 		}
893 	} else {
894 		dstlen = 0;
895 		sp->typecnt = 1;		/* only standard time */
896 		sp->timecnt = 0;
897 		sp->ttis[0].tt_gmtoff = -stdoffset;
898 		sp->ttis[0].tt_isdst = 0;
899 		sp->ttis[0].tt_abbrind = 0;
900 	}
901 	sp->charcnt = stdlen + 1;
902 	if (dstlen != 0)
903 		sp->charcnt += dstlen + 1;
904 	if ((size_t) sp->charcnt > sizeof sp->chars)
905 		return -1;
906 	cp = sp->chars;
907 	strlcpy(cp, stdname, stdlen + 1);
908 	cp += stdlen + 1;
909 	if (dstlen != 0) {
910 		strlcpy(cp, dstname, dstlen + 1);
911 	}
912 	return 0;
913 }
914 
915 static void
916 gmtload(sp)
917 struct state * const	sp;
918 {
919 	if (tzload(gmt, sp) != 0)
920 		(void) tzparse(gmt, sp, TRUE);
921 }
922 static
923 void
924 tzsetwall_basic P((void))
925 {
926 	if (lcl_is_set < 0)
927 		return;
928 	lcl_is_set = -1;
929 
930 #ifdef ALL_STATE
931 	if (lclptr == NULL) {
932 		lclptr = (struct state *) malloc(sizeof *lclptr);
933 		if (lclptr == NULL) {
934 			settzname();	/* all we can do */
935 			return;
936 		}
937 	}
938 #endif /* defined ALL_STATE */
939 	if (tzload((char *) NULL, lclptr) != 0)
940 		gmtload(lclptr);
941 	settzname();
942 }
943 
944 #ifndef STD_INSPIRED
945 /*
946 ** A non-static declaration of tzsetwall in a system header file
947 ** may cause a warning about this upcoming static declaration...
948 */
949 static
950 #endif /* !defined STD_INSPIRED */
951 void
952 tzsetwall P((void))
953 {
954 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
955 	tzsetwall_basic();
956 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
957 }
958 
959 static
960 void
961 tzset_basic P((void))
962 {
963 	register const char *	name;
964 
965 	name = getenv("TZ");
966 	if (name == NULL) {
967 		tzsetwall_basic();
968 		return;
969 	}
970 
971 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
972 		return;
973 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
974 	if (lcl_is_set)
975 		(void) strlcpy(lcl_TZname, name, sizeof lcl_TZname);
976 
977 #ifdef ALL_STATE
978 	if (lclptr == NULL) {
979 		lclptr = (struct state *) malloc(sizeof *lclptr);
980 		if (lclptr == NULL) {
981 			settzname();	/* all we can do */
982 			return;
983 		}
984 	}
985 #endif /* defined ALL_STATE */
986 	if (*name == '\0') {
987 		/*
988 		** User wants it fast rather than right.
989 		*/
990 		lclptr->leapcnt = 0;		/* so, we're off a little */
991 		lclptr->timecnt = 0;
992 		lclptr->typecnt = 0;
993 		lclptr->ttis[0].tt_isdst = 0;
994 		lclptr->ttis[0].tt_gmtoff = 0;
995 		lclptr->ttis[0].tt_abbrind = 0;
996 		(void) strlcpy(lclptr->chars, gmt, sizeof lclptr->chars);
997 	} else if (tzload(name, lclptr) != 0)
998 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
999 			(void) gmtload(lclptr);
1000 	settzname();
1001 }
1002 
1003 void
1004 tzset P((void))
1005 {
1006 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1007 	tzset_basic();
1008 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1009 }
1010 
1011 /*
1012 ** The easy way to behave "as if no library function calls" localtime
1013 ** is to not call it--so we drop its guts into "localsub", which can be
1014 ** freely called.  (And no, the PANS doesn't require the above behavior--
1015 ** but it *is* desirable.)
1016 **
1017 ** The unused offset argument is for the benefit of mktime variants.
