xref: /openbsd/lib/libm/src/ld128/s_expm1l.c (revision 4cfece93)
1 /*	$OpenBSD: s_expm1l.c,v 1.2 2016/09/12 19:47:02 guenther Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							expm1l.c
20  *
21  *	Exponential function, minus 1
22  *      128-bit long double precision
23  *
24  *
25  *
26  * SYNOPSIS:
27  *
28  * long double x, y, expm1l();
29  *
30  * y = expm1l( x );
31  *
32  *
33  *
34  * DESCRIPTION:
35  *
36  * Returns e (2.71828...) raised to the x power, minus one.
37  *
38  * Range reduction is accomplished by separating the argument
39  * into an integer k and fraction f such that
40  *
41  *     x    k  f
42  *    e  = 2  e.
43  *
44  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
45  * in the basic range [-0.5 ln 2, 0.5 ln 2].
46  *
47  *
48  * ACCURACY:
49  *
50  *                      Relative error:
51  * arithmetic   domain     # trials      peak         rms
52  *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
53  *
54  */
55 
56 #include <errno.h>
57 #include <math.h>
58 
59 #include "math_private.h"
60 
61 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
62    -.5 ln 2  <  x  <  .5 ln 2
63    Theoretical peak relative error = 8.1e-36  */
64 
65 static const long double
66   P0 = 2.943520915569954073888921213330863757240E8L,
67   P1 = -5.722847283900608941516165725053359168840E7L,
68   P2 = 8.944630806357575461578107295909719817253E6L,
69   P3 = -7.212432713558031519943281748462837065308E5L,
70   P4 = 4.578962475841642634225390068461943438441E4L,
71   P5 = -1.716772506388927649032068540558788106762E3L,
72   P6 = 4.401308817383362136048032038528753151144E1L,
73   P7 = -4.888737542888633647784737721812546636240E-1L,
74   Q0 = 1.766112549341972444333352727998584753865E9L,
75   Q1 = -7.848989743695296475743081255027098295771E8L,
76   Q2 = 1.615869009634292424463780387327037251069E8L,
77   Q3 = -2.019684072836541751428967854947019415698E7L,
78   Q4 = 1.682912729190313538934190635536631941751E6L,
79   Q5 = -9.615511549171441430850103489315371768998E4L,
80   Q6 = 3.697714952261803935521187272204485251835E3L,
81   Q7 = -8.802340681794263968892934703309274564037E1L,
82   /* Q8 = 1.000000000000000000000000000000000000000E0 */
83 /* C1 + C2 = ln 2 */
84 
85   C1 = 6.93145751953125E-1L,
86   C2 = 1.428606820309417232121458176568075500134E-6L,
87 /* ln (2^16384 * (1 - 2^-113)) */
88   maxlog = 1.1356523406294143949491931077970764891253E4L,
89 /* ln 2^-114 */
90   minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
91 
92 
93 long double
94 expm1l(long double x)
95 {
96   long double px, qx, xx;
97   int32_t ix, sign;
98   ieee_quad_shape_type u;
99   int k;
100 
101   /* Detect infinity and NaN.  */
102   u.value = x;
103   ix = u.parts32.mswhi;
104   sign = ix & 0x80000000;
105   ix &= 0x7fffffff;
106   if (ix >= 0x7fff0000)
107     {
108       /* Infinity. */
109       if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
110 	u.parts32.lswlo) == 0)
111 	{
112 	  if (sign)
113 	    return -1.0L;
114 	  else
115 	    return x;
116 	}
117       /* NaN. No invalid exception. */
118       return x;
119     }
120 
121   /* expm1(+- 0) = +- 0.  */
122   if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
123     return x;
124 
125   /* Overflow.  */
126   if (x > maxlog)
127       return (big * big);
128 
129   /* Minimum value.  */
130   if (x < minarg)
131     return (4.0/big - 1.0L);
132 
133   /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
134   xx = C1 + C2;			/* ln 2. */
135   px = floorl (0.5 + x / xx);
136   k = px;
137   /* remainder times ln 2 */
138   x -= px * C1;
139   x -= px * C2;
140 
141   /* Approximate exp(remainder ln 2).  */
142   px = (((((((P7 * x
143 	      + P6) * x
144 	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
145 
146   qx = (((((((x
147 	      + Q7) * x
148 	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
149 
150   xx = x * x;
151   qx = x + (0.5 * xx + xx * px / qx);
152 
153   /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
154 
155   We have qx = exp(remainder ln 2) - 1, so
156   exp(x) - 1 = 2^k (qx + 1) - 1
157 	     = 2^k qx + 2^k - 1.  */
158 
159   px = ldexpl (1.0L, k);
160   x = px * qx + (px - 1.0);
161   return x;
162 }
163 DEF_STD(expm1l);
164