1 /* $OpenBSD: ripemd.c,v 1.19 2024/06/01 07:36:16 tb Exp $ */ 2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 3 * All rights reserved. 4 * 5 * This package is an SSL implementation written 6 * by Eric Young (eay@cryptsoft.com). 7 * The implementation was written so as to conform with Netscapes SSL. 8 * 9 * This library is free for commercial and non-commercial use as long as 10 * the following conditions are aheared to. The following conditions 11 * apply to all code found in this distribution, be it the RC4, RSA, 12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 13 * included with this distribution is covered by the same copyright terms 14 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 15 * 16 * Copyright remains Eric Young's, and as such any Copyright notices in 17 * the code are not to be removed. 18 * If this package is used in a product, Eric Young should be given attribution 19 * as the author of the parts of the library used. 20 * This can be in the form of a textual message at program startup or 21 * in documentation (online or textual) provided with the package. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. All advertising materials mentioning features or use of this software 32 * must display the following acknowledgement: 33 * "This product includes cryptographic software written by 34 * Eric Young (eay@cryptsoft.com)" 35 * The word 'cryptographic' can be left out if the rouines from the library 36 * being used are not cryptographic related :-). 37 * 4. If you include any Windows specific code (or a derivative thereof) from 38 * the apps directory (application code) you must include an acknowledgement: 39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 40 * 41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 * 53 * The licence and distribution terms for any publically available version or 54 * derivative of this code cannot be changed. i.e. this code cannot simply be 55 * copied and put under another distribution licence 56 * [including the GNU Public Licence.] 57 */ 58 59 #include <stdio.h> 60 #include <stdlib.h> 61 #include <string.h> 62 63 #include <openssl/opensslconf.h> 64 65 #include <openssl/crypto.h> 66 #include <openssl/ripemd.h> 67 68 #include "crypto_internal.h" 69 70 /* Ensure that SHA_LONG and uint32_t are equivalent sizes. */ 71 CTASSERT(sizeof(RIPEMD160_LONG) == sizeof(uint32_t)); 72 73 #if 0 74 #define F1(x,y,z) ((x)^(y)^(z)) 75 #define F2(x,y,z) (((x)&(y))|((~x)&z)) 76 #define F3(x,y,z) (((x)|(~y))^(z)) 77 #define F4(x,y,z) (((x)&(z))|((y)&(~(z)))) 78 #define F5(x,y,z) ((x)^((y)|(~(z)))) 79 #else 80 /* 81 * Transformed F2 and F4 are courtesy of Wei Dai <weidai@eskimo.com> 82 */ 83 #define F1(x,y,z) ((x) ^ (y) ^ (z)) 84 #define F2(x,y,z) ((((y) ^ (z)) & (x)) ^ (z)) 85 #define F3(x,y,z) (((~(y)) | (x)) ^ (z)) 86 #define F4(x,y,z) ((((x) ^ (y)) & (z)) ^ (y)) 87 #define F5(x,y,z) (((~(z)) | (y)) ^ (x)) 88 #endif 89 90 #define KL0 0x00000000L 91 #define KL1 0x5A827999L 92 #define KL2 0x6ED9EBA1L 93 #define KL3 0x8F1BBCDCL 94 #define KL4 0xA953FD4EL 95 96 #define KR0 0x50A28BE6L 97 #define KR1 0x5C4DD124L 98 #define KR2 0x6D703EF3L 99 #define KR3 0x7A6D76E9L 100 #define KR4 0x00000000L 101 102 #define RIP1(a,b,c,d,e,w,s) { \ 103 a+=F1(b,c,d)+w; \ 104 a=crypto_rol_u32(a,s)+e; \ 105 c=crypto_rol_u32(c,10); } 106 107 #define RIP2(a,b,c,d,e,w,s,K) { \ 108 a+=F2(b,c,d)+w+K; \ 109 a=crypto_rol_u32(a,s)+e; \ 110 c=crypto_rol_u32(c,10); } 111 112 #define RIP3(a,b,c,d,e,w,s,K) { \ 113 a+=F3(b,c,d)+w+K; \ 114 a=crypto_rol_u32(a,s)+e; \ 115 c=crypto_rol_u32(c,10); } 116 117 #define RIP4(a,b,c,d,e,w,s,K) { \ 118 a+=F4(b,c,d)+w+K; \ 119 a=crypto_rol_u32(a,s)+e; \ 120 c=crypto_rol_u32(c,10); } 121 122 #define RIP5(a,b,c,d,e,w,s,K) { \ 123 a+=F5(b,c,d)+w+K; \ 124 a=crypto_rol_u32(a,s)+e; \ 125 c=crypto_rol_u32(c,10); } 126 127 static void 128 ripemd160_block_data_order(RIPEMD160_CTX *ctx, const void *_in, size_t num) 129 { 130 const uint8_t *in = _in; 131 const RIPEMD160_LONG *in32; 132 unsigned int A, B, C, D, E; 133 unsigned int a, b, c, d, e; 134 unsigned int X0, X1, X2, X3, X4, X5, X6, X7, 135 X8, X9, X10, X11, X12, X13, X14, X15; 136 137 for (; num--; ) { 138 A = ctx->A; 139 B = ctx->B; 140 C = ctx->C; 141 D = ctx->D; 142 E = ctx->E; 143 144 if ((uintptr_t)in % 4 == 0) { 145 /* Input is 32 bit aligned. */ 146 in32 = (const RIPEMD160_LONG *)in; 147 X0 = le32toh(in32[0]); 148 X1 = le32toh(in32[1]); 149 X2 = le32toh(in32[2]); 150 X3 = le32toh(in32[3]); 151 X4 = le32toh(in32[4]); 152 X5 = le32toh(in32[5]); 153 X6 = le32toh(in32[6]); 154 X7 = le32toh(in32[7]); 155 X8 = le32toh(in32[8]); 156 X9 = le32toh(in32[9]); 157 X10 = le32toh(in32[10]); 158 X11 = le32toh(in32[11]); 159 X12 = le32toh(in32[12]); 160 X13 = le32toh(in32[13]); 161 X14 = le32toh(in32[14]); 162 X15 = le32toh(in32[15]); 163 } else { 164 /* Input is not 32 bit aligned. */ 165 X0 = crypto_load_le32toh(&in[0 * 4]); 166 X1 = crypto_load_le32toh(&in[1 * 4]); 167 X2 = crypto_load_le32toh(&in[2 * 4]); 168 X3 = crypto_load_le32toh(&in[3 * 4]); 169 X4 = crypto_load_le32toh(&in[4 * 4]); 170 X5 = crypto_load_le32toh(&in[5 * 4]); 171 X6 = crypto_load_le32toh(&in[6 * 4]); 172 X7 = crypto_load_le32toh(&in[7 * 4]); 173 X8 = crypto_load_le32toh(&in[8 * 4]); 174 X9 = crypto_load_le32toh(&in[9 * 4]); 175 X10 = crypto_load_le32toh(&in[10 * 4]); 176 X11 = crypto_load_le32toh(&in[11 * 4]); 177 X12 = crypto_load_le32toh(&in[12 * 4]); 178 X13 = crypto_load_le32toh(&in[13 * 4]); 179 X14 = crypto_load_le32toh(&in[14 * 4]); 180 X15 = crypto_load_le32toh(&in[15 * 4]); 181 } 182 in += RIPEMD160_CBLOCK; 183 184 RIP1(A, B, C, D, E, X0, 11); 185 RIP1(E, A, B, C, D, X1, 14); 186 RIP1(D, E, A, B, C, X2, 15); 187 RIP1(C, D, E, A, B, X3, 12); 188 RIP1(B, C, D, E, A, X4, 5); 189 RIP1(A, B, C, D, E, X5, 8); 190 RIP1(E, A, B, C, D, X6, 7); 191 RIP1(D, E, A, B, C, X7, 9); 192 RIP1(C, D, E, A, B, X8, 11); 193 RIP1(B, C, D, E, A, X9, 13); 194 RIP1(A, B, C, D, E, X10, 14); 195 RIP1(E, A, B, C, D, X11, 15); 196 RIP1(D, E, A, B, C, X12, 6); 197 RIP1(C, D, E, A, B, X13, 7); 198 RIP1(B, C, D, E, A, X14, 9); 199 RIP1(A, B, C, D, E, X15, 8); 200 201 RIP2(E, A, B, C, D, X7, 7, KL1); 202 RIP2(D, E, A, B, C, X4, 6, KL1); 203 RIP2(C, D, E, A, B, X13, 8, KL1); 204 RIP2(B, C, D, E, A, X1, 13, KL1); 205 RIP2(A, B, C, D, E, X10, 11, KL1); 206 RIP2(E, A, B, C, D, X6, 9, KL1); 207 RIP2(D, E, A, B, C, X15, 7, KL1); 208 RIP2(C, D, E, A, B, X3, 15, KL1); 209 RIP2(B, C, D, E, A, X12, 7, KL1); 210 RIP2(A, B, C, D, E, X0, 12, KL1); 211 RIP2(E, A, B, C, D, X9, 15, KL1); 212 RIP2(D, E, A, B, C, X5, 9, KL1); 213 RIP2(C, D, E, A, B, X2, 11, KL1); 214 RIP2(B, C, D, E, A, X14, 7, KL1); 215 RIP2(A, B, C, D, E, X11, 13, KL1); 216 RIP2(E, A, B, C, D, X8, 12, KL1); 217 218 RIP3(D, E, A, B, C, X3, 11, KL2); 219 RIP3(C, D, E, A, B, X10, 13, KL2); 220 RIP3(B, C, D, E, A, X14, 6, KL2); 221 RIP3(A, B, C, D, E, X4, 7, KL2); 222 RIP3(E, A, B, C, D, X9, 14, KL2); 223 RIP3(D, E, A, B, C, X15, 9, KL2); 224 RIP3(C, D, E, A, B, X8, 13, KL2); 225 RIP3(B, C, D, E, A, X1, 15, KL2); 226 RIP3(A, B, C, D, E, X2, 14, KL2); 227 RIP3(E, A, B, C, D, X7, 8, KL2); 228 RIP3(D, E, A, B, C, X0, 13, KL2); 229 RIP3(C, D, E, A, B, X6, 6, KL2); 230 RIP3(B, C, D, E, A, X13, 5, KL2); 231 RIP3(A, B, C, D, E, X11, 12, KL2); 232 RIP3(E, A, B, C, D, X5, 7, KL2); 233 RIP3(D, E, A, B, C, X12, 5, KL2); 234 235 RIP4(C, D, E, A, B, X1, 11, KL3); 236 RIP4(B, C, D, E, A, X9, 12, KL3); 237 RIP4(A, B, C, D, E, X11, 