xref: /openbsd/lib/libz/deflate.c (revision d415bd75)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2023 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 #include "deflate.h"
51 
52 /*
53   If you use the zlib library in a product, an acknowledgment is welcome
54   in the documentation of your product. If for some reason you cannot
55   include such an acknowledgment, I would appreciate that you keep this
56   copyright string in the executable of your product.
57  */
58 
59 typedef enum {
60     need_more,      /* block not completed, need more input or more output */
61     block_done,     /* block flush performed */
62     finish_started, /* finish started, need only more output at next deflate */
63     finish_done     /* finish done, accept no more input or output */
64 } block_state;
65 
66 typedef block_state (*compress_func)(deflate_state *s, int flush);
67 /* Compression function. Returns the block state after the call. */
68 
69 local block_state deflate_stored(deflate_state *s, int flush);
70 local block_state deflate_fast(deflate_state *s, int flush);
71 #ifndef FASTEST
72 local block_state deflate_slow(deflate_state *s, int flush);
73 #endif
74 local block_state deflate_rle(deflate_state *s, int flush);
75 local block_state deflate_huff(deflate_state *s, int flush);
76 
77 /* ===========================================================================
78  * Local data
79  */
80 
81 #define NIL 0
82 /* Tail of hash chains */
83 
84 #ifndef TOO_FAR
85 #  define TOO_FAR 4096
86 #endif
87 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
88 
89 /* Values for max_lazy_match, good_match and max_chain_length, depending on
90  * the desired pack level (0..9). The values given below have been tuned to
91  * exclude worst case performance for pathological files. Better values may be
92  * found for specific files.
93  */
94 typedef struct config_s {
95    ush good_length; /* reduce lazy search above this match length */
96    ush max_lazy;    /* do not perform lazy search above this match length */
97    ush nice_length; /* quit search above this match length */
98    ush max_chain;
99    compress_func func;
100 } config;
101 
102 #ifdef FASTEST
103 local const config configuration_table[2] = {
104 /*      good lazy nice chain */
105 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
106 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
107 #else
108 local const config configuration_table[10] = {
109 /*      good lazy nice chain */
110 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
111 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
112 /* 2 */ {4,    5, 16,    8, deflate_fast},
113 /* 3 */ {4,    6, 32,   32, deflate_fast},
114 
115 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
116 /* 5 */ {8,   16, 32,   32, deflate_slow},
117 /* 6 */ {8,   16, 128, 128, deflate_slow},
118 /* 7 */ {8,   32, 128, 256, deflate_slow},
119 /* 8 */ {32, 128, 258, 1024, deflate_slow},
120 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
121 #endif
122 
123 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
124  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
125  * meaning.
126  */
127 
128 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
129 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
130 
131 /* ===========================================================================
132  * Update a hash value with the given input byte
133  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
134  *    characters, so that a running hash key can be computed from the previous
135  *    key instead of complete recalculation each time.
136  */
137 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
138 
139 
140 /* ===========================================================================
141  * Insert string str in the dictionary and set match_head to the previous head
142  * of the hash chain (the most recent string with same hash key). Return
143  * the previous length of the hash chain.
144  * If this file is compiled with -DFASTEST, the compression level is forced
145  * to 1, and no hash chains are maintained.
146  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
147  *    characters and the first MIN_MATCH bytes of str are valid (except for
148  *    the last MIN_MATCH-1 bytes of the input file).
149  */
150 #ifdef FASTEST
151 #define INSERT_STRING(s, str, match_head) \
152    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
153     match_head = s->head[s->ins_h], \
154     s->head[s->ins_h] = (Pos)(str))
155 #else
156 #define INSERT_STRING(s, str, match_head) \
157    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
158     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
159     s->head[s->ins_h] = (Pos)(str))
160 #endif
161 
162 /* ===========================================================================
163  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
164  * prev[] will be initialized on the fly.
165  */
166 #define CLEAR_HASH(s) \
167     do { \
168         s->head[s->hash_size - 1] = NIL; \
169         zmemzero((Bytef *)s->head, \
170                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
171     } while (0)
172 
173 /* ===========================================================================
174  * Slide the hash table when sliding the window down (could be avoided with 32
175  * bit values at the expense of memory usage). We slide even when level == 0 to
176  * keep the hash table consistent if we switch back to level > 0 later.
177  */
178 #if defined(__has_feature)
179 #  if __has_feature(memory_sanitizer)
180      __attribute__((no_sanitize("memory")))
181 #  endif
182 #endif
183 local void slide_hash(deflate_state *s) {
184     unsigned n, m;
185     Posf *p;
186     uInt wsize = s->w_size;
187 
188     n = s->hash_size;
189     p = &s->head[n];
190     do {
191         m = *--p;
192         *p = (Pos)(m >= wsize ? m - wsize : NIL);
193     } while (--n);
194     n = wsize;
195 #ifndef FASTEST
196     p = &s->prev[n];
197     do {
198         m = *--p;
199         *p = (Pos)(m >= wsize ? m - wsize : NIL);
200         /* If n is not on any hash chain, prev[n] is garbage but
201          * its value will never be used.
202          */
203     } while (--n);
204 #endif
205 }
206 
207 /* ===========================================================================
208  * Read a new buffer from the current input stream, update the adler32
209  * and total number of bytes read.  All deflate() input goes through
210  * this function so some applications may wish to modify it to avoid
211  * allocating a large strm->next_in buffer and copying from it.
212  * (See also flush_pending()).
213  */
214 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
215     unsigned len = strm->avail_in;
216 
217     if (len > size) len = size;
218     if (len == 0) return 0;
219 
220     strm->avail_in  -= len;
221 
222     zmemcpy(buf, strm->next_in, len);
223     if (strm->state->wrap == 1) {
224         strm->adler = adler32(strm->adler, buf, len);
225     }
226 #ifdef GZIP
227     else if (strm->state->wrap == 2) {
228         strm->adler = crc32(strm->adler, buf, len);
229     }
230 #endif
231     strm->next_in  += len;
232     strm->total_in += len;
233 
234     return len;
235 }
236 
237 /* ===========================================================================
238  * Fill the window when the lookahead becomes insufficient.
239  * Updates strstart and lookahead.
240  *
241  * IN assertion: lookahead < MIN_LOOKAHEAD
242  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
243  *    At least one byte has been read, or avail_in == 0; reads are
244  *    performed for at least two bytes (required for the zip translate_eol
245  *    option -- not supported here).
246  */
247 local void fill_window(deflate_state *s) {
248     unsigned n;
249     unsigned more;    /* Amount of free space at the end of the window. */
250     uInt wsize = s->w_size;
251 
252     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
253 
254     do {
255         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
256 
257         /* Deal with !@#$% 64K limit: */
258         if (sizeof(int) <= 2) {
259             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
260                 more = wsize;
261 
262             } else if (more == (unsigned)(-1)) {
263                 /* Very unlikely, but possible on 16 bit machine if
264                  * strstart == 0 && lookahead == 1 (input done a byte at time)
265                  */
266                 more--;
267             }
268         }
269 
270         /* If the window is almost full and there is insufficient lookahead,
271          * move the upper half to the lower one to make room in the upper half.
272          */
273         if (s->strstart >= wsize + MAX_DIST(s)) {
274 
275             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
276             s->match_start -= wsize;
277             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
278             s->block_start -= (long) wsize;
279             if (s->insert > s->strstart)
280                 s->insert = s->strstart;
281             slide_hash(s);
282             more += wsize;
283         }
284         if (s->strm->avail_in == 0) break;
285 
286         /* If there was no sliding:
287          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
288          *    more == window_size - lookahead - strstart
289          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
290          * => more >= window_size - 2*WSIZE + 2
291          * In the BIG_MEM or MMAP case (not yet supported),
292          *   window_size == input_size + MIN_LOOKAHEAD  &&
293          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
294          * Otherwise, window_size == 2*WSIZE so more >= 2.
295          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
296          */
297         Assert(more >= 2, "more < 2");
298 
299         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
300         s->lookahead += n;
301 
302         /* Initialize the hash value now that we have some input: */
303         if (s->lookahead + s->insert >= MIN_MATCH) {
304             uInt str = s->strstart - s->insert;
305             s->ins_h = s->window[str];
306             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
307 #if MIN_MATCH != 3
308             Call UPDATE_HASH() MIN_MATCH-3 more times
309 #endif
310             while (s->insert) {
311                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
312 #ifndef FASTEST
313                 s->prev[str & s->w_mask] = s->head[s->ins_h];
314 #endif
315                 s->head[s->ins_h] = (Pos)str;
316                 str++;
317                 s->insert--;
318                 if (s->lookahead + s->insert < MIN_MATCH)
319                     break;
320             }
321         }
322         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
323          * but this is not important since only literal bytes will be emitted.
