xref: /openbsd/regress/lib/libm/msun/csqrt_test.c (revision 73471bf0)
1 /*	$OpenBSD: csqrt_test.c,v 1.3 2021/12/13 18:04:28 deraadt Exp $	*/
2 /*-
3  * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include "macros.h"
29 
30 #include <sys/types.h>
31 
32 #include <complex.h>
33 #include <float.h>
34 #include <math.h>
35 #include <stdio.h>
36 
37 #include "test-utils.h"
38 
39 /*
40  * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
41  * The latter two convert to float or double, respectively, and test csqrtf()
42  * and csqrt() with the same arguments.
43  */
44 static long double complex (*t_csqrt)(long double complex);
45 
46 static long double complex
47 _csqrtf(long double complex d)
48 {
49 
50 	return (csqrtf((float complex)d));
51 }
52 
53 static long double complex
54 _csqrt(long double complex d)
55 {
56 
57 	return (csqrt((double complex)d));
58 }
59 
60 #pragma	STDC CX_LIMITED_RANGE	OFF
61 
62 /*
63  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
64  * Fail an assertion if they differ.
65  */
66 #define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
67 
68 /*
69  * Test csqrt for some finite arguments where the answer is exact.
70  * (We do not test if it produces correctly rounded answers when the
71  * result is inexact, nor do we check whether it throws spurious
72  * exceptions.)
73  */
74 static void
75 test_finite(void)
76 {
77 	static const double tests[] = {
78 	     /* csqrt(a + bI) = x + yI */
79 	     /* a	b	x	y */
80 		0,	8,	2,	2,
81 		0,	-8,	2,	-2,
82 		4,	0,	2,	0,
83 		-4,	0,	0,	2,
84 		3,	4,	2,	1,
85 		3,	-4,	2,	-1,
86 		-3,	4,	1,	2,
87 		-3,	-4,	1,	-2,
88 		5,	12,	3,	2,
89 		7,	24,	4,	3,
90 		9,	40,	5,	4,
91 		11,	60,	6,	5,
92 		13,	84,	7,	6,
93 		33,	56,	7,	4,
94 		39,	80,	8,	5,
95 		65,	72,	9,	4,
96 		987,	9916,	74,	67,
97 		5289,	6640,	83,	40,
98 		460766389075.0, 16762287900.0, 678910, 12345
99 	};
100 	/*
101 	 * We also test some multiples of the above arguments. This
102 	 * array defines which multiples we use. Note that these have
103 	 * to be small enough to not cause overflow for float precision
104 	 * with all of the constants in the above table.
105 	 */
106 	static const double mults[] = {
107 		1,
108 		2,
109 		3,
110 		13,
111 		16,
112 		0x1.p30,
113 		0x1.p-30,
114 	};
115 
116 	double a, b;
117 	double x, y;
118 	unsigned i, j;
119 
120 	for (i = 0; i < nitems(tests); i += 4) {
121 		for (j = 0; j < nitems(mults); j++) {
122 			a = tests[i] * mults[j] * mults[j];
123 			b = tests[i + 1] * mults[j] * mults[j];
124 			x = tests[i + 2] * mults[j];
125 			y = tests[i + 3] * mults[j];
126 			ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
127 		}
128 	}
129 
130 }
131 
132 /*
133  * Test the handling of +/- 0.
134  */
135 static void
136 test_zeros(void)
137 {
138 
139 	assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
140 	assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
141 	assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
142 	assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
143 }
144 
145 /*
146  * Test the handling of infinities when the other argument is not NaN.
147  */
148 static void
149 test_infinities(void)
150 {
151 	static const double vals[] = {
152 		0.0,
153 		-0.0,
154 		42.0,
155 		-42.0,
156 		INFINITY,
157 		-INFINITY,
158 	};
159 
160 	unsigned i;
161 
162 	for (i = 0; i < nitems(vals); i++) {
163 		if (isfinite(vals[i])) {
164 			assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
165 			    CMPLXL(0.0, copysignl(INFINITY, vals[i])));
166 			assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
167 			    CMPLXL(INFINITY, copysignl(0.0, vals[i])));
168 		}
169 		assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
170 		    CMPLXL(INFINITY, INFINITY));
171 		assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
172 		    CMPLXL(INFINITY, -INFINITY));
173 	}
174 }
175 
176 /*
177  * Test the handling of NaNs.
178  */
179 static void
180 test_nans(void)
181 {
182 
183 	ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
184 	ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
185 
186 	ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
187 	ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
188 
189 	assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
190 		     CMPLXL(INFINITY, INFINITY));
191 	assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
192 		     CMPLXL(INFINITY, -INFINITY));
193 
194 	assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
195 	assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
196 	assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
197 	assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
198 	assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
199 	assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
200 	assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
201 	assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
202 	assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
203 }
204 
205 /*
206  * Test whether csqrt(a + bi) works for inputs that are large enough to
207  * cause overflow in hypot(a, b) + a.  Each of the tests is scaled up to
208  * near MAX_EXP.
