xref: /openbsd/lib/libm/src/s_ctan.c (revision 404b540a)
1 /*	$OpenBSD: s_ctan.c,v 1.1 2008/09/07 20:36:09 martynas Exp $	*/
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /*							ctan()
19  *
20  *	Complex circular tangent
21  *
22  *
23  *
24  * SYNOPSIS:
25  *
26  * double complex ctan();
27  * double complex z, w;
28  *
29  * w = ctan (z);
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * If
36  *     z = x + iy,
37  *
38  * then
39  *
40  *           sin 2x  +  i sinh 2y
41  *     w  =  --------------------.
42  *            cos 2x  +  cosh 2y
43  *
44  * On the real axis the denominator is zero at odd multiples
45  * of PI/2.  The denominator is evaluated by its Taylor
46  * series near these points.
47  *
48  * ctan(z) = -i ctanh(iz).
49  *
50  * ACCURACY:
51  *
52  *                      Relative error:
53  * arithmetic   domain     # trials      peak         rms
54  *    DEC       -10,+10      5200       7.1e-17     1.6e-17
55  *    IEEE      -10,+10     30000       7.2e-16     1.2e-16
56  * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
57  */
58 
59 #include <complex.h>
60 #include <math.h>
61 
62 #define MACHEP 1.1e-16
63 #define MAXNUM 1.0e308
64 
65 static const double DP1 = 3.14159265160560607910E0;
66 static const double DP2 = 1.98418714791870343106E-9;
67 static const double DP3 = 1.14423774522196636802E-17;
68 
69 static double
70 _redupi(double x)
71 {
72 	double t;
73 	long i;
74 
75 	t = x/M_PI;
76 	if (t >= 0.0)
77 		t += 0.5;
78 	else
79 		t -= 0.5;
80 
81 	i = t;	/* the multiple */
82 	t = i;
83 	t = ((x - t * DP1) - t * DP2) - t * DP3;
84 	return (t);
85 }
86 
87 /*  Taylor series expansion for cosh(2y) - cos(2x)	*/
88 
89 static double
90 _ctans(double complex z)
91 {
92 	double f, x, x2, y, y2, rn, t;
93 	double d;
94 
95 	x = fabs (2.0 * creal (z));
96 	y = fabs (2.0 * cimag(z));
97 
98 	x = _redupi(x);
99 
100 	x = x * x;
101 	y = y * y;
102 	x2 = 1.0;
103 	y2 = 1.0;
104 	f = 1.0;
105 	rn = 0.0;
106 	d = 0.0;
107 	do {
108 		rn += 1.0;
109 		f *= rn;
110 		rn += 1.0;
111 		f *= rn;
112 		x2 *= x;
113 		y2 *= y;
114 		t = y2 + x2;
115 		t /= f;
116 		d += t;
117 
118 		rn += 1.0;
119 		f *= rn;
120 		rn += 1.0;
121 		f *= rn;
122 		x2 *= x;
123 		y2 *= y;
124 		t = y2 - x2;
125 		t /= f;
126 		d += t;
127 	}
128 	while (fabs(t/d) > MACHEP)
129 		;
130 	return (d);
131 }
132 
133 double complex
134 ctan(double complex z)
135 {
136 	double complex w;
137 	double d;
138 
139 	d = cos (2.0 * creal (z)) + cosh (2.0 * cimag (z));
140 
141 	if (fabs(d) < 0.25)
142 		d = _ctans (z);
143 
144 	if (d == 0.0) {
145 		/*mtherr ("ctan", OVERFLOW);*/
146 		w = MAXNUM + MAXNUM * I;
147 		return (w);
148 	}
149 
150 	w = sin (2.0 * creal(z)) / d + (sinh (2.0 * cimag(z)) / d) * I;
151 	return (w);
152 }
153