324          */
325 
326     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
327 
328     /* If the WIN_INIT bytes after the end of the current data have never been
329      * written, then zero those bytes in order to avoid memory check reports of
330      * the use of uninitialized (or uninitialised as Julian writes) bytes by
331      * the longest match routines.  Update the high water mark for the next
332      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
333      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
334      */
335     if (s->high_water < s->window_size) {
336         ulg curr = s->strstart + (ulg)(s->lookahead);
337         ulg init;
338 
339         if (s->high_water < curr) {
340             /* Previous high water mark below current data -- zero WIN_INIT
341              * bytes or up to end of window, whichever is less.
342              */
343             init = s->window_size - curr;
344             if (init > WIN_INIT)
345                 init = WIN_INIT;
346             zmemzero(s->window + curr, (unsigned)init);
347             s->high_water = curr + init;
348         }
349         else if (s->high_water < (ulg)curr + WIN_INIT) {
350             /* High water mark at or above current data, but below current data
351              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
352              * to end of window, whichever is less.
353              */
354             init = (ulg)curr + WIN_INIT - s->high_water;
355             if (init > s->window_size - s->high_water)
356                 init = s->window_size - s->high_water;
357             zmemzero(s->window + s->high_water, (unsigned)init);
358             s->high_water += init;
359         }
360     }
361 
362     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
363            "not enough room for search");
364 }
365 
366 /* ========================================================================= */
367 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
368                          int stream_size) {
369     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
370                          Z_DEFAULT_STRATEGY, version, stream_size);
371     /* To do: ignore strm->next_in if we use it as window */
372 }
373 
374 /* ========================================================================= */
375 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
376                           int windowBits, int memLevel, int strategy,
377                           const char *version, int stream_size) {
378     deflate_state *s;
379     int wrap = 1;
380     static const char my_version[] = ZLIB_VERSION;
381 
382     if (version == Z_NULL || version[0] != my_version[0] ||
383         stream_size != sizeof(z_stream)) {
384         return Z_VERSION_ERROR;
385     }
386     if (strm == Z_NULL) return Z_STREAM_ERROR;
387 
388     strm->msg = Z_NULL;
389     if (strm->zalloc == (alloc_func)0) {
390 #ifdef Z_SOLO
391         return Z_STREAM_ERROR;
392 #else
393         strm->zalloc = zcalloc;
394         strm->opaque = (voidpf)0;
395 #endif
396     }
397     if (strm->zfree == (free_func)0)
398 #ifdef Z_SOLO
399         return Z_STREAM_ERROR;
400 #else
401         strm->zfree = zcfree;
402 #endif
403 
404 #ifdef FASTEST
405     if (level != 0) level = 1;
406 #else
407     if (level == Z_DEFAULT_COMPRESSION) level = 6;
408 #endif
409 
410     if (windowBits < 0) { /* suppress zlib wrapper */
411         wrap = 0;
412         if (windowBits < -15)
413             return Z_STREAM_ERROR;
414         windowBits = -windowBits;
415     }
416 #ifdef GZIP
417     else if (windowBits > 15) {
418         wrap = 2;       /* write gzip wrapper instead */
419         windowBits -= 16;
420     }
421 #endif
422     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
423         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
424         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
425         return Z_STREAM_ERROR;
426     }
427     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
428     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
429     if (s == Z_NULL) return Z_MEM_ERROR;
430     strm->state = (struct internal_state FAR *)s;
431     s->strm = strm;
432     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
433 
434     s->wrap = wrap;
435     s->gzhead = Z_NULL;
436     s->w_bits = (uInt)windowBits;
437     s->w_size = 1 << s->w_bits;
438     s->w_mask = s->w_size - 1;
439 
440     s->hash_bits = (uInt)memLevel + 7;
441     s->hash_size = 1 << s->hash_bits;
442     s->hash_mask = s->hash_size - 1;
443     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
444 
445     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
446     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
447     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
448 
449     s->high_water = 0;      /* nothing written to s->window yet */
450 
451     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
452 
453     /* We overlay pending_buf and sym_buf. This works since the average size
454      * for length/distance pairs over any compressed block is assured to be 31
455      * bits or less.
456      *
457      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
458      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
459      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
460      * possible fixed-codes length/distance pair is then 31 bits total.
461      *
462      * sym_buf starts one-fourth of the way into pending_buf. So there are
463      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
464      * in sym_buf is three bytes -- two for the distance and one for the
465      * literal/length. As each symbol is consumed, the pointer to the next
466      * sym_buf value to read moves forward three bytes. From that symbol, up to
467      * 31 bits are written to pending_buf. The closest the written pending_buf
468      * bits gets to the next sym_buf symbol to read is just before the last
469      * code is written. At that time, 31*(n - 2) bits have been written, just
470      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
471      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
472      * symbols are written.) The closest the writing gets to what is unread is
473      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
474      * can range from 128 to 32768.
475      *
476      * Therefore, at a minimum, there are 142 bits of space between what is
477      * written and what is read in the overlain buffers, so the symbols cannot
478      * be overwritten by the compressed data. That space is actually 139 bits,
479      * due to the three-bit fixed-code block header.
480      *
481      * That covers the case where either Z_FIXED is specified, forcing fixed
482      * codes, or when the use of fixed codes is chosen, because that choice
483      * results in a smaller compressed block than dynamic codes. That latter
484      * condition then assures that the above analysis also covers all dynamic
485      * blocks. A dynamic-code block will only be chosen to be emitted if it has
486      * fewer bits than a fixed-code block would for the same set of symbols.
487      * Therefore its average symbol length is assured to be less than 31. So
488      * the compressed data for a dynamic block also cannot overwrite the
489      * symbols from which it is being constructed.
490      */
491 
492     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
493     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
494 
495     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
496         s->pending_buf == Z_NULL) {
497         s->status = FINISH_STATE;
498         strm->msg = ERR_MSG(Z_MEM_ERROR);
499         deflateEnd (strm);
500         return Z_MEM_ERROR;
501     }
502     s->sym_buf = s->pending_buf + s->lit_bufsize;
503     s->sym_end = (s->lit_bufsize - 1) * 3;
504     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
505      * on 16 bit machines and because stored blocks are restricted to
506      * 64K-1 bytes.