1018 */
1019 
1020 /*ARGSUSED*/
1021 static void
1022 localsub(timep, offset, tmp)
1023 const time_t * const	timep;
1024 const long		offset;
1025 struct tm * const	tmp;
1026 {
1027 	register struct state *		sp;
1028 	register const struct ttinfo *	ttisp;
1029 	register int			i;
1030 	const time_t			t = *timep;
1031 
1032 	sp = lclptr;
1033 #ifdef ALL_STATE
1034 	if (sp == NULL) {
1035 		gmtsub(timep, offset, tmp);
1036 		return;
1037 	}
1038 #endif /* defined ALL_STATE */
1039 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1040 		i = 0;
1041 		while (sp->ttis[i].tt_isdst)
1042 			if (++i >= sp->typecnt) {
1043 				i = 0;
1044 				break;
1045 			}
1046 	} else {
1047 		for (i = 1; i < sp->timecnt; ++i)
1048 			if (t < sp->ats[i])
1049 				break;
1050 		i = sp->types[i - 1];
1051 	}
1052 	ttisp = &sp->ttis[i];
1053 	/*
1054 	** To get (wrong) behavior that's compatible with System V Release 2.0
1055 	** you'd replace the statement below with
1056 	**	t += ttisp->tt_gmtoff;
1057 	**	timesub(&t, 0L, sp, tmp);
1058 	*/
1059 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1060 	tmp->tm_isdst = ttisp->tt_isdst;
1061 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1062 #ifdef TM_ZONE
1063 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1064 #endif /* defined TM_ZONE */
1065 }
1066 
1067 struct tm *
1068 localtime_r(timep, p_tm)
1069 const time_t * const	timep;
1070 struct tm *p_tm;
1071 {
1072 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1073 	tzset_basic();
1074 	localsub(timep, 0L, p_tm);
1075 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1076 	return p_tm;
1077 }
1078 
1079 struct tm *
1080 localtime(timep)
1081 const time_t * const	timep;
1082 {
1083 	_THREAD_PRIVATE_KEY(localtime);
1084 	struct tm * p_tm = (struct tm*)_THREAD_PRIVATE(localtime, tm, NULL);
1085 
1086 	if (p_tm == NULL)
1087 		return NULL;
1088 	return localtime_r(timep, p_tm);
1089 }
1090 
1091 /*
1092 ** gmtsub is to gmtime as localsub is to localtime.
1093 */
1094 
1095 static void
1096 gmtsub(timep, offset, tmp)
1097 const time_t * const	timep;
1098 const long		offset;
1099 struct tm * const	tmp;
1100 {
1101 	_THREAD_PRIVATE_MUTEX_LOCK(gmt);
1102 	if (!gmt_is_set) {
1103 		gmt_is_set = TRUE;
1104 #ifdef ALL_STATE
1105 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
1106 		if (gmtptr != NULL)
1107 #endif /* defined ALL_STATE */
1108 			gmtload(gmtptr);
1109 	}
1110 	_THREAD_PRIVATE_MUTEX_UNLOCK(gmt);
1111 	timesub(timep, offset, gmtptr, tmp);
1112 #ifdef TM_ZONE
1113 	/*
1114 	** Could get fancy here and deliver something such as
1115 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1116 	** but this is no time for a treasure hunt.
1117 	*/
1118 	if (offset != 0)
1119 		tmp->TM_ZONE = wildabbr;
1120 	else {
1121 #ifdef ALL_STATE
1122 		if (gmtptr == NULL)
1123 			tmp->TM_ZONE = gmt;
1124 		else	tmp->TM_ZONE = gmtptr->chars;
1125 #endif /* defined ALL_STATE */
1126 #ifndef ALL_STATE
1127 		tmp->TM_ZONE = gmtptr->chars;
1128 #endif /* State Farm */
1129 	}
1130 #endif /* defined TM_ZONE */
1131 }
1132 
1133 struct tm *
1134 gmtime_r(timep, p_tm)
1135 const time_t *		timep;
1136 struct tm *		p_tm;
1137 {
1138 	gmtsub(timep, 0L, p_tm);
1139 	return p_tm;
1140 }
1141 
1142 struct tm *
1143 gmtime(timep)
1144 const time_t * const	timep;
1145 {
1146 	_THREAD_PRIVATE_KEY(gmtime);
1147 	struct tm * p_tm = (struct tm*) _THREAD_PRIVATE(gmtime, tm, NULL);
1148 
1149 	if (p_tm == NULL)
1150 		return NULL;
1151 	return gmtime_r(timep, p_tm);
1152 
1153 }
1154 
1155 #ifdef STD_INSPIRED
1156 
1157 struct tm *
1158 offtime(timep, offset)
1159 const time_t * const	timep;
1160 const long		offset;
1161 {
1162 	gmtsub(timep, offset, &tm);
1163 	return &tm;