14, KL3); 238 RIP4(E, A, B, C, D, X10, 15, KL3); 239 RIP4(D, E, A, B, C, X0, 14, KL3); 240 RIP4(C, D, E, A, B, X8, 15, KL3); 241 RIP4(B, C, D, E, A, X12, 9, KL3); 242 RIP4(A, B, C, D, E, X4, 8, KL3); 243 RIP4(E, A, B, C, D, X13, 9, KL3); 244 RIP4(D, E, A, B, C, X3, 14, KL3); 245 RIP4(C, D, E, A, B, X7, 5, KL3); 246 RIP4(B, C, D, E, A, X15, 6, KL3); 247 RIP4(A, B, C, D, E, X14, 8, KL3); 248 RIP4(E, A, B, C, D, X5, 6, KL3); 249 RIP4(D, E, A, B, C, X6, 5, KL3); 250 RIP4(C, D, E, A, B, X2, 12, KL3); 251 252 RIP5(B, C, D, E, A, X4, 9, KL4); 253 RIP5(A, B, C, D, E, X0, 15, KL4); 254 RIP5(E, A, B, C, D, X5, 5, KL4); 255 RIP5(D, E, A, B, C, X9, 11, KL4); 256 RIP5(C, D, E, A, B, X7, 6, KL4); 257 RIP5(B, C, D, E, A, X12, 8, KL4); 258 RIP5(A, B, C, D, E, X2, 13, KL4); 259 RIP5(E, A, B, C, D, X10, 12, KL4); 260 RIP5(D, E, A, B, C, X14, 5, KL4); 261 RIP5(C, D, E, A, B, X1, 12, KL4); 262 RIP5(B, C, D, E, A, X3, 13, KL4); 263 RIP5(A, B, C, D, E, X8, 14, KL4); 264 RIP5(E, A, B, C, D, X11, 11, KL4); 265 RIP5(D, E, A, B, C, X6, 8, KL4); 266 RIP5(C, D, E, A, B, X15, 5, KL4); 267 RIP5(B, C, D, E, A, X13, 6, KL4); 268 269 a = A; 270 b = B; 271 c = C; 272 d = D; 273 e = E; 274 /* Do other half */ 275 A = ctx->A; 276 B = ctx->B; 277 C = ctx->C; 278 D = ctx->D; 279 E = ctx->E; 280 281 RIP5(A, B, C, D, E, X5, 8, KR0); 282 RIP5(E, A, B, C, D, X14, 9, KR0); 283 RIP5(D, E, A, B, C, X7, 9, KR0); 284 RIP5(C, D, E, A, B, X0, 11, KR0); 285 RIP5(B, C, D, E, A, X9, 13, KR0); 286 RIP5(A, B, C, D, E, X2, 15, KR0); 287 RIP5(E, A, B, C, D, X11, 15, KR0); 288 RIP5(D, E, A, B, C, X4, 5, KR0); 289 RIP5(C, D, E, A, B, X13, 7, KR0); 290 RIP5(B, C, D, E, A, X6, 7, KR0); 291 RIP5(A, B, C, D, E, X15, 8, KR0); 292 RIP5(E, A, B, C, D, X8, 11, KR0); 293 RIP5(D, E, A, B, C, X1, 14, KR0); 294 RIP5(C, D, E, A, B, X10, 14, KR0); 295 RIP5(B, C, D, E, A, X3, 12, KR0); 296 RIP5(A, B, C, D, E, X12, 6, KR0); 297 298 RIP4(E, A, B, C, D, X6, 9, KR1); 299 RIP4(D, E, A, B, C, X11, 13, KR1); 300 RIP4(C, D, E, A, B, X3, 15, KR1); 301 RIP4(B, C, D, E, A, X7, 7, KR1); 302 RIP4(A, B, C, D, E, X0, 12, KR1); 303 RIP4(E, A, B, C, D, X13, 8, KR1); 304 RIP4(D, E, A, B, C, X5, 9, KR1); 305 RIP4(C, D, E, A, B, X10, 11, KR1); 306 RIP4(B, C, D, E, A, X14, 7, KR1); 307 RIP4(A, B, C, D, E, X15, 7, KR1); 308 RIP4(E, A, B, C, D, X8, 12, KR1); 309 RIP4(D, E, A, B, C, X12, 7, KR1); 310 RIP4(C, D, E, A, B, X4, 6, KR1); 311 RIP4(B, C, D, E, A, X9, 15, KR1); 312 RIP4(A, B, C, D, E, X1, 13, KR1); 313 RIP4(E, A, B, C, D, X2, 