507      */
508 
509     s->level = level;
510     s->strategy = strategy;
511     s->method = (Byte)method;
512 
513     return deflateReset(strm);
514 }
515 
516 /* =========================================================================
517  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
518  */
519 local int deflateStateCheck(z_streamp strm) {
520     deflate_state *s;
521     if (strm == Z_NULL ||
522         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
523         return 1;
524     s = strm->state;
525     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
526 #ifdef GZIP
527                                            s->status != GZIP_STATE &&
528 #endif
529                                            s->status != EXTRA_STATE &&
530                                            s->status != NAME_STATE &&
531                                            s->status != COMMENT_STATE &&
532                                            s->status != HCRC_STATE &&
533                                            s->status != BUSY_STATE &&
534                                            s->status != FINISH_STATE))
535         return 1;
536     return 0;
537 }
538 
539 /* ========================================================================= */
540 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
541                                  uInt  dictLength) {
542     deflate_state *s;
543     uInt str, n;
544     int wrap;
545     unsigned avail;
546     z_const unsigned char *next;
547 
548     if (deflateStateCheck(strm) || dictionary == Z_NULL)
549         return Z_STREAM_ERROR;
550     s = strm->state;
551     wrap = s->wrap;
552     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
553         return Z_STREAM_ERROR;
554 
555     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
556     if (wrap == 1)
557         strm->adler = adler32(strm->adler, dictionary, dictLength);
558     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
559 
560     /* if dictionary would fill window, just replace the history */
561     if (dictLength >= s->w_size) {
562         if (wrap == 0) {            /* already empty otherwise */
563             CLEAR_HASH(s);
564             s->strstart = 0;
565             s->block_start = 0L;
566             s->insert = 0;
567         }
568         dictionary += dictLength - s->w_size;  /* use the tail */
569         dictLength = s->w_size;
570     }
571 
572     /* insert dictionary into window and hash */
573     avail = strm->avail_in;
574     next = strm->next_in;
575     strm->avail_in = dictLength;
576     strm->next_in = (z_const Bytef *)dictionary;
577     fill_window(s);
578     while (s->lookahead >= MIN_MATCH) {
579         str = s->strstart;
580         n = s->lookahead - (MIN_MATCH-1);
581         do {
582             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
583 #ifndef FASTEST
584             s->prev[str & s->w_mask] = s->head[s->ins_h];
585 #endif
586             s->head[s->ins_h] = (Pos)str;
587             str++;
588         } while (--n);
589         s->strstart = str;
590         s->lookahead = MIN_MATCH-1;
591         fill_window(s);
592     }
593     s->strstart += s->lookahead;
594     s->block_start = (long)s->strstart;
595     s->insert = s->lookahead;
596     s->lookahead = 0;
597     s->match_length = s->prev_length = MIN_MATCH-1;
598     s->match_available = 0;
599     strm->next_in = next;
600     strm->avail_in = avail;
601     s->wrap = wrap;
602     return Z_OK;
603 }
604 
605 /* ========================================================================= */
606 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
607                                  uInt *dictLength) {
608     deflate_state *s;
609     uInt len;
610 
611     if (deflateStateCheck(strm))
612         return Z_STREAM_ERROR;
613     s = strm->state;
614     len = s->strstart + s->lookahead;
615     if (len > s->w_size)
616         len = s->w_size;
617     if (dictionary != Z_NULL && len)
618         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
619     if (dictLength != Z_NULL)
620         *dictLength = len;
621     return Z_OK;
622 }
623 
624 /* ========================================================================= */
625 int ZEXPORT deflateResetKeep(z_streamp strm) {
626     deflate_state *s;
627 
628     if (deflateStateCheck(strm)) {
629         return Z_STREAM_ERROR;
630     }
631 
632     strm->total_in = strm->total_out = 0;
633     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
634     strm->data_type = Z_UNKNOWN;
635 
636     s = (deflate_state *)strm->state;
637     s->pending = 0;
638     s->pending_out = s->pending_buf;
639 
640     if (s->wrap < 0) {
641         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
642     }
643     s->status =
644 #ifdef GZIP
645         s->wrap == 2 ? GZIP_STATE :
646 #endif
647         INIT_STATE;
648     strm->adler =
649 #ifdef GZIP
650         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
651 #endif
652         adler32(0L, Z_NULL, 0);
653     s->last_flush = -2;
654 
655     _tr_init(s);
656 
657     return Z_OK;
658 }
659 
660 /* ===========================================================================
661  * Initialize the "longest match" routines for a new zlib stream
662  */
663 local void lm_init(deflate_state *s) {
664     s->window_size = (ulg)2L*s->w_size;
665 
666     CLEAR_HASH(s);
667 
668     /* Set the default configuration parameters:
669      */
670     s->max_lazy_match   = configuration_table[s->level].max_lazy;
671     s->good_match       = configuration_table[s->level].good_length;
672     s->nice_match       = configuration_table[s->level].nice_length;
673     s->max_chain_length = configuration_table[s->level].max_chain;
674 
675     s->strstart = 0;
676     s->block_start = 0L;
677     s->lookahead = 0;
678     s->insert = 0;
679     s->match_length = s->prev_length = MIN_MATCH-1;
680     s->match_available = 0;
681     s->ins_h = 0;
682 }
683 
684 /* ========================================================================= */
685 int ZEXPORT deflateReset(z_streamp strm) {
686     int ret;
687 
688     ret = deflateResetKeep(strm);
689     if (ret == Z_OK)
690         lm_init(strm->state);
691     return ret;
692 }
693 
694 /* ========================================================================= */
695 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
696     if (deflateStateCheck(strm) || strm->state->wrap != 2)
697         return Z_STREAM_ERROR;
698     strm->state->gzhead = head;
699     return Z_OK;
700 }
701 
702 /* ========================================================================= */
703 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
704     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
705     if (pending != Z_NULL)
706         *pending = strm->state->pending;
707     if (bits != Z_NULL)
708         *bits = strm->state->bi_valid;
709     return Z_OK;
710 }
711 
712 /* ========================================================================= */
713 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
714     deflate_state *s;
715     int put;
716 
717     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
718     s = strm->state;
719     if (bits < 0 || bits > 16 ||
720         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
721         return Z_BUF_ERROR;
722     do {
723         put = Buf_size - s->bi_valid;
724         if (put > bits)
725             put = bits;
726         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
727         s->bi_valid += put;
728         _tr_flush_bits(s);
729         value >>= put;
730         bits -= put;
731     } while (bits);
732     return Z_OK;
733 }
734 
735 /* ========================================================================= */
736 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
737     deflate_state *s;
738     compress_func func;
739 
740     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
741     s = strm->state;
742 
743 #ifdef FASTEST
744     if (level != 0) level = 1;
745 #else
746     if (level == Z_DEFAULT_COMPRESSION) level = 6;
747 #endif
748     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
749         return Z_STREAM_ERROR;
750     }
751     func = configuration_table[s->level].func;
752 
753     if ((strategy != s->strategy || func != configuration_table[level].func) &&
754         s->last_flush != -2) {
755         /* Flush the last buffer: */
756         int err = deflate(strm, Z_BLOCK);
757         if (err == Z_STREAM_ERROR)
758             return err;
759         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
760             return Z_BUF_ERROR;
761     }
762     if (s->level != level) {
763         if (s->level == 0 && s->matches != 0) {
764             if (s->matches == 1)
765                 slide_hash(s);
766             else
767                 CLEAR_HASH(s);
768             s->matches = 0;
769         }
770         s->level = level;
771         s->max_lazy_match   = configuration_table[level].max_lazy;
772         s->good_match       = configuration_table[level].good_length;
773         s->nice_match       = configuration_table[level].nice_length;
774         s->max_chain_length = configuration_table[level].max_chain;
775     }
776     s->strategy = strategy;
777     return Z_OK;
778 }
779 
780 /* ========================================================================= */
781 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
782                         int nice_length, int max_chain) {
783     deflate_state *s;
784 
785     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
786     s = strm->state;
787     s->good_match = (uInt)good_length;
788     s->max_lazy_match = (uInt)max_lazy;
789     s->nice_match = nice_length;
790     s->max_chain_length = (uInt)max_chain;
791     return Z_OK;
792 }
793 
794 /* =========================================================================
795  * For the default windowBits of 15 and memLevel of 8, this function returns a
796  * close to exact, as well as small, upper bound on the compressed size. This
797  * is an expansion of ~0.03%, plus a small constant.
798  *
799  * For any setting other than those defaults for windowBits and memLevel, one
800  * of two worst case bounds is returned. This is at most an expansion of ~4% or
801  * ~13%, plus a small constant.
802  *
803  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
804  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
805  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
806  * expansion results from five bytes of header for each stored block.
807  *
808  * The larger expansion of 13% results from a window size less than or equal to
809  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
810  * the data being compressed may have slid out of the sliding window, impeding
811  * a stored block from being emitted. Then the only choice is a fixed or
812  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
813  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
814  * which this can occur is 255 (memLevel == 2).
815  *
816  * Shifts are used to approximate divisions, for speed.
817  */
818 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
819     deflate_state *s;
820     uLong fixedlen, storelen, wraplen;
821 
822     /* upper bound for fixed blocks with 9-bit literals and length 255
823        (memLevel == 2, which is the lowest that may not use stored blocks) --
824        ~13% overhead plus a small constant */
825     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
826                (sourceLen >> 9) + 4;
827 
828     /* upper bound for stored blocks with length 127 (memLevel == 1) --
829        ~4% overhead plus a small constant */
830     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
831                (sourceLen >> 11) + 7;
832 
833     /* if can't get parameters, return larger bound plus a zlib wrapper */
834     if (deflateStateCheck(strm))
835         return (fixedlen > storelen ? fixedlen : storelen) + 6;
836 
837     /* compute wrapper length */
838     s = strm->state;
839     switch (s->wrap) {
840     case 0:                                 /* raw deflate */
841         wraplen = 0;
842         break;
843     case 1:                                 /* zlib wrapper */
844         wraplen = 6 + (s->strstart ? 4 : 0);
845         break;
846 #ifdef GZIP
847     case 2:                                 /* gzip wrapper */
848         wraplen = 18;
849         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
850             Bytef *str;
851             if (s->gzhead->extra != Z_NULL)
852                 wraplen += 2 + s->gzhead->extra_len;
853             str = s->gzhead->name;
854             if (str != Z_NULL)
855                 do {
856                     wraplen++;
857                 } while (*str++);
858             str = s->gzhead->comment;
859             if (str != Z_NULL)
860                 do {
861                     wraplen++;
862                 } while (*str++);
863             if (s->gzhead->hcrc)
864                 wraplen += 2;
865         }
866         break;
867 #endif
868     default:                                /* for compiler happiness */
869         wraplen = 6;
870     }
871 
872     /* if not default parameters, return one of the conservative bounds */
873     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
874         return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
875                wraplen;
876 
877     /* default settings: return tight bound for that case -- ~0.03% overhead
878        plus a small constant */
879     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
880            (sourceLen >> 25) + 13 - 6 + wraplen;
881 }
882 
883 /* =========================================================================
884  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
885  * IN assertion: the stream state is correct and there is enough room in
886  * pending_buf.