1164 }
1165 
1166 #endif /* defined STD_INSPIRED */
1167 
1168 static void
1169 timesub(timep, offset, sp, tmp)
1170 const time_t * const			timep;
1171 const long				offset;
1172 register const struct state * const	sp;
1173 register struct tm * const		tmp;
1174 {
1175 	register const struct lsinfo *	lp;
1176 	register long			days;
1177 	register long			rem;
1178 	register int			y;
1179 	register int			yleap;
1180 	register const int *		ip;
1181 	register long			corr;
1182 	register int			hit;
1183 	register int			i;
1184 
1185 	corr = 0;
1186 	hit = 0;
1187 #ifdef ALL_STATE
1188 	i = (sp == NULL) ? 0 : sp->leapcnt;
1189 #endif /* defined ALL_STATE */
1190 #ifndef ALL_STATE
1191 	i = sp->leapcnt;
1192 #endif /* State Farm */
1193 	while (--i >= 0) {
1194 		lp = &sp->lsis[i];
1195 		if (*timep >= lp->ls_trans) {
1196 			if (*timep == lp->ls_trans) {
1197 				hit = ((i == 0 && lp->ls_corr > 0) ||
1198 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1199 				if (hit)
1200 					while (i > 0 &&
1201 						sp->lsis[i].ls_trans ==
1202 						sp->lsis[i - 1].ls_trans + 1 &&
1203 						sp->lsis[i].ls_corr ==
1204 						sp->lsis[i - 1].ls_corr + 1) {
1205 							++hit;
1206 							--i;
1207 					}
1208 			}
1209 			corr = lp->ls_corr;
1210 			break;
1211 		}
1212 	}
1213 	days = *timep / SECSPERDAY;
1214 	rem = *timep % SECSPERDAY;
1215 #ifdef mc68k
1216 	if (*timep == 0x80000000) {
1217 		/*
1218 		** A 3B1 muffs the division on the most negative number.
1219 		*/
1220 		days = -24855;
1221 		rem = -11648;
1222 	}
1223 #endif /* defined mc68k */
1224 	rem += (offset - corr);
1225 	while (rem < 0) {
1226 		rem += SECSPERDAY;
1227 		--days;
1228 	}
1229 	while (rem >= SECSPERDAY) {
1230 		rem -= SECSPERDAY;
1231 		++days;
1232 	}
1233 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1234 	rem = rem % SECSPERHOUR;
1235 	tmp->tm_min = (int) (rem / SECSPERMIN);
1236 	/*
1237 	** A positive leap second requires a special
1238 	** representation.  This uses "... ??:59:60" et seq.
1239 	*/
1240 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1241 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1242 	if (tmp->tm_wday < 0)
1243 		tmp->tm_wday += DAYSPERWEEK;
1244 	y = EPOCH_YEAR;
1245 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
1246 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1247 		register int	newy;
1248 
1249 		newy = y + days / DAYSPERNYEAR;
1250 		if (days < 0)
1251 			--newy;
1252 		days -= (newy - y) * DAYSPERNYEAR +
1253 			LEAPS_THRU_END_OF(newy - 1) -
1254 			LEAPS_THRU_END_OF(y - 1);
1255 		y = newy;
1256 	}
1257 	tmp->tm_year = y - TM_YEAR_BASE;
1258 	tmp->tm_yday = (int) days;
1259 	ip = mon_lengths[yleap];
1260 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1261 		days = days - (long) ip[tmp->tm_mon];
1262 	tmp->tm_mday = (int) (days + 1);
1263 	tmp->tm_isdst = 0;
1264 #ifdef TM_GMTOFF
1265 	tmp->TM_GMTOFF = offset;
1266 #endif /* defined TM_GMTOFF */
1267 }
1268 
1269 char *
1270 ctime(timep)
1271 const time_t * const	timep;
1272 {
1273 /*
1274 ** Section 4.12.3.2 of X3.159-1989 requires that
1275 **	The ctime function converts the calendar time pointed to by timer
1276 **	to local time in the form of a string.  It is equivalent to
1277 **		asctime(localtime(timer))
1278 */
1279 	return asctime(localtime(timep));
1280 }
1281 
1282 char *
1283 ctime_r(timep, buf)
1284 const time_t * const	timep;
1285 char *			buf;
1286 {
1287 	struct tm	tm;
1288 
1289 	return asctime_r(localtime_r(timep, &tm), buf);
1290 }
1291 
1292 /*
1293 ** Adapted from code provided by Robert Elz, who writes:
1294 **	The "best" way to do mktime I think is based on an idea of Bob
1295 **	Kridle's (so its said...) from a long time ago.