11, KR1); 314 315 RIP3(D, E, A, B, C, X15, 9, KR2); 316 RIP3(C, D, E, A, B, X5, 7, KR2); 317 RIP3(B, C, D, E, A, X1, 15, KR2); 318 RIP3(A, B, C, D, E, X3, 11, KR2); 319 RIP3(E, A, B, C, D, X7, 8, KR2); 320 RIP3(D, E, A, B, C, X14, 6, KR2); 321 RIP3(C, D, E, A, B, X6, 6, KR2); 322 RIP3(B, C, D, E, A, X9, 14, KR2); 323 RIP3(A, B, C, D, E, X11, 12, KR2); 324 RIP3(E, A, B, C, D, X8, 13, KR2); 325 RIP3(D, E, A, B, C, X12, 5, KR2); 326 RIP3(C, D, E, A, B, X2, 14, KR2); 327 RIP3(B, C, D, E, A, X10, 13, KR2); 328 RIP3(A, B, C, D, E, X0, 13, KR2); 329 RIP3(E, A, B, C, D, X4, 7, KR2); 330 RIP3(D, E, A, B, C, X13, 5, KR2); 331 332 RIP2(C, D, E, A, B, X8, 15, KR3); 333 RIP2(B, C, D, E, A, X6, 5, KR3); 334 RIP2(A, B, C, D, E, X4, 8, KR3); 335 RIP2(E, A, B, C, D, X1, 11, KR3); 336 RIP2(D, E, A, B, C, X3, 14, KR3); 337 RIP2(C, D, E, A, B, X11, 14, KR3); 338 RIP2(B, C, D, E, A, X15, 6, KR3); 339 RIP2(A, B, C, D, E, X0, 14, KR3); 340 RIP2(E, A, B, C, D, X5, 6, KR3); 341 RIP2(D, E, A, B, C, X12, 9, KR3); 342 RIP2(C, D, E, A, B, X2, 12, KR3); 343 RIP2(B, C, D, E, A, X13, 9, KR3); 344 RIP2(A, B, C, D, E, X9, 12, KR3); 345 RIP2(E, A, B, C, D, X7, 5, KR3); 346 RIP2(D, E, A, B, C, X10, 15, KR3); 347 RIP2(C, D, E, A, B, X14, 8, KR3); 348 349 RIP1(B, C, D, E, A, X12, 8); 350 RIP1(A, B, C, D, E, X15, 5); 351 RIP1(E, A, B, C, D, X10, 12); 352 RIP1(D, E, A, B, C, X4, 9); 353 RIP1(C, D, E, A, B, X1, 12); 354 RIP1(B, C, D, E, A, X5, 5); 355 RIP1(A, B, C, D, E, X8, 14); 356 RIP1(E, A, B, C, D, X7, 6); 357 RIP1(D, E, A, B, C, X6, 8); 358 RIP1(C, D, E, A, B, X2, 13); 359 RIP1(B, C, D, E, A, X13, 6); 360 RIP1(A, B, C, D, E, X14, 5); 361 RIP1(E, A, B, C, D, X0, 15); 362 RIP1(D, E, A, B, C, X3, 13); 363 RIP1(C, D, E, A, B, X9, 11); 364 RIP1(B, C, D, E, A, X11, 11); 365 366 D = ctx->B + c + D; 367 ctx->B = ctx->C + d + E; 368 ctx->C = ctx->D + e + A; 369 ctx->D = ctx->E + a + B; 370 ctx->E = ctx->A + b + C; 371 ctx->A = D; 372 } 373 } 374 375 int 376 RIPEMD160_Init(RIPEMD160_CTX *c) 377 { 378 memset(c, 0, sizeof(*c)); 379 380 c->A = 0x67452301UL; 381 c->B = 0xEFCDAB89UL; 382 c->C = 0x98BADCFEUL; 383 c->D = 0x10325476UL; 384 c->E = 0xC3D2E1F0UL; 385 386 return 1; 387 } 388 LCRYPTO_ALIAS(RIPEMD160_Init); 389 390 int 391 RIPEMD160_Update(RIPEMD160_CTX *c, const void *data_, size_t len) 392 { 393 const unsigned char *data = data_; 394 unsigned char *p; 395 RIPEMD160_LONG l; 396 size_t n; 397 398 if (len == 0) 399 return 1; 400 401 l = (c->Nl + (((RIPEMD160_LONG)len) << 