887  */
888 local void putShortMSB(deflate_state *s, uInt b) {
889     put_byte(s, (Byte)(b >> 8));
890     put_byte(s, (Byte)(b & 0xff));
891 }
892 
893 /* =========================================================================
894  * Flush as much pending output as possible. All deflate() output, except for
895  * some deflate_stored() output, goes through this function so some
896  * applications may wish to modify it to avoid allocating a large
897  * strm->next_out buffer and copying into it. (See also read_buf()).
898  */
899 local void flush_pending(z_streamp strm) {
900     unsigned len;
901     deflate_state *s = strm->state;
902 
903     _tr_flush_bits(s);
904     len = s->pending;
905     if (len > strm->avail_out) len = strm->avail_out;
906     if (len == 0) return;
907 
908     zmemcpy(strm->next_out, s->pending_out, len);
909     strm->next_out  += len;
910     s->pending_out  += len;
911     strm->total_out += len;
912     strm->avail_out -= len;
913     s->pending      -= len;
914     if (s->pending == 0) {
915         s->pending_out = s->pending_buf;
916     }
917 }
918 
919 /* ===========================================================================
920  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
921  */
922 #define HCRC_UPDATE(beg) \
923     do { \
924         if (s->gzhead->hcrc && s->pending > (beg)) \
925             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
926                                 s->pending - (beg)); \
927     } while (0)
928 
929 /* ========================================================================= */
930 int ZEXPORT deflate(z_streamp strm, int flush) {
931     int old_flush; /* value of flush param for previous deflate call */
932     deflate_state *s;
933 
934     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
935         return Z_STREAM_ERROR;
936     }
937     s = strm->state;
938 
939     if (strm->next_out == Z_NULL ||
940         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
941         (s->status == FINISH_STATE && flush != Z_FINISH)) {
942         ERR_RETURN(strm, Z_STREAM_ERROR);
943     }
944     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
945 
946     old_flush = s->last_flush;
947     s->last_flush = flush;
948 
949     /* Flush as much pending output as possible */
950     if (s->pending != 0) {
951         flush_pending(strm);
952         if (strm->avail_out == 0) {
953             /* Since avail_out is 0, deflate will be called again with
954              * more output space, but possibly with both pending and
955              * avail_in equal to zero. There won't be anything to do,
956              * but this is not an error situation so make sure we
957              * return OK instead of BUF_ERROR at next call of deflate:
958              */
959             s->last_flush = -1;
960             return Z_OK;
961         }
962 
963     /* Make sure there is something to do and avoid duplicate consecutive
964      * flushes. For repeated and useless calls with Z_FINISH, we keep
965      * returning Z_STREAM_END instead of Z_BUF_ERROR.
966      */
967     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
968                flush != Z_FINISH) {
969         ERR_RETURN(strm, Z_BUF_ERROR);
970     }
971 
972     /* User must not provide more input after the first FINISH: */
973     if (s->status == FINISH_STATE && strm->avail_in != 0) {
974         ERR_RETURN(strm, Z_BUF_ERROR);
975     }
976 
977     /* Write the header */
978     if (s->status == INIT_STATE && s->wrap == 0)
979         s->status = BUSY_STATE;
980     if (s->status == INIT_STATE) {
981         /* zlib header */
982         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
983         uInt level_flags;
984 
985         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
986             level_flags = 0;
987         else if (s->level < 6)
988             level_flags = 1;
989         else if (s->level == 6)
990             level_flags = 2;
991         else
992             level_flags = 3;
993         header |= (level_flags << 6);
994         if (s->strstart != 0) header |= PRESET_DICT;
995         header += 31 - (header % 31);
996 
997         putShortMSB(s, header);
998 
999         /* Save the adler32 of the preset dictionary: */
1000         if (s->strstart != 0) {
1001             putShortMSB(s, (uInt)(strm->adler >> 16));
1002             putShortMSB(s, (uInt)(strm->adler & 0xffff));
1003         }
1004         strm->adler = adler32(0L, Z_NULL, 0);
1005         s->status = BUSY_STATE;
1006 
1007         /* Compression must start with an empty pending buffer */
1008         flush_pending(strm);
1009         if (s->pending != 0) {
1010             s->last_flush = -1;
1011             return Z_OK;
1012         }
1013     }
1014 #ifdef GZIP
1015     if (s->status == GZIP_STATE) {
1016         /* gzip header */
1017         strm->adler = crc32(0L, Z_NULL, 0);
1018         put_byte(s, 31);
1019         put_byte(s, 139);
1020         put_byte(s, 8);
1021         if (s->gzhead == Z_NULL) {
1022             put_byte(s, 0);
1023             put_byte(s, 0);
1024             put_byte(s, 0);
1025             put_byte(s, 0);
1026             put_byte(s, 0);
1027             put_byte(s, s->level == 9 ? 2 :
1028                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1029                       4 : 0));
1030             put_byte(s, OS_CODE);
1031             s->status = BUSY_STATE;
1032 
1033             /* Compression must start with an empty pending buffer */
1034             flush_pending(strm);
1035             if (s->pending != 0) {
1036                 s->last_flush = -1;
1037                 return Z_OK;
1038             }
1039         }
1040         else {
1041             put_byte(s, (s->gzhead->text ? 1 : 0) +
1042                      (s->gzhead->hcrc ? 2 : 0) +
1043                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
1044                      (s->gzhead->name == Z_NULL ? 0 : 8) +
1045                      (s->gzhead->comment == Z_NULL ? 0 : 16)
1046                      );
1047             put_byte(s, (Byte)(s->gzhead->time & 0xff));
1048             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1049             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1050             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1051             put_byte(s, s->level == 9 ? 2 :
1052                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1053                       4 : 0));
1054             put_byte(s, s->gzhead->os & 0xff);
1055             if (s->gzhead->extra != Z_NULL) {
1056                 put_byte(s, s->gzhead->extra_len & 0xff);
1057                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1058             }
1059             if (s->gzhead->hcrc)
1060                 strm->adler = crc32(strm->adler, s->pending_buf,
1061                                     s->pending);
1062             s->gzindex = 0;
1063             s->status = EXTRA_STATE;
1064         }
1065     }
1066     if (s->status == EXTRA_STATE) {
1067         if (s->gzhead->extra != Z_NULL) {
1068             ulg beg = s->pending;   /* start of bytes to update crc */
1069             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1070             while (s->pending + left > s->pending_buf_size) {
1071                 uInt copy = s->pending_buf_size - s->pending;
1072                 zmemcpy(s->pending_buf + s->pending,
1073                         s->gzhead->extra + s->gzindex, copy);
1074                 s->pending = s->pending_buf_size;
1075                 HCRC_UPDATE(beg);
1076                 s->gzindex += copy;
1077                 flush_pending(strm);
1078                 if (s->pending != 0) {
1079                     s->last_flush = -1;
1080                     return Z_OK;
1081                 }
1082                 beg = 0;
1083                 left -= copy;
1084             }
1085             zmemcpy(s->pending_buf + s->pending,
1086                     s->gzhead->extra + s->gzindex, left);
1087             s->pending += left;
1088             HCRC_UPDATE(beg);
1089             s->gzindex = 0;
1090         }
1091         s->status = NAME_STATE;
1092     }
1093     if (s->status == NAME_STATE) {
1094         if (s->gzhead->name != Z_NULL) {
1095             ulg beg = s->pending;   /* start of bytes to update crc */
1096             int val;
1097             do {
1098                 if (s->pending == s->pending_buf_size) {
1099                     HCRC_UPDATE(beg);
1100                     flush_pending(strm);
1101                     if (s->pending != 0) {
1102                         s->last_flush = -1;
1103                         return Z_OK;
1104                     }
1105                     beg = 0;
1106                 }
1107                 val = s->gzhead->name[s->gzindex++];
1108                 put_byte(s, val);
1109             } while (val != 0);
1110             HCRC_UPDATE(beg);
1111             s->gzindex = 0;
1112         }
1113         s->status = COMMENT_STATE;
1114     }
1115     if (s->status == COMMENT_STATE) {
1116         if (s->gzhead->comment != Z_NULL) {
1117             ulg beg = s->pending;   /* start of bytes to update crc */
1118             int val;
1119             do {
1120                 if (s->pending == s->pending_buf_size) {
1121                     HCRC_UPDATE(beg);
1122                     flush_pending(strm);
1123                     if (s->pending != 0) {
1124                         s->last_flush = -1;
1125                         return Z_OK;
1126                     }
1127                     beg = 0;
1128                 }
1129                 val = s->gzhead->comment[s->gzindex++];
1130                 put_byte(s, val);
1131             } while (val != 0);
1132             HCRC_UPDATE(beg);
1133         }
1134         s->status = HCRC_STATE;
1135     }
1136     if (s->status == HCRC_STATE) {
1137         if (s->gzhead->hcrc) {
1138             if (s->pending + 2 > s->pending_buf_size) {
1139                 flush_pending(strm);
1140                 if (s->pending != 0) {
1141                     s->last_flush = -1;
1142                     return Z_OK;
1143                 }
1144             }
1145             put_byte(s, (Byte)(strm->adler & 0xff));
1146             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1147             strm->adler = crc32(0L, Z_NULL, 0);
1148         }
1149         s->status = BUSY_STATE;
1150 
1151         /* Compression must start with an empty pending buffer */
1152         flush_pending(strm);
1153         if (s->pending != 0) {
1154             s->last_flush = -1;
1155             return Z_OK;
1156         }
1157     }
1158 #endif
1159 
1160     /* Start a new block or continue the current one.