1296 **	[kridle@xinet.com as of 1996-01-16.]
1297 **	It does a binary search of the time_t space.  Since time_t's are
1298 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1299 **	would still be very reasonable).
1300 */
1301 
1302 #ifndef WRONG
1303 #define WRONG	(-1)
1304 #endif /* !defined WRONG */
1305 
1306 /*
1307 ** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com).
1308 */
1309 
1310 static int
1311 increment_overflow(number, delta)
1312 int *	number;
1313 int	delta;
1314 {
1315 	int	number0;
1316 
1317 	number0 = *number;
1318 	*number += delta;
1319 	return (*number < number0) != (delta < 0);
1320 }
1321 
1322 static int
1323 normalize_overflow(tensptr, unitsptr, base)
1324 int * const	tensptr;
1325 int * const	unitsptr;
1326 const int	base;
1327 {
1328 	register int	tensdelta;
1329 
1330 	tensdelta = (*unitsptr >= 0) ?
1331 		(*unitsptr / base) :
1332 		(-1 - (-1 - *unitsptr) / base);
1333 	*unitsptr -= tensdelta * base;
1334 	return increment_overflow(tensptr, tensdelta);
1335 }
1336 
1337 static int
1338 tmcomp(atmp, btmp)
1339 register const struct tm * const atmp;
1340 register const struct tm * const btmp;
1341 {
1342 	register int	result;
1343 
1344 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1345 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1346 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1347 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1348 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1349 			result = atmp->tm_sec - btmp->tm_sec;
1350 	return result;
1351 }
1352 
1353 static time_t
1354 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1355 struct tm * const	tmp;
1356 void (* const		funcp) P((const time_t*, long, struct tm*));
1357 const long		offset;
1358 int * const		okayp;
1359 const int		do_norm_secs;
1360 {
1361 	register const struct state *	sp;
1362 	register int			dir;
1363 	register int			bits;
1364 	register int			i, j ;
1365 	register int			saved_seconds;
1366 	time_t				newt;
1367 	time_t				t;
1368 	struct tm			yourtm, mytm;
1369 
1370 	*okayp = FALSE;
1371 	yourtm = *tmp;
1372 	if (do_norm_secs) {
1373 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1374 			SECSPERMIN))
1375 				return WRONG;
1376 	}
1377 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1378 		return WRONG;
1379 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1380 		return WRONG;
1381 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1382 		return WRONG;
1383 	/*
1384 	** Turn yourtm.tm_year into an actual year number for now.
1385 	** It is converted back to an offset from TM_YEAR_BASE later.
1386 	*/
1387 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1388 		return WRONG;
1389 	while (yourtm.tm_mday <= 0) {
1390 		if (increment_overflow(&yourtm.tm_year, -1))
1391 			return WRONG;
1392 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1393 		yourtm.tm_mday += year_lengths[isleap(i)];
1394 	}
1395 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1396 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1397 		yourtm.tm_mday -= year_lengths[isleap(i)];
1398 		if (increment_overflow(&yourtm.tm_year, 1))
1399 			return WRONG;
1400 	}
1401 	for ( ; ; ) {
1402 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1403 		if (yourtm.tm_mday <= i)
1404 			break;
1405 		yourtm.tm_mday -= i;
1406 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1407 			yourtm.tm_mon = 0;
1408 			if (increment_overflow(&yourtm.tm_year, 1))
1409 				return WRONG;
1410 		}
1411 	}
1412 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1413 		return WRONG;
1414 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1415 		saved_seconds = 0;
1416 	else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1417 		/*
1418 		** We can't set tm_sec to 0, because that might push the
1419 		** time below the minimum representable time.
1420 		** Set tm_sec to 59 instead.
1421 		** This assumes that the minimum representable time is
1422 		** not in the same minute that a leap second was deleted from,
1423 		** which is a safer assumption than using 58 would be.
1424 		*/
1425 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1426 			return WRONG;
1427 		saved_seconds = yourtm.tm_sec;
1428 		yourtm.tm_sec = SECSPERMIN - 1;
1429 	} else {
1430 		saved_seconds = yourtm.tm_sec;
1431 		yourtm.tm_sec = 0;
1432 	}
1433 	/*
1434 	** Divide the search space in half
1435 	** (this works whether time_t is signed or unsigned).
