xref: /openbsd/lib/libz/adler32.c (revision d415bd75)
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 
8 #define BASE 65521U     /* largest prime smaller than 65536 */
9 #define NMAX 5552
10 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
11 
12 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
13 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
14 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
15 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
16 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
17 
18 /* use NO_DIVIDE if your processor does not do division in hardware --
19    try it both ways to see which is faster */
20 #ifdef NO_DIVIDE
21 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
22    (thank you to John Reiser for pointing this out) */
23 #  define CHOP(a) \
24     do { \
25         unsigned long tmp = a >> 16; \
26         a &= 0xffffUL; \
27         a += (tmp << 4) - tmp; \
28     } while (0)
29 #  define MOD28(a) \
30     do { \
31         CHOP(a); \
32         if (a >= BASE) a -= BASE; \
33     } while (0)
34 #  define MOD(a) \
35     do { \
36         CHOP(a); \
37         MOD28(a); \
38     } while (0)
39 #  define MOD63(a) \
40     do { /* this assumes a is not negative */ \
41         z_off64_t tmp = a >> 32; \
42         a &= 0xffffffffL; \
43         a += (tmp << 8) - (tmp << 5) + tmp; \
44         tmp = a >> 16; \
45         a &= 0xffffL; \
46         a += (tmp << 4) - tmp; \
47         tmp = a >> 16; \
48         a &= 0xffffL; \
49         a += (tmp << 4) - tmp; \
50         if (a >= BASE) a -= BASE; \
51     } while (0)
52 #else
53 #  define MOD(a) a %= BASE
54 #  define MOD28(a) a %= BASE
55 #  define MOD63(a) a %= BASE
56 #endif
57 
58 /* ========================================================================= */
59 uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
60     unsigned long sum2;
61     unsigned n;
62 
63     /* split Adler-32 into component sums */
64     sum2 = (adler >> 16) & 0xffff;
65     adler &= 0xffff;
66 
67     /* in case user likes doing a byte at a time, keep it fast */
68     if (len == 1) {
69         adler += buf[0];
70         if (adler >= BASE)
71             adler -= BASE;
72         sum2 += adler;
73         if (sum2 >= BASE)
74             sum2 -= BASE;
75         return adler | (sum2 << 16);
76     }
77 
78     /* initial Adler-32 value (deferred check for len == 1 speed) */
79     if (buf == Z_NULL)
80         return 1L;
81 
82     /* in case short lengths are provided, keep it somewhat fast */
83     if (len < 16) {
84         while (len--) {
85             adler += *buf++;
86             sum2 += adler;
87         }
88         if (adler >= BASE)
89             adler -= BASE;
90         MOD28(sum2);            /* only added so many BASE's */
91         return adler | (sum2 << 16);
92     }
93 
94     /* do length NMAX blocks -- requires just one modulo operation */
95     while (len >= NMAX) {
96         len -= NMAX;
97         n = NMAX / 16;          /* NMAX is divisible by 16 */
98         do {
99             DO16(buf);          /* 16 sums unrolled */
100             buf += 16;
101         } while (--n);
102         MOD(adler);
103         MOD(sum2);
104     }
105 
106     /* do remaining bytes (less than NMAX, still just one modulo) */
107     if (len) {                  /* avoid modulos if none remaining */
108         while (len >= 16) {
109             len -= 16;
110             DO16(buf);
111             buf += 16;
112         }
113         while (len--) {
114             adler += *buf++;
115             sum2 += adler;
116         }
117         MOD(adler);
118         MOD(sum2);
119     }
120 
121     /* return recombined sums */
122     return adler | (sum2 << 16);
123 }
124 
125 /* ========================================================================= */
126 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
127     return adler32_z(adler, buf, len);
128 }
129 
130 /* ========================================================================= */
131 local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
132     unsigned long sum1;
133     unsigned long sum2;
134     unsigned rem;
135 
136     /* for negative len, return invalid adler32 as a clue for debugging */
137     if (len2 < 0)
138         return 0xffffffffUL;
139 
140     /* the derivation of this formula is left as an exercise for the reader */
141     MOD63(len2);                /* assumes len2 >= 0 */
142     rem = (unsigned)len2;
143     sum1 = adler1 & 0xffff;
144     sum2 = rem * sum1;
145     MOD(sum2);
146     sum1 += (adler2 & 0xffff) + BASE - 1;
147     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
148     if (sum1 >= BASE) sum1 -= BASE;
149     if (sum1 >= BASE) sum1 -= BASE;
150     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
151     if (sum2 >= BASE) sum2 -= BASE;
152     return sum1 | (sum2 << 16);
153 }
154 
155 /* ========================================================================= */
156 uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
157     return adler32_combine_(adler1, adler2, len2);
158 }
159 
160 uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
161     return adler32_combine_(adler1, adler2, len2);
162 }
163