1161      */
1162     if (strm->avail_in != 0 || s->lookahead != 0 ||
1163         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1164         block_state bstate;
1165 
1166         bstate = s->level == 0 ? deflate_stored(s, flush) :
1167                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1168                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1169                  (*(configuration_table[s->level].func))(s, flush);
1170 
1171         if (bstate == finish_started || bstate == finish_done) {
1172             s->status = FINISH_STATE;
1173         }
1174         if (bstate == need_more || bstate == finish_started) {
1175             if (strm->avail_out == 0) {
1176                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1177             }
1178             return Z_OK;
1179             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1180              * of deflate should use the same flush parameter to make sure
1181              * that the flush is complete. So we don't have to output an
1182              * empty block here, this will be done at next call. This also
1183              * ensures that for a very small output buffer, we emit at most
1184              * one empty block.
1185              */
1186         }
1187         if (bstate == block_done) {
1188             if (flush == Z_PARTIAL_FLUSH) {
1189                 _tr_align(s);
1190             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1191                 _tr_stored_block(s, (char*)0, 0L, 0);
1192                 /* For a full flush, this empty block will be recognized
1193                  * as a special marker by inflate_sync().
1194                  */
1195                 if (flush == Z_FULL_FLUSH) {
1196                     CLEAR_HASH(s);             /* forget history */
1197                     if (s->lookahead == 0) {
1198                         s->strstart = 0;
1199                         s->block_start = 0L;
1200                         s->insert = 0;
1201                     }
1202                 }
1203             }
1204             flush_pending(strm);
1205             if (strm->avail_out == 0) {
1206               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1207               return Z_OK;
1208             }
1209         }
1210     }
1211 
1212     if (flush != Z_FINISH) return Z_OK;
1213     if (s->wrap <= 0) return Z_STREAM_END;
1214 
1215     /* Write the trailer */
1216 #ifdef GZIP
1217     if (s->wrap == 2) {
1218         put_byte(s, (Byte)(strm->adler & 0xff));
1219         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1220         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1221         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1222         put_byte(s, (Byte)(strm->total_in & 0xff));
1223         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1224         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1225         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1226     }
1227     else
1228 #endif
1229     {
1230         putShortMSB(s, (uInt)(strm->adler >> 16));
1231         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1232     }
1233     flush_pending(strm);
1234     /* If avail_out is zero, the application will call deflate again
1235      * to flush the rest.
1236      */
1237     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1238     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1239 }
1240 
1241 /* ========================================================================= */
1242 int ZEXPORT deflateEnd(z_streamp strm) {
1243     int status;
1244 
1245     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1246 
1247     status = strm->state->status;
1248 
1249     /* Deallocate in reverse order of allocations: */
1250     TRY_FREE(strm, strm->state->pending_buf);
1251     TRY_FREE(strm, strm->state->head);
1252     TRY_FREE(strm, strm->state->prev);
1253     TRY_FREE(strm, strm->state->window);
1254 
1255     ZFREE(strm, strm->state);
1256     strm->state = Z_NULL;
1257 
1258     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1259 }
1260 
1261 /* =========================================================================
1262  * Copy the source state to the destination state.
1263  * To simplify the source, this is not supported for 16-bit MSDOS (which
1264  * doesn't have enough memory anyway to duplicate compression states).
1265  */
1266 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1267 #ifdef MAXSEG_64K
1268     (void)dest;
1269     (void)source;
1270     return Z_STREAM_ERROR;
1271 #else
1272     deflate_state *ds;
1273     deflate_state *ss;
1274 
1275 
1276     if (deflateStateCheck(source) || dest == Z_NULL) {
1277         return Z_STREAM_ERROR;
1278     }
1279 
1280     ss = source->state;
1281 
1282     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1283 
1284     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1285     if (ds == Z_NULL) return Z_MEM_ERROR;
1286     dest->state = (struct internal_state FAR *) ds;
1287     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1288     ds->strm = dest;
1289 
1290     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1291     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1292     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1293     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1294 
1295     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1296         ds->pending_buf == Z_NULL) {
1297         deflateEnd (dest);
1298         return Z_MEM_ERROR;
1299     }
1300     /* following zmemcpy do not work for 16-bit MSDOS */
1301     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1302     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1303     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1304     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1305 
1306     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1307     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1308 
1309     ds->l_desc.dyn_tree = ds->dyn_ltree;
1310     ds->d_desc.dyn_tree = ds->dyn_dtree;
1311     ds->bl_desc.dyn_tree = ds->bl_tree;
1312 
1313     return Z_OK;
1314 #endif /* MAXSEG_64K */
1315 }
1316 
1317 #ifndef FASTEST
1318 /* ===========================================================================
1319  * Set match_start to the longest match starting at the given string and
1320  * return its length. Matches shorter or equal to prev_length are discarded,
1321  * in which case the result is equal to prev_length and match_start is
1322  * garbage.
1323  * IN assertions: cur_match is the head of the hash chain for the current
1324  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1325  * OUT assertion: the match length is not greater than s->lookahead.
1326  */
1327 local uInt longest_match(deflate_state *s, IPos cur_match) {
1328     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1329     register Bytef *scan = s->window + s->strstart; /* current string */
1330     register Bytef *match;                      /* matched string */
1331     register int len;                           /* length of current match */
1332     int best_len = (int)s->prev_length;         /* best match length so far */
1333     int nice_match = s->nice_match;             /* stop if match long enough */
1334     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1335         s->strstart - (IPos)MAX_DIST(s) : NIL;
1336     /* Stop when cur_match becomes <= limit. To simplify the code,
1337      * we prevent matches with the string of window index 0.
1338      */
1339     Posf *prev = s->prev;
1340     uInt wmask = s->w_mask;
1341 
1342 #ifdef UNALIGNED_OK
1343     /* Compare two bytes at a time. Note: this is not always beneficial.
1344      * Try with and without -DUNALIGNED_OK to check.
1345      */
1346     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1347     register ush scan_start = *(ushf*)scan;
1348     register ush scan_end   = *(ushf*)(scan + best_len - 1);
1349 #else
1350     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1351     register Byte scan_end1  = scan[best_len - 1];
1352     register Byte scan_end   = scan[best_len];
1353 #endif
1354 
1355     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1356      * It is easy to get rid of this optimization if necessary.
1357      */
1358     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1359 
1360     /* Do not waste too much time if we already have a good match: */
1361     if (s->prev_length >= s->good_match) {
1362         chain_length >>= 2;
1363     }
1364     /* Do not look for matches beyond the end of the input. This is necessary
1365      * to make deflate deterministic.
1366      */
1367     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1368 
1369     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1370            "need lookahead");
1371 
1372     do {
1373         Assert(cur_match < s->strstart, "no future");
1374         match = s->window + cur_match;
1375 
1376         /* Skip to next match if the match length cannot increase
1377          * or if the match length is less than 2.  Note that the checks below
1378          * for insufficient lookahead only occur occasionally for performance
1379          * reasons.  Therefore uninitialized memory will be accessed, and
1380          * conditional jumps will be made that depend on those values.