1436 	*/
1437 	bits = TYPE_BIT(time_t) - 1;
1438 	/*
1439 	** If time_t is signed, then 0 is just above the median,
1440 	** assuming two's complement arithmetic.
1441 	** If time_t is unsigned, then (1 << bits) is just above the median.
1442 	*/
1443 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1444 	for ( ; ; ) {
1445 		(*funcp)(&t, offset, &mytm);
1446 		dir = tmcomp(&mytm, &yourtm);
1447 		if (dir != 0) {
1448 			if (bits-- < 0)
1449 				return WRONG;
1450 			if (bits < 0)
1451 				--t; /* may be needed if new t is minimal */
1452 			else if (dir > 0)
1453 				t -= ((time_t) 1) << bits;
1454 			else	t += ((time_t) 1) << bits;
1455 			continue;
1456 		}
1457 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1458 			break;
1459 		/*
1460 		** Right time, wrong type.
1461 		** Hunt for right time, right type.
1462 		** It's okay to guess wrong since the guess
1463 		** gets checked.
1464 		*/
1465 		/*
1466 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1467 		*/
1468 		sp = (const struct state *)
1469 			(((void *) funcp == (void *) localsub) ?
1470 			lclptr : gmtptr);
1471 #ifdef ALL_STATE
1472 		if (sp == NULL)
1473 			return WRONG;
1474 #endif /* defined ALL_STATE */
1475 		for (i = sp->typecnt - 1; i >= 0; --i) {
1476 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1477 				continue;
1478 			for (j = sp->typecnt - 1; j >= 0; --j) {
1479 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1480 					continue;
1481 				newt = t + sp->ttis[j].tt_gmtoff -
1482 					sp->ttis[i].tt_gmtoff;
1483 				(*funcp)(&newt, offset, &mytm);
1484 				if (tmcomp(&mytm, &yourtm) != 0)
1485 					continue;
1486 				if (mytm.tm_isdst != yourtm.tm_isdst)
1487 					continue;
1488 				/*
1489 				** We have a match.
1490 				*/
1491 				t = newt;
1492 				goto label;
1493 			}
1494 		}
1495 		return WRONG;
1496 	}
1497 label:
1498 	newt = t + saved_seconds;
1499 	if ((newt < t) != (saved_seconds < 0))
1500 		return WRONG;
1501 	t = newt;
1502 	(*funcp)(&t, offset, tmp);
1503 	*okayp = TRUE;
1504 	return t;
1505 }
1506 
1507 static time_t
1508 time2(tmp, funcp, offset, okayp)
1509 struct tm * const	tmp;
1510 void (* const		funcp) P((const time_t*, long, struct tm*));
1511 const long		offset;
1512 int * const		okayp;
1513 {
1514 	time_t	t;
1515 
1516 	/*
1517 	** First try without normalization of seconds
1518 	** (in case tm_sec contains a value associated with a leap second).
1519 	** If that fails, try with normalization of seconds.
1520 	*/
1521 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1522 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1523 }
1524 
1525 static time_t
1526 time1(tmp, funcp, offset)
1527 struct tm * const	tmp;
1528 void (* const		funcp) P((const time_t *, long, struct tm *));
1529 const long		offset;
1530 {
1531 	register time_t			t;
1532 	register const struct state *	sp;
1533 	register int			samei, otheri;
1534 	int				okay;
1535 
1536 	if (tmp->tm_isdst > 1)
1537 		tmp->tm_isdst = 1;
1538 	t = time2(tmp, funcp, offset, &okay);
1539 #ifdef PCTS
1540 	/*
1541 	** PCTS code courtesy Grant Sullivan (grant@osf.org).
1542 	*/
1543 	if (okay)
1544 		return t;
1545 	if (tmp->tm_isdst < 0)
1546 		tmp->tm_isdst = 0;	/* reset to std and try again */
1547 #endif /* defined PCTS */
1548 #ifndef PCTS
1549 	if (okay || tmp->tm_isdst < 0)
1550 		return t;
1551 #endif /* !defined PCTS */
1552 	/*
1553 	** We're supposed to assume that somebody took a time of one type
1554 	** and did some math on it that yielded a "struct tm" that's bad.
1555 	** We try to divine the type they started from and adjust to the
1556 	** type they need.
