1 2More number for the questions about SSL overheads.... 3 4The following numbers were generated on a Pentium pro 200, running Linux. 5They give an indication of the SSL protocol and encryption overheads. 6 7The program that generated them is an unreleased version of ssl/ssltest.c 8which is the SSLeay ssl protocol testing program. It is a single process that 9talks both sides of the SSL protocol via a non-blocking memory buffer 10interface. 11 12How do I read this? The protocol and cipher are reasonable obvious. 13The next number is the number of connections being made. The next is the 14number of bytes exchanged between the client and server side of the protocol. 15This is the number of bytes that the client sends to the server, and then 16the server sends back. Because this is all happening in one process, 17the data is being encrypted, decrypted, encrypted and then decrypted again. 18It is a round trip of that many bytes. Because the one process performs 19both the client and server sides of the protocol and it sends this many bytes 20each direction, multiply this number by 4 to generate the number 21of bytes encrypted/decrypted/MACed. The first time value is how many seconds 22elapsed doing a full SSL handshake, the second is the cost of one 23full handshake and the rest being session-id reuse. 24 25SSLv2 RC4-MD5 1000 x 1 12.83s 0.70s 26SSLv3 NULL-MD5 1000 x 1 14.35s 1.47s 27SSLv3 RC4-MD5 1000 x 1 14.46s 1.56s 28SSLv3 RC4-MD5 1000 x 1 51.93s 1.62s 1024bit RSA 29SSLv3 RC4-SHA 1000 x 1 14.61s 1.83s 30SSLv3 DES-CBC-SHA 1000 x 1 14.70s 1.89s 31SSLv3 DES-CBC3-SHA 1000 x 1 15.16s 2.16s 32 33SSLv2 RC4-MD5 1000 x 1024 13.72s 1.27s 34SSLv3 NULL-MD5 1000 x 1024 14.79s 1.92s 35SSLv3 RC4-MD5 1000 x 1024 52.58s 2.29s 1024bit RSA 36SSLv3 RC4-SHA 1000 x 1024 15.39s 2.67s 37SSLv3 DES-CBC-SHA 1000 x 1024 16.45s 3.55s 38SSLv3 DES-CBC3-SHA 1000 x 1024 18.21s 5.38s 39 40SSLv2 RC4-MD5 1000 x 10240 18.97s 6.52s 41SSLv3 NULL-MD5 1000 x 10240 17.79s 5.11s 42SSLv3 RC4-MD5 1000 x 10240 20.25s 7.90s 43SSLv3 RC4-MD5 1000 x 10240 58.26s 8.08s 1024bit RSA 44SSLv3 RC4-SHA 1000 x 10240 22.96s 11.44s 45SSLv3 DES-CBC-SHA 1000 x 10240 30.65s 18.41s 46SSLv3 DES-CBC3-SHA 1000 x 10240 47.04s 34.53s 47 48SSLv2 RC4-MD5 1000 x 102400 70.22s 57.74s 49SSLv3 NULL-MD5 1000 x 102400 43.73s 31.03s 50SSLv3 RC4-MD5 1000 x 102400 71.32s 58.83s 51SSLv3 RC4-MD5 1000 x 102400 109.66s 59.20s 1024bit RSA 52SSLv3 RC4-SHA 1000 x 102400 95.88s 82.21s 53SSLv3 DES-CBC-SHA 1000 x 102400 173.22s 160.55s 54SSLv3 DES-CBC3-SHA 1000 x 102400 336.61s 323.82s 55 56What does this all mean? Well for a server, with no session-id reuse, with 57a transfer size of 10240 bytes, using RC4-MD5 and a 512bit server key, 58a Pentium pro 200 running Linux can handle the SSLv3 protocol overheads of 59about 49 connections a second. Reality will be quite different :-). 60 61Remember the first number is 1000 full ssl handshakes, the second is 621 full and 999 with session-id reuse. The RSA overheads for each exchange 63would be one public and one private operation, but the protocol/MAC/cipher 64cost would be quite similar in both the client and server. 65 66eric (adding numbers to speculation) 67 68--- Appendix --- 69- The time measured is user time but these number a very rough. 70- Remember this is the cost of both client and server sides of the protocol. 71- The TCP/kernel overhead of connection establishment is normally the 72 killer in SSL. Often delays in the TCP protocol will make session-id 73 reuse look slower that new sessions, but this would not be the case on 74 a loaded server. 75- The TCP round trip latencies, while slowing individual connections, 76 would have minimal impact on throughput. 77- Instead of sending one 102400 byte buffer, one 8k buffer is sent until 78- the required number of bytes are processed. 79- The SSLv3 connections were actually SSLv2 compatible SSLv3 headers. 80- A 512bit server key was being used except where noted. 81- No server key verification was being performed on the client side of the 82 protocol. This would slow things down very little. 83- The library being used is SSLeay 0.8.x. 84- The normal measuring system was commands of the form 85 time ./ssltest -num 1000 -bytes 102400 -cipher DES-CBC-SHA -reuse 86 This modified version of ssltest should be in the next public release of 87 SSLeay. 88 89The general cipher performance number for this platform are 90 91SSLeay 0.8.2a 04-Sep-1997 92built on Fri Sep 5 17:37:05 EST 1997 93options:bn(64,32) md2(int) rc4(idx,int) des(ptr,risc1,16,long) idea(int) blowfish(ptr2) 94C flags:gcc -DL_ENDIAN -DTERMIO -O3 -fomit-frame-pointer -m486 -Wall -Wuninitialized 95The 'numbers' are in 1000s of bytes per second processed. 96type 8 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 97md2 131.02k 368.41k 500.57k 549.21k 566.09k 98mdc2 535.60k 589.10k 595.88k 595.97k 594.54k 99md5 1801.53k 9674.77k 17484.03k 21849.43k 23592.96k 100sha 1261.63k 5533.25k 9285.63k 11187.88k 11913.90k 101sha1 1103.13k 4782.53k 7933.78k 9472.34k 10070.70k 102rc4 10722.53k 14443.93k 15215.79k 15299.24k 15219.59k 103des cbc 3286.57k 3827.73k 3913.39k 3931.82k 3926.70k 104des ede3 1443.50k 1549.08k 1561.17k 1566.38k 1564.67k 105idea cbc 2203.64k 2508.16k 2538.33k 2543.62k 2547.71k 106rc2 cbc 1430.94k 1511.59k 1524.82k 1527.13k 1523.33k 107blowfish cbc 4716.07k 5965.82k 6190.17k 6243.67k 6234.11k 108 sign verify 109rsa 512 bits 0.0100s 0.0011s 110rsa 1024 bits 0.0451s 0.0012s 111rsa 2048 bits 0.2605s 0.0086s 112rsa 4096 bits 1.6883s 0.0302s 113 114