1381          * However the length of the match is limited to the lookahead, so
1382          * the output of deflate is not affected by the uninitialized values.
1383          */
1384 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1385         /* This code assumes sizeof(unsigned short) == 2. Do not use
1386          * UNALIGNED_OK if your compiler uses a different size.
1387          */
1388         if (*(ushf*)(match + best_len - 1) != scan_end ||
1389             *(ushf*)match != scan_start) continue;
1390 
1391         /* It is not necessary to compare scan[2] and match[2] since they are
1392          * always equal when the other bytes match, given that the hash keys
1393          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1394          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1395          * lookahead only every 4th comparison; the 128th check will be made
1396          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1397          * necessary to put more guard bytes at the end of the window, or
1398          * to check more often for insufficient lookahead.
1399          */
1400         Assert(scan[2] == match[2], "scan[2]?");
1401         scan++, match++;
1402         do {
1403         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1404                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1405                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1406                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1407                  scan < strend);
1408         /* The funny "do {}" generates better code on most compilers */
1409 
1410         /* Here, scan <= window + strstart + 257 */
1411         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1412                "wild scan");
1413         if (*scan == *match) scan++;
1414 
1415         len = (MAX_MATCH - 1) - (int)(strend - scan);
1416         scan = strend - (MAX_MATCH-1);
1417 
1418 #else /* UNALIGNED_OK */
1419 
1420         if (match[best_len]     != scan_end  ||
1421             match[best_len - 1] != scan_end1 ||
1422             *match              != *scan     ||
1423             *++match            != scan[1])      continue;
1424 
1425         /* The check at best_len - 1 can be removed because it will be made
1426          * again later. (This heuristic is not always a win.)
1427          * It is not necessary to compare scan[2] and match[2] since they
1428          * are always equal when the other bytes match, given that
1429          * the hash keys are equal and that HASH_BITS >= 8.
1430          */
1431         scan += 2, match++;
1432         Assert(*scan == *match, "match[2]?");
1433 
1434         /* We check for insufficient lookahead only every 8th comparison;
1435          * the 256th check will be made at strstart + 258.
1436          */
1437         do {
1438         } while (*++scan == *++match && *++scan == *++match &&
1439                  *++scan == *++match && *++scan == *++match &&
1440                  *++scan == *++match && *++scan == *++match &&
1441                  *++scan == *++match && *++scan == *++match &&
1442                  scan < strend);
1443 
1444         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1445                "wild scan");
1446 
1447         len = MAX_MATCH - (int)(strend - scan);
1448         scan = strend - MAX_MATCH;
1449 
1450 #endif /* UNALIGNED_OK */
1451 
1452         if (len > best_len) {
1453             s->match_start = cur_match;
1454             best_len = len;
1455             if (len >= nice_match) break;
1456 #ifdef UNALIGNED_OK
1457             scan_end = *(ushf*)(scan + best_len - 1);
1458 #else
1459             scan_end1  = scan[best_len - 1];
1460             scan_end   = scan[best_len];
1461 #endif
1462         }
1463     } while ((cur_match = prev[cur_match & wmask]) > limit
1464              && --chain_length != 0);
1465 
1466     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1467     return s->lookahead;
1468 }
1469 
1470 #else /* FASTEST */
1471 
1472 /* ---------------------------------------------------------------------------
1473  * Optimized version for FASTEST only
1474  */
1475 local uInt longest_match(deflate_state *s, IPos cur_match) {
1476     register Bytef *scan = s->window + s->strstart; /* current string */
1477     register Bytef *match;                       /* matched string */
1478     register int len;                           /* length of current match */
1479     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1480 
1481     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1482      * It is easy to get rid of this optimization if necessary.
1483      */
1484     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1485 
1486     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1487            "need lookahead");
1488 
1489     Assert(cur_match < s->strstart, "no future");
1490 
1491     match = s->window + cur_match;
1492 
1493     /* Return failure if the match length is less than 2:
1494      */
1495     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1496 
1497     /* The check at best_len - 1 can be removed because it will be made
1498      * again later. (This heuristic is not always a win.)
1499      * It is not necessary to compare scan[2] and match[2] since they
1500      * are always equal when the other bytes match, given that
1501      * the hash keys are equal and that HASH_BITS >= 8.
1502      */
1503     scan += 2, match += 2;
1504     Assert(*scan == *match, "match[2]?");
1505 
1506     /* We check for insufficient lookahead only every 8th comparison;
1507      * the 256th check will be made at strstart + 258.
1508      */
1509     do {
1510     } while (*++scan == *++match && *++scan == *++match &&
1511              *++scan == *++match && *++scan == *++match &&
1512              *++scan == *++match && *++scan == *++match &&
1513              *++scan == *++match && *++scan == *++match &&
1514              scan < strend);
1515 
1516     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1517 
1518     len = MAX_MATCH - (int)(strend - scan);
1519 
1520     if (len < MIN_MATCH) return MIN_MATCH - 1;
1521 
1522     s->match_start = cur_match;
1523     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1524 }
1525 
1526 #endif /* FASTEST */
1527 
1528 #ifdef ZLIB_DEBUG
1529 
1530 #define EQUAL 0
1531 /* result of memcmp for equal strings */
1532 
1533 /* ===========================================================================
1534  * Check that the match at match_start is indeed a match.
1535  */
1536 local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1537     /* check that the match is indeed a match */
1538     if (zmemcmp(s->window + match,
1539                 s->window + start, length) != EQUAL) {
1540         fprintf(stderr, " start %u, match %u, length %d\n",
1541                 start, match, length);
1542         do {
1543             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1544         } while (--length != 0);
1545         z_error("invalid match");
1546     }
1547     if (z_verbose > 1) {
1548         fprintf(stderr,"\\[%d,%d]", start - match, length);
1549         do { putc(s->window[start++], stderr); } while (--length != 0);
1550     }
1551 }
1552 #else
1553 #  define check_match(s, start, match, length)
1554 #endif /* ZLIB_DEBUG */
1555 
1556 /* ===========================================================================
1557  * Flush the current block, with given end-of-file flag.
1558  * IN assertion: strstart is set to the end of the current match.
1559  */
1560 #define FLUSH_BLOCK_ONLY(s, last) { \
1561    _tr_flush_block(s, (s->block_start >= 0L ? \
1562                    (charf *)&s->window[(unsigned)s->block_start] : \
1563                    (charf *)Z_NULL), \
1564                 (ulg)((long)s->strstart - s->block_start), \
1565                 (last)); \
1566    s->block_start = s->strstart; \
1567    flush_pending(s->strm); \
1568    Tracev((stderr,"[FLUSH]")); \
1569 }
1570 
1571 /* Same but force premature exit if necessary. */
1572 #define FLUSH_BLOCK(s, last) { \
1573    FLUSH_BLOCK_ONLY(s, last); \
1574    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1575 }
1576 
1577 /* Maximum stored block length in deflate format (not including header). */
1578 #define MAX_STORED 65535
1579 
1580 /* Minimum of a and b. */
1581 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1582 
1583 /* ===========================================================================
1584  * Copy without compression as much as possible from the input stream, return
1585  * the current block state.
1586  *
1587  * In case deflateParams() is used to later switch to a non-zero compression
1588  * level, s->matches (otherwise unused when storing) keeps track of the number
1589  * of hash table slides to perform. If s->matches is 1, then one hash table
1590  * slide will be done when switching. If s->matches is 2, the maximum value
1591  * allowed here, then the hash table will be cleared, since two or more slides
1592  * is the same as a clear.
1593  *
1594  * deflate_stored() is written to minimize the number of times an input byte is
1595  * copied. It is most efficient with large input and output buffers, which
1596  * maximizes the opportunities to have a single copy from next_in to next_out.
1597  */
1598 local block_state deflate_stored(deflate_state *s, int flush) {
1599     /* Smallest worthy block size when not flushing or finishing. By default
1600      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1601      * large input and output buffers, the stored block size will be larger.
1602      */
1603     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1604 
1605     /* Copy as many min_block or larger stored blocks directly to next_out as
1606      * possible. If flushing, copy the remaining available input to next_out as
1607      * stored blocks, if there is enough space.
1608      */
1609     unsigned len, left, have, last = 0;
1610     unsigned used = s->strm->avail_in;
1611     do {
1612         /* Set len to the maximum size block that we can copy directly with the
1613          * available input data and output space. Set left to how much of that
1614          * would be copied from what's left in the window.