209  */
210 static void
211 test_overflow(int maxexp)
212 {
213 	long double a, b;
214 	long double complex result;
215 	int exp, i;
216 
217 	ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
218 
219 	for (i = 0; i < 4; i++) {
220 		exp = maxexp - 2 * i;
221 
222 		/* csqrt(115 + 252*I) == 14 + 9*I */
223 		a = ldexpl(115 * 0x1p-8, exp);
224 		b = ldexpl(252 * 0x1p-8, exp);
225 		result = t_csqrt(CMPLXL(a, b));
226 		ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
227 		ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
228 
229 		/* csqrt(-11 + 60*I) = 5 + 6*I */
230 		a = ldexpl(-11 * 0x1p-6, exp);
231 		b = ldexpl(60 * 0x1p-6, exp);
232 		result = t_csqrt(CMPLXL(a, b));
233 		ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
234 		ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
235 
236 		/* csqrt(225 + 0*I) == 15 + 0*I */
237 		a = ldexpl(225 * 0x1p-8, exp);
238 		b = 0;
239 		result = t_csqrt(CMPLXL(a, b));
240 		ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
241 		ATF_CHECK_EQ(cimagl(result), 0);
242 	}
243 }
244 
245 /*
246  * Test that precision is maintained for some large squares.  Set all or
247  * some bits in the lower mantdig/2 bits, square the number, and try to
248  * recover the sqrt.  Note:
249  * 	(x + xI)**2 = 2xxI
250  */
251 static void
252 test_precision(int maxexp, int mantdig)
253 {
254 	long double b, x;
255 	long double complex result;
256 #if LDBL_MANT_DIG <= 64
257 	typedef uint64_t ldbl_mant_type;
258 #elif LDBL_MANT_DIG <= 128
259 	typedef __uint128_t ldbl_mant_type;
260 #else
261 #error "Unsupported long double format"
262 #endif
263 	ldbl_mant_type mantbits, sq_mantbits;
264 	int exp, i;
265 
266 	ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
267 	ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
268 	mantdig = rounddown(mantdig, 2);
269 
270 	for (exp = 0; exp <= maxexp; exp += 2) {
271 		mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
272 		for (i = 0; i < 100 &&
273 		     mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
274 		     i++, mantbits--) {
275 			sq_mantbits = mantbits * mantbits;
276 			/*
277 			 * sq_mantibts is a mantdig-bit number.  Divide by
278 			 * 2**mantdig to normalize it to [0.5, 1), where,
279 			 * note, the binary power will be -1.  Raise it by
280 			 * 2**exp for the test.  exp is even.  Lower it by
281 			 * one to reach a final binary power which is also
282 			 * even.  The result should be exactly
283 			 * representable, given that mantdig is less than or
284 			 * equal to the available precision.
285 			 */
286 			b = ldexpl((long double)sq_mantbits,
287 			    exp - 1 - mantdig);
288 			x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
289 			CHECK_FPEQUAL(b, x * x * 2);
290 			result = t_csqrt(CMPLXL(0, b));
291 			CHECK_FPEQUAL(x, creall(result));
292 			CHECK_FPEQUAL(x, cimagl(result));
293 		}
294 	}
295 }
296 
297 ATF_TC_WITHOUT_HEAD(csqrt);
298 ATF_TC_BODY(csqrt, tc)
299 {
300 	/* Test csqrt() */
301 	t_csqrt = _csqrt;
302 
303 	test_finite();
304 
305 	test_zeros();
306 
307 	test_infinities();
308 
309 	test_nans();
310 
311 	test_overflow(DBL_MAX_EXP);
312 
313 	test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
314 }
315 
316 ATF_TC_WITHOUT_HEAD(csqrtf);
317 ATF_TC_BODY(csqrtf, tc)
318 {
319 	/* Now test csqrtf() */
320 	t_csqrt = _csqrtf;
321 
322 	test_finite();
323 
324 	test_zeros();
325 
326 	test_infinities();
327 
328 	test_nans();
329 
330 	test_overflow(FLT_MAX_EXP);
331 
332 	test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
333 }
334 
335 ATF_TC_WITHOUT_HEAD(csqrtl);
336 ATF_TC_BODY(csqrtl, tc)
337 {
338 	/* Now test csqrtl() */
339 	t_csqrt = csqrtl;
340 
341 	test_finite();
342 
343 	test_zeros();
344 
345 	test_infinities();
346 
347 	test_nans();
348 
349 	test_overflow(LDBL_MAX_EXP);
350 
351 	/* i386 is configured to use 53-bit rounding precision for long double. */
352 #ifndef __i386__
353 	test_precision(LDBL_MAX_EXP, LDBL_MANT_DIG);
354 #else
355 	test_precision(LDBL_MAX_EXP, DBL_MANT_DIG);
356 #endif
357 }
358 
359 ATF_TP_ADD_TCS(tp)
360 {
361 	ATF_TP_ADD_TC(tp, csqrt);
362 	ATF_TP_ADD_TC(tp, csqrtf);
363 	ATF_TP_ADD_TC(tp, csqrtl);
364 
365 	return (atf_no_error());
366 }
367