xref: /openbsd/lib/libm/src/s_csqrt.c (revision 404b540a)
1 /*	$OpenBSD: s_csqrt.c,v 1.1 2008/09/07 20:36:09 martynas Exp $	*/
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /*							csqrt()
19  *
20  *	Complex square root
21  *
22  *
23  *
24  * SYNOPSIS:
25  *
26  * double complex csqrt();
27  * double complex z, w;
28  *
29  * w = csqrt (z);
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  *
36  * If z = x + iy,  r = |z|, then
37  *
38  *                       1/2
39  * Re w  =  [ (r + x)/2 ]   ,
40  *
41  *                       1/2
42  * Im w  =  [ (r - x)/2 ]   .
43  *
44  * Cancellation error in r-x or r+x is avoided by using the
45  * identity  2 Re w Im w  =  y.
46  *
47  * Note that -w is also a square root of z.  The root chosen
48  * is always in the right half plane and Im w has the same sign as y.
49  *
50  *
51  *
52  * ACCURACY:
53  *
54  *                      Relative error:
55  * arithmetic   domain     # trials      peak         rms
56  *    DEC       -10,+10     25000       3.2e-17     9.6e-18
57  *    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17
58  *
59  */
60 
61 #include <complex.h>
62 #include <math.h>
63 
64 double complex
65 csqrt(double complex z)
66 {
67 	double complex w;
68 	double x, y, r, t, scale;
69 
70 	x = creal (z);
71 	y = cimag (z);
72 
73 	if (y == 0.0) {
74 		if (x == 0.0) {
75 			w = 0.0 + y * I;
76 		}
77 		else {
78 			r = fabs (x);
79 			r = sqrt (r);
80 			if (x < 0.0) {
81 				w = 0.0 + r * I;
82 			}
83 			else {
84 				w = r + y * I;
85 			}
86 		}
87 		return (w);
88 	}
89 	if (x == 0.0) {
90 		r = fabs (y);
91 		r = sqrt (0.5*r);
92 		if (y > 0)
93 			w = r + r * I;
94 		else
95 			w = r - r * I;
96 		return (w);
97 	}
98 	/* Rescale to avoid internal overflow or underflow.  */
99 	if ((fabs(x) > 4.0) || (fabs(y) > 4.0)) {
100 		x *= 0.25;
101 		y *= 0.25;
102 		scale = 2.0;
103 	}
104 	else {
105 		x *= 1.8014398509481984e16;  /* 2^54 */
106 		y *= 1.8014398509481984e16;
107 		scale = 7.450580596923828125e-9; /* 2^-27 */
108 #if 0
109 		x *= 4.0;
110 		y *= 4.0;
111 		scale = 0.5;
112 #endif
113 	}
114 	w = x + y * I;
115 	r = cabs(w);
116 	if (x > 0) {
117 		t = sqrt(0.5 * r + 0.5 * x);
118 		r = scale * fabs((0.5 * y) / t);
119 		t *= scale;
120 	}
121 	else {
122 		r = sqrt( 0.5 * r - 0.5 * x );
123 		t = scale * fabs( (0.5 * y) / r );
124 		r *= scale;
125 	}
126 	if (y < 0)
127 		w = t - r * I;
128 	else
129 		w = t + r * I;
130 	return (w);
131 }
132