1615          */
1616         len = MAX_STORED;       /* maximum deflate stored block length */
1617         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1618         if (s->strm->avail_out < have)          /* need room for header */
1619             break;
1620             /* maximum stored block length that will fit in avail_out: */
1621         have = s->strm->avail_out - have;
1622         left = s->strstart - s->block_start;    /* bytes left in window */
1623         if (len > (ulg)left + s->strm->avail_in)
1624             len = left + s->strm->avail_in;     /* limit len to the input */
1625         if (len > have)
1626             len = have;                         /* limit len to the output */
1627 
1628         /* If the stored block would be less than min_block in length, or if
1629          * unable to copy all of the available input when flushing, then try
1630          * copying to the window and the pending buffer instead. Also don't
1631          * write an empty block when flushing -- deflate() does that.
1632          */
1633         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1634                                 flush == Z_NO_FLUSH ||
1635                                 len != left + s->strm->avail_in))
1636             break;
1637 
1638         /* Make a dummy stored block in pending to get the header bytes,
1639          * including any pending bits. This also updates the debugging counts.
1640          */
1641         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1642         _tr_stored_block(s, (char *)0, 0L, last);
1643 
1644         /* Replace the lengths in the dummy stored block with len. */
1645         s->pending_buf[s->pending - 4] = len;
1646         s->pending_buf[s->pending - 3] = len >> 8;
1647         s->pending_buf[s->pending - 2] = ~len;
1648         s->pending_buf[s->pending - 1] = ~len >> 8;
1649 
1650         /* Write the stored block header bytes. */
1651         flush_pending(s->strm);
1652 
1653 #ifdef ZLIB_DEBUG
1654         /* Update debugging counts for the data about to be copied. */
1655         s->compressed_len += len << 3;
1656         s->bits_sent += len << 3;
1657 #endif
1658 
1659         /* Copy uncompressed bytes from the window to next_out. */
1660         if (left) {
1661             if (left > len)
1662                 left = len;
1663             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1664             s->strm->next_out += left;
1665             s->strm->avail_out -= left;
1666             s->strm->total_out += left;
1667             s->block_start += left;
1668             len -= left;
1669         }
1670 
1671         /* Copy uncompressed bytes directly from next_in to next_out, updating
1672          * the check value.
1673          */
1674         if (len) {
1675             read_buf(s->strm, s->strm->next_out, len);
1676             s->strm->next_out += len;
1677             s->strm->avail_out -= len;
1678             s->strm->total_out += len;
1679         }
1680     } while (last == 0);
1681 
1682     /* Update the sliding window with the last s->w_size bytes of the copied
1683      * data, or append all of the copied data to the existing window if less
1684      * than s->w_size bytes were copied. Also update the number of bytes to
1685      * insert in the hash tables, in the event that deflateParams() switches to
1686      * a non-zero compression level.
1687      */
1688     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1689     if (used) {
1690         /* If any input was used, then no unused input remains in the window,
1691          * therefore s->block_start == s->strstart.
1692          */
1693         if (used >= s->w_size) {    /* supplant the previous history */
1694             s->matches = 2;         /* clear hash */
1695             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1696             s->strstart = s->w_size;
1697             s->insert = s->strstart;
1698         }
1699         else {
1700             if (s->window_size - s->strstart <= used) {
1701                 /* Slide the window down. */
1702                 s->strstart -= s->w_size;
1703                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1704                 if (s->matches < 2)
1705                     s->matches++;   /* add a pending slide_hash() */
1706                 if (s->insert > s->strstart)
1707                     s->insert = s->strstart;
1708             }
1709             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1710             s->strstart += used;
1711             s->insert += MIN(used, s->w_size - s->insert);
1712         }
1713         s->block_start = s->strstart;
1714     }
1715     if (s->high_water < s->strstart)
1716         s->high_water = s->strstart;
1717 
1718     /* If the last block was written to next_out, then done. */
1719     if (last)
1720         return finish_done;
1721 
1722     /* If flushing and all input has been consumed, then done. */
1723     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1724         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1725         return block_done;
1726 
1727     /* Fill the window with any remaining input. */
1728     have = s->window_size - s->strstart;
1729     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1730         /* Slide the window down. */
1731         s->block_start -= s->w_size;
1732         s->strstart -= s->w_size;
1733         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1734         if (s->matches < 2)
1735             s->matches++;           /* add a pending slide_hash() */
1736         have += s->w_size;          /* more space now */
1737         if (s->insert > s->strstart)
1738             s->insert = s->strstart;
1739     }
1740     if (have > s->strm->avail_in)
1741         have = s->strm->avail_in;
1742     if (have) {
1743         read_buf(s->strm, s->window + s->strstart, have);
1744         s->strstart += have;
1745         s->insert += MIN(have, s->w_size - s->insert);
1746     }
1747     if (s->high_water < s->strstart)
1748         s->high_water = s->strstart;
1749 
1750     /* There was not enough avail_out to write a complete worthy or flushed
1751      * stored block to next_out. Write a stored block to pending instead, if we
1752      * have enough input for a worthy block, or if flushing and there is enough
1753      * room for the remaining input as a stored block in the pending buffer.
1754      */
1755     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1756         /* maximum stored block length that will fit in pending: */
1757     have = MIN(s->pending_buf_size - have, MAX_STORED);
1758     min_block = MIN(have, s->w_size);
1759     left = s->strstart - s->block_start;
1760     if (left >= min_block ||
1761         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1762          s->strm->avail_in == 0 && left <= have)) {
1763         len = MIN(left, have);
1764         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1765                len == left ? 1 : 0;
1766         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1767         s->block_start += len;
1768         flush_pending(s->strm);
1769     }
1770 
1771     /* We've done all we can with the available input and output. */
1772     return last ? finish_started : need_more;
1773 }
1774 
1775 /* ===========================================================================
1776  * Compress as much as possible from the input stream, return the current
1777  * block state.
1778  * This function does not perform lazy evaluation of matches and inserts
1779  * new strings in the dictionary only for unmatched strings or for short
1780  * matches. It is used only for the fast compression options.
1781  */
1782 local block_state deflate_fast(deflate_state *s, int flush) {
1783     IPos hash_head;       /* head of the hash chain */
1784     int bflush;           /* set if current block must be flushed */
1785 
1786     for (;;) {
1787         /* Make sure that we always have enough lookahead, except
1788          * at the end of the input file. We need MAX_MATCH bytes
1789          * for the next match, plus MIN_MATCH bytes to insert the
1790          * string following the next match.
1791          */
1792         if (s->lookahead < MIN_LOOKAHEAD) {
1793             fill_window(s);
1794             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1795                 return need_more;
1796             }
1797             if (s->lookahead == 0) break; /* flush the current block */
1798         }
1799 
1800         /* Insert the string window[strstart .. strstart + 2] in the
1801          * dictionary, and set hash_head to the head of the hash chain:
1802          */
1803         hash_head = NIL;
1804         if (s->lookahead >= MIN_MATCH) {
1805             INSERT_STRING(s, s->strstart, hash_head);
1806         }
1807 
1808         /* Find the longest match, discarding those <= prev_length.
1809          * At this point we have always match_length < MIN_MATCH
1810          */
1811         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1812             /* To simplify the code, we prevent matches with the string
1813              * of window index 0 (in particular we have to avoid a match
1814              * of the string with itself at the start of the input file).
1815              */
1816             s->match_length = longest_match (s, hash_head);
1817             /* longest_match() sets match_start */
1818         }
1819         if (s->match_length >= MIN_MATCH) {
1820             check_match(s, s->strstart, s->match_start, s->match_length);
1821 
1822             _tr_tally_dist(s, s->strstart - s->match_start,
1823                            s->match_length - MIN_MATCH, bflush);
1824 
1825             s->lookahead -= s->match_length;
1826 
1827             /* Insert new strings in the hash table only if the match length
1828              * is not too large. This saves time but degrades compression.
1829              */
1830 #ifndef FASTEST
1831             if (s->match_length <= s->max_insert_length &&
1832                 s->lookahead >= MIN_MATCH) {
1833                 s->match_length--; /* string at strstart already in table */
1834                 do {
1835                     s->strstart++;
1836                     INSERT_STRING(s, s->strstart, hash_head);
1837                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1838                      * always MIN_MATCH bytes ahead.
1839                      */
1840                 } while (--s->match_length != 0);
1841                 s->strstart++;
1842             } else
1843 #endif
1844             {
1845                 s->strstart += s->match_length;
1846                 s->match_length = 0;
1847                 s->ins_h = s->window[s->strstart];
1848                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1849 #if MIN_MATCH != 3
1850                 Call UPDATE_HASH() MIN_MATCH-3 more times
1851 #endif
1852                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1853                  * matter since it will be recomputed at next deflate call.