3))&0xffffffffUL; 402 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to 403 * Wei Dai <weidai@eskimo.com> for pointing it out. */ 404 if (l < c->Nl) /* overflow */ 405 c->Nh++; 406 c->Nh+=(RIPEMD160_LONG)(len>>29); /* might cause compiler warning on 16-bit */ 407 c->Nl = l; 408 409 n = c->num; 410 if (n != 0) { 411 p = (unsigned char *)c->data; 412 413 if (len >= RIPEMD160_CBLOCK || len + n >= RIPEMD160_CBLOCK) { 414 memcpy(p + n, data, RIPEMD160_CBLOCK - n); 415 ripemd160_block_data_order(c, p, 1); 416 n = RIPEMD160_CBLOCK - n; 417 data += n; 418 len -= n; 419 c->num = 0; 420 memset(p, 0, RIPEMD160_CBLOCK); /* keep it zeroed */ 421 } else { 422 memcpy(p + n, data, len); 423 c->num += (unsigned int)len; 424 return 1; 425 } 426 } 427 428 n = len/RIPEMD160_CBLOCK; 429 if (n > 0) { 430 ripemd160_block_data_order(c, data, n); 431 n *= RIPEMD160_CBLOCK; 432 data += n; 433 len -= n; 434 } 435 436 if (len != 0) { 437 p = (unsigned char *)c->data; 438 c->num = (unsigned int)len; 439 memcpy(p, data, len); 440 } 441 return 1; 442 } 443 LCRYPTO_ALIAS(RIPEMD160_Update); 444 445 void 446 RIPEMD160_Transform(RIPEMD160_CTX *c, const unsigned char *data) 447 { 448 ripemd160_block_data_order(c, data, 1); 449 } 450 LCRYPTO_ALIAS(RIPEMD160_Transform); 451 452 int 453 RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c) 454 { 455 unsigned char *p = (unsigned char *)c->data; 456 size_t n = c->num; 457 458 p[n] = 0x80; /* there is always room for one */ 459 n++; 460 461 if (n > (RIPEMD160_CBLOCK - 8)) { 462 memset(p + n, 0, RIPEMD160_CBLOCK - n); 463 n = 0; 464 ripemd160_block_data_order(c, p, 1); 465 } 466 467 memset(p + n, 0, RIPEMD160_CBLOCK - 8 - n); 468 c->data[RIPEMD160_LBLOCK - 2] = htole32(c->Nl); 469 c->data[RIPEMD160_LBLOCK - 1] = htole32(c->Nh); 470 471 ripemd160_block_data_order(c, p, 1); 472 c->num = 0; 473 memset(p, 0, RIPEMD160_CBLOCK); 474 475 crypto_store_htole32(&md[0 * 4], c->A); 476 crypto_store_htole32(&md[1 * 4], c->B); 477 crypto_store_htole32(&md[2 * 4], c->C); 478 crypto_store_htole32(&md[3 * 4], c->D); 479 crypto_store_htole32(&md[4 * 4], c->E); 480 481 return 1; 482 } 483 LCRYPTO_ALIAS(RIPEMD160_Final); 484 485 unsigned char * 486 RIPEMD160(const unsigned char *d, size_t n, unsigned char *md) 487 { 488 RIPEMD160_CTX c; 489 490 if (!RIPEMD160_Init(&c)) 491 return NULL; 492 RIPEMD160_Update(&c, d, n); 493 RIPEMD160_Final(md, &c); 494 explicit_bzero(&c, sizeof(c)); 495 return (md); 496 } 497 LCRYPTO_ALIAS(RIPEMD160); 498