1557 	*/
1558 	/*
1559 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1560 	*/
1561 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1562 		lclptr : gmtptr);
1563 #ifdef ALL_STATE
1564 	if (sp == NULL)
1565 		return WRONG;
1566 #endif /* defined ALL_STATE */
1567 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1568 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1569 			continue;
1570 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1571 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1572 				continue;
1573 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1574 					sp->ttis[samei].tt_gmtoff;
1575 			tmp->tm_isdst = !tmp->tm_isdst;
1576 			t = time2(tmp, funcp, offset, &okay);
1577 			if (okay)
1578 				return t;
1579 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1580 					sp->ttis[samei].tt_gmtoff;
1581 			tmp->tm_isdst = !tmp->tm_isdst;
1582 		}
1583 	}
1584 	return WRONG;
1585 }
1586 
1587 time_t
1588 mktime(tmp)
1589 struct tm * const	tmp;
1590 {
1591 	time_t ret;
1592 
1593 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1594 	tzset_basic();
1595 	ret = time1(tmp, localsub, 0L);
1596 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1597 	return ret;
1598 }
1599 
1600 #ifdef STD_INSPIRED
1601 
1602 time_t
1603 timelocal(tmp)
1604 struct tm * const	tmp;
1605 {
1606 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1607 	return mktime(tmp);
1608 }
1609 
1610 time_t
1611 timegm(tmp)
1612 struct tm * const	tmp;
1613 {
1614 	tmp->tm_isdst = 0;
1615 	return time1(tmp, gmtsub, 0L);
1616 }
1617 
1618 time_t
1619 timeoff(tmp, offset)
1620 struct tm * const	tmp;
1621 const long		offset;
1622 {
1623 	tmp->tm_isdst = 0;
1624 	return time1(tmp, gmtsub, offset);
1625 }
1626 
1627 #endif /* defined STD_INSPIRED */
1628 
1629 #ifdef CMUCS
1630 
1631 /*
1632 ** The following is supplied for compatibility with
1633 ** previous versions of the CMUCS runtime library.
1634 */
1635 
1636 long
1637 gtime(tmp)
1638 struct tm * const	tmp;
1639 {
1640 	const time_t	t = mktime(tmp);
1641 
1642 	if (t == WRONG)
1643 		return -1;
1644 	return t;
1645 }
1646 
1647 #endif /* defined CMUCS */
1648 
1649 /*
1650 ** XXX--is the below the right way to conditionalize??
1651 */
1652 
1653 #ifdef STD_INSPIRED
1654 
1655 /*
1656 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1657 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1658 ** is not the case if we are accounting for leap seconds.
1659 ** So, we provide the following conversion routines for use
1660 ** when exchanging timestamps with POSIX conforming systems.
1661 */
1662 
1663 static long
1664 leapcorr(timep)
1665 time_t *	timep;
1666 {
1667 	register struct state *		sp;
1668 	register struct lsinfo *	lp;
1669 	register int			i;
1670 
1671 	sp = lclptr;
1672 	i = sp->leapcnt;
1673 	while (--i >= 0) {
1674 		lp = &sp->lsis[i];
1675 		if (*timep >= lp->ls_trans)
1676 			return lp->ls_corr;
1677 	}
1678 	return 0;
1679 }
1680 
1681 time_t
1682 time2posix(t)
1683 time_t	t;
1684 {
1685 	tzset();
1686 	return t - leapcorr(&t);
1687 }
1688 
1689 time_t
1690 posix2time(t)
1691 time_t	t;
1692 {
1693 	time_t	x;
1694 	time_t	y;
1695 
1696 	tzset();
1697 	/*
1698 	** For a positive leap second hit, the result
1699 	** is not unique.  For a negative leap second
1700 	** hit, the corresponding time doesn't exist,
1701 	** so we return an adjacent second.
1702 	*/
1703 	x = t + leapcorr(&t);
1704 	y = x - leapcorr(&x);
1705 	if (y < t) {
1706 		do {
1707 			x++;
1708 			y = x - leapcorr(&x);
1709 		} while (y < t);
1710 		if (t != y)
1711 			return x - 1;
1712 	} else if (y > t) {
1713 		do {
1714 			--x;
1715 			y = x - leapcorr(&x);
1716 		} while (y > t);
1717 		if (t != y)
1718 			return x + 1;
1719 	}
1720 	return x;
1721 }
1722 
1723 #endif /* defined STD_INSPIRED */
1724