1854                  */
1855             }
1856         } else {
1857             /* No match, output a literal byte */
1858             Tracevv((stderr,"%c", s->window[s->strstart]));
1859             _tr_tally_lit(s, s->window[s->strstart], bflush);
1860             s->lookahead--;
1861             s->strstart++;
1862         }
1863         if (bflush) FLUSH_BLOCK(s, 0);
1864     }
1865     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1866     if (flush == Z_FINISH) {
1867         FLUSH_BLOCK(s, 1);
1868         return finish_done;
1869     }
1870     if (s->sym_next)
1871         FLUSH_BLOCK(s, 0);
1872     return block_done;
1873 }
1874 
1875 #ifndef FASTEST
1876 /* ===========================================================================
1877  * Same as above, but achieves better compression. We use a lazy
1878  * evaluation for matches: a match is finally adopted only if there is
1879  * no better match at the next window position.
1880  */
1881 local block_state deflate_slow(deflate_state *s, int flush) {
1882     IPos hash_head;          /* head of hash chain */
1883     int bflush;              /* set if current block must be flushed */
1884 
1885     /* Process the input block. */
1886     for (;;) {
1887         /* Make sure that we always have enough lookahead, except
1888          * at the end of the input file. We need MAX_MATCH bytes
1889          * for the next match, plus MIN_MATCH bytes to insert the
1890          * string following the next match.
1891          */
1892         if (s->lookahead < MIN_LOOKAHEAD) {
1893             fill_window(s);
1894             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1895                 return need_more;
1896             }
1897             if (s->lookahead == 0) break; /* flush the current block */
1898         }
1899 
1900         /* Insert the string window[strstart .. strstart + 2] in the
1901          * dictionary, and set hash_head to the head of the hash chain:
1902          */
1903         hash_head = NIL;
1904         if (s->lookahead >= MIN_MATCH) {
1905             INSERT_STRING(s, s->strstart, hash_head);
1906         }
1907 
1908         /* Find the longest match, discarding those <= prev_length.
1909          */
1910         s->prev_length = s->match_length, s->prev_match = s->match_start;
1911         s->match_length = MIN_MATCH-1;
1912 
1913         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1914             s->strstart - hash_head <= MAX_DIST(s)) {
1915             /* To simplify the code, we prevent matches with the string
1916              * of window index 0 (in particular we have to avoid a match
1917              * of the string with itself at the start of the input file).
1918              */
1919             s->match_length = longest_match (s, hash_head);
1920             /* longest_match() sets match_start */
1921 
1922             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1923 #if TOO_FAR <= 32767
1924                 || (s->match_length == MIN_MATCH &&
1925                     s->strstart - s->match_start > TOO_FAR)
1926 #endif
1927                 )) {
1928 
1929                 /* If prev_match is also MIN_MATCH, match_start is garbage
1930                  * but we will ignore the current match anyway.
1931                  */
1932                 s->match_length = MIN_MATCH-1;
1933             }
1934         }
1935         /* If there was a match at the previous step and the current
1936          * match is not better, output the previous match:
1937          */
1938         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1939             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1940             /* Do not insert strings in hash table beyond this. */
1941 
1942             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1943 
1944             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1945                            s->prev_length - MIN_MATCH, bflush);
1946 
1947             /* Insert in hash table all strings up to the end of the match.
1948              * strstart - 1 and strstart are already inserted. If there is not
1949              * enough lookahead, the last two strings are not inserted in
1950              * the hash table.
1951              */
1952             s->lookahead -= s->prev_length - 1;
1953             s->prev_length -= 2;
1954             do {
1955                 if (++s->strstart <= max_insert) {
1956                     INSERT_STRING(s, s->strstart, hash_head);
1957                 }
1958             } while (--s->prev_length != 0);
1959             s->match_available = 0;
1960             s->match_length = MIN_MATCH-1;
1961             s->strstart++;
1962 
1963             if (bflush) FLUSH_BLOCK(s, 0);
1964 
1965         } else if (s->match_available) {
1966             /* If there was no match at the previous position, output a
1967              * single literal. If there was a match but the current match
1968              * is longer, truncate the previous match to a single literal.
1969              */
1970             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
1971             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
1972             if (bflush) {
1973                 FLUSH_BLOCK_ONLY(s, 0);
1974             }
1975             s->strstart++;
1976             s->lookahead--;
1977             if (s->strm->avail_out == 0) return need_more;
1978         } else {
1979             /* There is no previous match to compare with, wait for
1980              * the next step to decide.
1981              */
1982             s->match_available = 1;
1983             s->strstart++;
1984             s->lookahead--;
1985         }
1986     }
1987     Assert (flush != Z_NO_FLUSH, "no flush?");
1988     if (s->match_available) {
1989         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
1990         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
1991         s->match_available = 0;
1992     }
1993     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1994     if (flush == Z_FINISH) {
1995         FLUSH_BLOCK(s, 1);
1996         return finish_done;
1997     }
1998     if (s->sym_next)
1999         FLUSH_BLOCK(s, 0);
2000     return block_done;
2001 }
2002 #endif /* FASTEST */
2003 
2004 /* ===========================================================================
2005  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2006  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2007  * deflate switches away from Z_RLE.)
2008  */
2009 local block_state deflate_rle(deflate_state *s, int flush) {
2010     int bflush;             /* set if current block must be flushed */
2011     uInt prev;              /* byte at distance one to match */
2012     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2013 
2014     for (;;) {
2015         /* Make sure that we always have enough lookahead, except
2016          * at the end of the input file. We need MAX_MATCH bytes
2017          * for the longest run, plus one for the unrolled loop.
2018          */
2019         if (s->lookahead <= MAX_MATCH) {
2020             fill_window(s);
2021             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2022                 return need_more;
2023             }
2024             if (s->lookahead == 0) break; /* flush the current block */
2025         }
2026 
2027         /* See how many times the previous byte repeats */
2028         s->match_length = 0;
2029         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2030             scan = s->window + s->strstart - 1;
2031             prev = *scan;
2032             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2033                 strend = s->window + s->strstart + MAX_MATCH;
2034                 do {
2035                 } while (prev == *++scan && prev == *++scan &&
2036                          prev == *++scan && prev == *++scan &&
2037                          prev == *++scan && prev == *++scan &&
2038                          prev == *++scan && prev == *++scan &&
2039                          scan < strend);
2040                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2041                 if (s->match_length > s->lookahead)
2042                     s->match_length = s->lookahead;
2043             }
2044             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2045                    "wild scan");
2046         }
2047 
2048         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2049         if (s->match_length >= MIN_MATCH) {
2050             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2051 
2052             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2053 
2054             s->lookahead -= s->match_length;
2055             s->strstart += s->match_length;
2056             s->match_length = 0;
2057         } else {
2058             /* No match, output a literal byte */
2059             Tracevv((stderr,"%c", s->window[s->strstart]));
2060             _tr_tally_lit(s, s->window[s->strstart], bflush);
2061             s->lookahead--;
2062             s->strstart++;
2063         }
2064         if (bflush) FLUSH_BLOCK(s, 0);
2065     }
2066     s->insert = 0;
2067     if (flush == Z_FINISH) {
2068         FLUSH_BLOCK(s, 1);
2069         return finish_done;
2070     }
2071     if (s->sym_next)
2072         FLUSH_BLOCK(s, 0);
2073     return block_done;
2074 }
2075 
2076 /* ===========================================================================
2077  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2078  * (It will be regenerated if this run of deflate switches away from Huffman.)
2079  */
2080 local block_state deflate_huff(deflate_state *s, int flush) {
2081     int bflush;             /* set if current block must be flushed */
2082 
2083     for (;;) {
2084         /* Make sure that we have a literal to write. */
2085         if (s->lookahead == 0) {
2086             fill_window(s);
2087             if (s->lookahead == 0) {
2088                 if (flush == Z_NO_FLUSH)
2089                     return need_more;
2090                 break;      /* flush the current block */
2091             }
2092         }
2093 
2094         /* Output a literal byte */
2095         s->match_length = 0;
2096         Tracevv((stderr,"%c", s->window[s->strstart]));
2097         _tr_tally_lit(s, s->window[s->strstart], bflush);
2098         s->lookahead--;
2099         s->strstart++;
2100         if (bflush) FLUSH_BLOCK(s, 0);
2101     }
2102     s->insert = 0;
2103     if (flush == Z_FINISH) {
2104         FLUSH_BLOCK(s, 1);
2105         return finish_done;
2106     }
2107     if (s->sym_next)
2108         FLUSH_BLOCK(s, 0);
2109     return block_done;
2110 }
2111